[1] Wang ZL. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano, 2008; 2, 1987-92. doi:  10.1021/nn800631r
[2] Osmond MJ, McCall MJ. Zinc oxide nanoparticles inmodern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology, 2010; 4, 15-41. doi:  10.3109/17435390903502028
[3] Laha D, Pramanik A, Laskar A, et al. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Mater Res Bull, 2014; 59, 185-91. doi:  10.1016/j.materresbull.2014.06.024
[4] Goh YF, Alshemary AZ, Akram M, et al. Bioactive glass: an in-vitro comparative study of doping with nanoscale copper and silver particles. Int J Appl Glass Sci, 2014; 5, 255-66. doi:  10.1111/ijag.12061
[5] Versavel MY, Haber JA. Lead antimony sulfides as potential solar absorbers for thin film solar cells. Thin Solid Films, 2007; 515, 5767-70. doi:  10.1016/j.tsf.2006.12.077
[6] Maximous N, Nakhla G, Wong K, et al. Optimization of Al2O3/PES membranes for wastewater filtration. Sep Purif Technol, 2010; 73, 294-301. doi:  10.1016/j.seppur.2010.04.016
[7] Rani VS, Kumar AK, Kumar P, et al. Pulmonary toxicity of copper oxide (CuO) nanoparticles in rats. J Med Sci, 2013; 13, 571-77. doi:  10.3923/jms.2013.571.577
[8] Lai XF, Zhao H, Zhang Y, et al. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci Rep, 2018; 8, 4499. doi:  10.1038/s41598-018-22556-7
[9] Chuang HC, Chuang KJ, Chen JK, et al. Pulmonary pathobiology induced by zinc oxide nanoparticles in mice: a 24-hour and 28-day follow-up study. Toxicol Appl Pharm, 2017; 327, 13-22. doi:  10.1016/j.taap.2017.04.018
[10] Lin W, Stayton I, Huang YW, et al. Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxico Enviro Chem, 2008; 90, 983-96. doi:  10.1080/02772240701802559
[11] Li Q, Hu X, Bai Y, et al. The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung. Food Chem Toxicol, 2013; 60, 213-17. doi:  10.1016/j.fct.2013.07.046
[12] Yasuo M, Hiroto I, Yukiko Y, et al. Evaluation of pulmonary toxicity of zinc oxide nanoparticles following inhalation and intratracheal instillation. Int J Mol Sci, 2016; 17, 1241. doi:  10.3390/ijms17081241
[13] Jing X, Park JH, Peters TM, et al. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicol in vitro, 2015; 29, 502-11. doi:  10.1016/j.tiv.2014.12.023
[14] Thomas L, Francoise R, Bénédicte T, et al. Predicting the in vivo pulmonary toxicity induced by acute exposure to poorly soluble nanomaterials by using advanced in vitro methods. Part Fibre Toxicol, 2018; 15, 25. doi:  10.1186/s12989-018-0260-6
[15] Legendre A, Froment P, Desmots S, et al. An engineered 3D blood-testis barrier model for the assessment of reproductive toxicity potential. Biomaterials, 2010, 31, 4492-505. doi:  10.1016/j.biomaterials.2010.02.029
[16] Qosa H, Mohamed LA, Al Rihani SB, et al. High-throughput screening for identification of blood-brain barrier integrity enhancers: a drug repurposing opportunity to rectify vascular amyloid toxicity. J Alzheimers Dis, 2016; 53, 1499-516. doi:  10.3233/JAD-151179
[17] Adriani G, Ma D, Pavesi A, et al. Modeling the blood-brain barrier in a 3D triple co-culture microfluidic system. IEEE 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - Milan (2015.8.25-2015.8.29). 2015; 338-341.
