[1] Periša MMM. Identification of sulfonamides photodegradation products in different water matrices. Journal of bacteriology, 2013; 175, 1548-9.
[2] Zhang QQ, Ying GG, Pan CG, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol, 2015; 49, 6772-82. doi:  10.1021/acs.est.5b00729
[3] Ahmed MB, Rajapaksha AU, Lim JE, et al. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J Agric Food Chem, 2015; 63, 398-405. doi:  10.1021/jf5034637
[4] Yang Y, Song W, Lin H, et al. Antibiotics and antibiotic resistance genes in global lakes:A review and meta-analysis. Environ Int, 2018; 116, 60-73. doi:  10.1016/j.envint.2018.04.011
[5] Wang H, Wang B, Zhao Q, et al. Antibiotic body burden of Chinese school children:a multisite biomonitoring-based study. Environ Sci Technol, 2015; 49, 5070-9. doi:  10.1021/es5059428
[6] Slykerman RF, Thompson J, Waldie KE, et al. Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatrica, 2017; 106, 87-94. doi:  10.1111/apa.13613
[7] Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun, 2017; 8, 15062. doi:  10.1038/ncomms15062
[8] Bailey LC, Forrest CB, Zhang P, et al. Association of Antibiotics in Infancy With Early Childhood Obesity. Jama Pediatrics, 2014; 168, 1063-9. doi:  10.1001/jamapediatrics.2014.1539
[9] Hviid A, Svanstr MH, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut, 2011; 60, 49-54. doi:  10.1136/gut.2010.219683
[10] Zhang Q, Zhang D, Ye K, et al. Physiological and behavioral responses in offspring mice following maternal exposure to sulfamonomethoxine during pregnancy. Neurosci Lett, 2016; 624, 8-16. doi:  10.1016/j.neulet.2016.05.007
[11] FröHlich EE, Farzi A, Mayerhofer R, et al. Cognitive impairment by antibiotic-induced gut dysbiosis:Analysis of gut microbiota-brain communication. Brain Behav Immunity, 2016; 56, 140-55. doi:  10.1016/j.bbi.2016.02.020
[12] Jernberg C, Lofmark S, Edlund C, et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J, 2007; 1, 56-66. doi:  10.1038/ismej.2007.3
[13] Gonzalez-perez G, Hicks AL, Tekieli TM, et al. Maternal Antibiotic Treatment Impacts Development of the Neonatal Intestinal Microbiome and Antiviral Immunity. J Immunol, 2016; 196, 3768-79. doi:  10.4049/jimmunol.1502322
[14] Butler MI, Cryan JF, Dinan TG. Man and the Microbiome: A New Theory of Everything? Annu Rev Clin Psychol, 2019; online.
[15] Forsythe P, Kunze W, Bienenstock J. Moody microbes or fecal phrenology:what do we know about the microbiota-gut-brain axis? Bmc Medicine, 2016; 14, 58. doi:  10.1186/s12916-016-0604-8
[16] Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol, 2012; 10, 735-42. doi:  10.1038/nrmicro2876
[17] Frost G, Sleeth ML, Sahuriarisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun, 2014; 5, 3611. doi:  10.1038/ncomms4611
[18] Govindarajan N, Agis-balboa RC, Walter J, et al. Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis, 2011; 26, 187-97. doi:  10.3233/JAD-2011-110080
[19] Maqsood R, Stone TW. The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochem Res, 2016; 41, 2819-35. doi:  10.1007/s11064-016-2039-1
[20] Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes, 2015; 39, 424-9. doi:  10.1038/ijo.2014.153
[21] Wong M. Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed J, 2013; 36, 40-50. doi:  10.4103/2319-4170.110365
[22] Caccamo A, Majumder S, Richardson A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau:effects on cognitive impairments. J Biol Chem, 2010; 285, 13107-20. doi:  10.1074/jbc.M110.100420
[23] Halloran J, Hussong SA, Burbank R, et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience, 2012; 223, 102-13. doi:  10.1016/j.neuroscience.2012.06.054
[24] Tang Y, Chen Y, Jiang H, et al. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death. Autophagy, 2011; 18, 602-18.
