[1] Altunkaynak BZ, Altun G, Yahyazadeh A, et al. Different methods for evaluating the effects of microwave radiation exposure on the nervous system. J Chem Neuroanat, 2016; 75, 62-9. doi:  10.1016/j.jchemneu.2015.11.004
[2] Shahin S, Banerjee S, Singh SP, et al. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis:Molecular Basis and Underlying Mechanism. Toxicol Sci, 2015; 148, 380-99. doi:  10.1093/toxsci/kfv205
[3] Kantz J, Muller J, Hadeler KP, et al. Insensitivity of cardiovascular function to low power cm-/mm-microwaves. Int J Environ Health Res, 2005; 15, 207-15. doi:  10.1080/09603120500105695
[4] Zhao L, Peng RY, Wang SM, et al. Relationship between Cognition Function and Hippocampus Structure after Long-term Microwave Exposure. Biomed Environ Sci, 2012; 25, 182-8. http://d.old.wanfangdata.com.cn/Periodical/bes201202009
[5] Suhhova A, Bachmann M, Karai D, et al. Effect of microwave radiation on human EEG at two different levels of exposure. Bioelectromagnetics, 2013; 34, 264-74. doi:  10.1002/bem.v34.4
[6] Vorobyov V, Janac B, Pesic V, et al. Repeated exposure to low-level extremely low frequency-modulated microwaves affects cortex-hypothalamus interplay in freely moving rats:EEG study. Int J Radiat Biol, 2010; 86, 376-83. doi:  10.3109/09553000903567938
[7] Zhao L, Yang YF, Gao YB, et al. Upregulation of HIF-1alpha via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells. Mol Neurobiol, 2014; 50, 1024-34. doi:  10.1007/s12035-014-8667-z
[8] Zhu W, Cui Y, Feng X, et al. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells. Can J Physiol Pharmacol, 2016; 94, 849-57. doi:  10.1139/cjpp-2015-0537
[9] Moine L, De Barboza GD, Perez A, et al. Glutamine protects intestinal calcium absorption against oxidative stress and apoptosis. Comp Biochem Physiol A Mol Integr Physiol, 2017; 212, 64. doi:  10.1016/j.cbpa.2017.07.006
[10] Palee S, Chattipakorn SC, Chattipakorn N. Liraglutide preserves intracellular calcium handling in isolated murine myocytes exposed to oxidative stress. Physiol Res, 2017; 24, 889-95. http://www.ncbi.nlm.nih.gov/pubmed/28730832
[11] Choi S, Quan X, Bang S, et al. Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death. J Biol Chem, 2017; 1, 14473-85. http://www.ncbi.nlm.nih.gov/pubmed/28726639
[12] Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron, 2012; 73, 862-85. doi:  10.1016/j.neuron.2012.02.011
[13] Shattock MJ, Ottolia M, Bers DM, et al. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol, 2015; 593, 1361-82. doi:  10.1113/jphysiol.2014.282319
[14] Nita LI, Hershfinkel M, Sekler I. Life after the birth of the mitochondrial Na+/Ca2+ exchanger, NCLX. Sci China Life Sci, 2015; 58, 59-65. doi:  10.1007/s11427-014-4789-9
[15] Kumar M, Singh SP, Chaturvedi CM. Chronic Nonmodulated Microwave Radiations in Mice Produce Anxiety-like and Depression-like Behaviours and Calcium-and NO-related Biochemical Changes in the Brain. Exp Neurobiol, 2016; 25, 318-27. doi:  10.5607/en.2016.25.6.318
[16] Paulraj R, Behari J. Biochemical changes in rat brain exposed to low intensity 9.9 GHz microwave radiation. Cell Biochem Biophys, 2012; 63, 97-102. doi:  10.1007/s12013-012-9344-3
[17] Cranfield CG, Wood AW, Anderson V, et al. Effects of mobile phone type signals on calcium levels within human leukaemic T-cells (Jurkat cells). Int J Radiat Biol, 2001; 77, 1207-17. doi:  10.1080/09553000110083960
[18] Dulhunty AF. Excitation-contraction coupling from the 1950s into the new millennium. Clin Exp Pharmacol Physiol, 2006; 33, 763-72. doi:  10.1111/cep.2006.33.issue-9
[19] Maher P, Van Leyen K, Dey PN, et al. The role of Ca2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium, 2017; 70, 47-55. http://europepmc.org/abstract/MED/28545724