[18] Zhen C, Huan M, Gengmei X, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol lett, 2006; 163, 109-20. doi:  10.1016/j.toxlet.2005.10.003
[19] Gao RD, Cao J, Shan LU, et al. Primary culture, identification and in vitro angiogenesis of mouse pulmonary microvascular endothelial cells. Chin J Pathophysiol, 2012; 28, 186-8. (In Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgblslzz201201037
[20] Hermanns MI, Unger RE, Kai K, et al. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab Invest, 2004; 84, 736-52. doi:  10.1038/labinvest.3700081
[21] Srinivasan B, Kolli AR, Esch MB, et al. TEER measurement techniques for in vitro barrier model systems. J Lab Autom, 2015; 20, 107. doi:  10.1177/2211068214561025
[22] Culot M, Lundquist S, Vanuxeem D, et al. An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol in Vitro, 2008; 22, 799-811.
[23] Siflinger-Birnboim A, Vecchio PJ, Del, Cooper JA, et al. Molecular sieving characteristics of the cultured endothelial monolayer. J Cell Physiol, 2010; 132, 111-17. doi:  10.1002-jcp.1041320115/
[24] Khawal HA, Gawai UP, Dole BN. Substitutional effect of Ni on different properties of ZnO nanocrystals. AIP Conference Proceedings [AIP Publishing LLC NANOFORUM 2014 - Rome, Italy (22–25 September 2014)], - Substitutional effect of Ni on different properties of ZnO nanocrystals. 2015, 1665; 050140.
[25] Nel A, Xia T, Lutz Mädler, et al. Toxic potential of materials at the nano level. Science, 311.
[26] Girigoswami K. Toxicity of metal oxide nanoparticles. Adv Exp Med Biol, 2018; 1048, 99-122. doi:  10.1007/978-3-319-72041-8_7
[27] Koivisto AJ, Aromaa M, Koponen IK, et al. Workplace performance of a loose-fitting powered air purifying respirator during nanoparticle synthesis. J Nanopart Res, 2015; 17, 177. doi:  10.1007/s11051-015-2990-9
[28] Ghio AJ, Gilbey JG, Roggli VL, et al. Diffuse alveolar damage after exposure to an oil fly ash. Am J Resp Crit Care, 2001; 164, 1514-18. doi:  10.1164/ajrccm.164.8.2102063
[29] Foster KA, Oster CG, Mayer MM, et al. Characterization of the A549 cell line as a type Ⅱ pulmonary epithelial cell model for drug metabolism. Exp Cell Res, 1998; 243, 359-66. doi:  10.1006/excr.1998.4172
[30] Ahamed M, Siddiqui MA, Akhtar MJ, et al. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Bioph Res Co, 2010; 396, 578-83. doi:  10.1016/j.bbrc.2010.04.156
[31] Moschini E, Gualtieri M, Colombo M, et al. The modality of cell–particle interactions drives the toxicity of nanosized CuO and TiO2 in human alveolar epithelial cells. Toxicol Lett, 2013; 222, 102-16. doi:  10.1016/j.toxlet.2013.07.019
[32] Gosens I, Cassee FR, Zanella M, et al. Organ burden and pulmonary toxicity of nano-sized copper (Ⅱ) oxide particles after short-term inhalation exposure. Nanotoxicology, 2016; 10, 1084-95. doi:  10.3109/17435390.2016.1172678
[33] Park EJ, Lee GH, Shim JH, et al. Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Arch Toxicol, 2015; 89, 1771-82. doi:  10.1007/s00204-014-1332-5
[34] Pauluhn J. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Toxicol Sci, 2009; 109, 152-67. doi:  10.1093/toxsci/kfp046
[35] Warheit DB, Sayes CM, Reed KL. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol, 2009; 43, 7939-45. doi:  10.1021/es901453p
[36] Cho WS, Duffin R, Poland CA, et al. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Persp, 2010; 118, 1699-706. doi:  10.1289/ehp.1002201
[37] Sharma V, Singh P, Pandey AK, et al. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res-Gen Tox En, 2012; 745, 84-91. doi:  10.1016/j.mrgentox.2011.12.009
[38] Chusuei CC, Wu CH, Mallavarapu S, et al. Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties. Chem Biol Interact, 2013; 206, 319-26. doi:  10.1016/j.cbi.2013.09.020
[39] Hanagata N, Zhuang F, Connolly S, et al. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano, 2011; 5, 9326-38. doi:  10.1021/nn202966t