[25] Kulcsar A, Matis G, Molnar A, et al. Effects of butyrate on the insulin homeostasis of chickens kept on maize-or wheat-based diets. Acta Vet Hung, 2016; 64, 482-96. doi:  10.1556/004.2016.045
[26] Wu B, Duan LC, Luo HQ, et al. Study on the safety of sulfamonomethoxin in yellow-feathered broiler chickens. Breeding and Feed, 2015; 1, 13-5. (In Chinese)
[27] Zhang Q. Early life exposure to antibiotic induces abnormal behavior in offspring mice: the regulatory mechanism of mTOR signaling pathway in the gut-brain axis. 2017. (In Chinese)
[28] Li Q, Han Y, Abc D, et al. The Gut Microbiota and Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 2017; 11, 120. doi:  10.3389/fncel.2017.00120
[29] Schulfer AF, Battaglia T, Alvarez Y, et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol, 2017; 3, 234-42.
[30] Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature, 2016; 534, 213-7. doi:  10.1038/nature18309
[31] De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 2014; 156, 84-96. doi:  10.1016/j.cell.2013.12.016
[32] Shultz SR, Macfabe DF, Martin S, et al. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat:further development of a rodent model of autism. Behav Brain Res, 2009; 200, 33-41. doi:  10.1016/j.bbr.2008.12.023
[33] Wang L, Christophersen CT, Sorich MJ, et al. Elevated Fecal Short Chain Fatty Acid and Ammonia Concentrations in Children with Autism Spectrum Disorder. Dig Dis Sci, 2012; 57, 2096-102. doi:  10.1007/s10620-012-2167-7
[34] Kim K, Kim H, Yim J. Functional analysis of sepiapterin reductase in Drosophila melanogaster. Pteridines, 2015; 26, 63-8.
[35] Kwak SS, Jeong M, Choi JH, et al. Amelioration of behavioral abnormalities in BH(4)-deficient mice by dietary supplementation of tyrosine. PLoS One, 2013; 8, e60803. doi:  10.1371/journal.pone.0060803
[36] Tramutola A, Triplett JC, Di Domenico F, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD):analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem, 2015; 133, 739-49. doi:  10.1111/jnc.2015.133.issue-5
[37] Caccamo A, De Pinto V, Messina A, et al. Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer's disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci, 2014; 34, 7988-98. doi:  10.1523/JNEUROSCI.0777-14.2014
[38] Wang S, Zhou SL, Min FY, et al. mTOR-mediated hyperphosphorylation of tau in the hippocampus is involved in cognitive deficits in streptozotocin-induced diabetic mice. Metabolic Brain Disease, 2014; 29, 729-36. doi:  10.1007/s11011-014-9528-1
[39] Troca-Marin JA, Alves-Sampaio A, Montesinos ML. Deregulated mTOR-mediated translation in intellectual disability. Prog Neurobiol, 2012; 96, 268-82. doi:  10.1016/j.pneurobio.2012.01.005
[40] Ehninger D. From genes to cognition in tuberous sclerosis:implications for mTOR inhibitor-based treatment approaches. Neuropharmacology, 2013; 68, 97-105. doi:  10.1016/j.neuropharm.2012.05.015
[41] Iyer AM, Van Scheppingen J, Milenkovic I, et al. mTOR Hyperactivation in down syndrome hippocampus appears early during development. J Neuropathol Exp Neurol, 2014; 73, 671-83. doi:  10.1097/NEN.0000000000000083
[42] Zhang JC, Yao W, Hashimoto K. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets. Curr Neuropharmacol, 2016; 14, 721-31. doi:  10.2174/1570159X14666160119094646
[43] Gao J, Xiong B, Zhang B, et al. Sulforaphane Alleviates Lipopolysaccharide-induced Spatial Learning and Memory Dysfunction in Mice:The Role of BDNF-mTOR Signaling Pathway. Neuroscience, 2018; 388, 357-66. doi:  10.1016/j.neuroscience.2018.07.052