[20] Di Giuro CML, Shrestha N, Malli R, et al. Na+/Ca2+ exchangers and Orai channels jointly refill endoplasmic reticulum (ER) Ca2+ via ER nanojunctions in vascular endothelial cells. Pflugers Arch, 2017; 469, 1287-99. doi:  10.1007/s00424-017-1989-8
[21] Mckenzie M, Lim SC, Duchen MR. Simultaneous Measurement of Mitochondrial Calcium and Mitochondrial Membrane Potential in Live Cells by Fluorescent Microscopy. J Vis Exp, 2017; 119. http://www.ncbi.nlm.nih.gov/pubmed/28190045
[22] Jang S, Javadov S. Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria. Arch Biochem Biophys, 2017; 630, 1-8. doi:  10.1016/j.abb.2017.07.009
[23] Szymanski J, Janikiewicz J, Michalska B, et al. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. Int J Mol Sci, 2017; 18, 1-24. http://www.ncbi.nlm.nih.gov/pubmed/28726733
[24] Marchi S, Patergnani S, Missiroli S, et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium, 2017; 69, 62-72. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0213127869/
[25] Hu SH, Wang H, Lu L, et al. Real-time Assessment of Cytosolic, Mitochondrial, and Nuclear Calcium Levels Change in Rat Pheochromocytoma Cells during Pulsed Microwave Exposure Using a Genetically Encoded Calcium Indicator. Biomed Environ Sci, 2017; 30, 927-31. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SWYX201712009&dbname=CJFD&dbcode=CJFQ
[26] Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron, 2008; 59, 861-72. doi:  10.1016/j.neuron.2008.08.019
[27] Zucker RS. Calcium-and activity-dependent synaptic plasticity. Curr Opin Neurobiol, 1999; 9, 305-13. doi:  10.1016/S0959-4388(99)80045-2
[28] Wust RC, Helmes M, Martin JL, et al. Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes. J Physiol, 2017; 595, 2001-19. doi:  10.1113/JP273589
[29] Cabassi A, Miragoli M. Altered Mitochondrial Metabolism and Mechanosensation in the Failing Heart:Focus on Intracellular Calcium Signaling. Int J Mol Sci, 2017; 18, 1-14. http://europepmc.org/articles/PMC5535977/
[30] Adey WR. Neurophysiologic effects of radiofrequency and microwave radiation. Bull N Y Acad Med, 1979; 55, 1079-93. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1807758
[31] Shelton WW Jr, Merritt JH. In vitro study of microwave effects on calcium efflux in rat brain tissue. Bioelectromagnetics, 1981; 2, 161-7. http://www.ncbi.nlm.nih.gov/pubmed/7295363
[32] Dutta SK, Subramoniam A, Ghosh B, et al. Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture. Bioelectromagnetics, 1984; 5, 71-8. doi:  10.1002/(ISSN)1521-186X
[33] Kesari KK, Kumar S, Behari J. Pathophysiology of microwave radiation:effect on rat brain. Appl Biochem Biotechnol, 2012; 166, 379-88. doi:  10.1007/s12010-011-9433-6
[34] Wang LF, Wei L, Qiao SM, et al. Microwave-Induced Structural and Functional Injury of Hippocampal and PC12 Cells Is Accompanied by Abnormal Changes in the NMDAR-PSD95-CaMKⅡ Pathway. Pathobiology, 2015; 82, 181-94. doi:  10.1159/000398803
[35] Xiong L, Sun CF, Zhang J, et al. Microwave exposure impairs synaptic plasticity in the rat hippocampus and PC12 cells through over-activation of the NMDA receptor signaling pathway. Biomed Environ Sci, 2015; 28, 13-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bes201501002
[36] Zhang X, Gao Y, Dong J, et al. The compound Chinese medicine "Kang Fu Ling" protects against high power microwave-induced myocardial injury. PLoS One, 2014; 9, e101532. doi:  10.1371/journal.pone.0101532
[37] Wei J, Sun J, Xu H, et al. Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes. Electromagn Biol Med, 2015; 34, 77-84. doi:  10.3109/15368378.2014.881744