[1] Ruiz-Ojeda FJ, Anguita-Ruiz A, Leis R, et al. Genetic factors and molecular mechanisms of vitamin D and obesity relationship. Ann Nutr Metab, 2018; 73, 89−99. doi:  10.1159/000490669
[2] Wang Y, Si SY, Liu JL, et al. The associations of serum lipids with vitamin D status. PLoS One, 2016; 11, e0165157. doi:  10.1371/journal.pone.0165157
[3] Dibaba DT. Effect of vitamin D supplementation on serum lipid profiles: a systematic review and meta-analysis. Nutr Rev, 2019; 77, 890−902. doi:  10.1093/nutrit/nuz037
[4] Wang H, Xia N, Yang Y, et al. Influence of vitamin D supplementation on plasma lipid profiles: a meta-analysis of randomized controlled trials. Lipids Health Dis, 2012; 11, 42. doi:  10.1186/1476-511X-11-42
[5] Abouzid M, Karazniewicz-Lada M, Glowka F. Genetic determinants of vitamin D-related disorders; focus on vitamin D receptor. Curr Drug Metab, 2018; 19, 1042−52. doi:  10.2174/1389200219666180723143552
[6] Jolliffe DA, Walton RT, Griffiths CJ, et al. Single nucleotide polymorphisms in the vitamin D pathway associating with circulating concentrations of vitamin D metabolites and non-skeletal health outcomes: review of genetic association studies. J Steroid Biochem Mol Biol, 2016; 164, 18−29. doi:  10.1016/j.jsbmb.2015.12.007
[7] Manuel S, Federica C, Monica C, et al. Vitamin D receptor in muscle atrophy of elderly patients: a key element of osteoporosis-sarcopenia connection. Aging Dis, 2018; 9, 952−64. doi:  10.14336/AD.2018.0215
[8] Endo I, Inoue D, Mitsui T, et al. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology, 2003; 144, 5138−44. doi:  10.1210/en.2003-0502
[9] Girgis CM, Cha KM, Houweling PJ, et al. Vitamin D receptor ablation and vitamin D deficiency result in reduced grip strength, altered muscle fibers, and increased myostatin in mice. Calcif Tissue Int, 2015; 97, 602−10. doi:  10.1007/s00223-015-0054-x
[10] Levin GP, Robinson-Cohen C, de Boer IH, et al. Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes. JAMA, 2012; 308, 1898−905. doi:  10.1001/jama.2012.17304
[11] Ramagopalan SV, Heger A, Berlanga AJ, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res, 2010; 20, 1352−60. doi:  10.1101/gr.107920.110
[12] Martínez-Sena T, Soluyanova P, Guzmán C, et al. The vitamin D receptor regulates glycerolipid and phospholipid metabolism in human hepatocytes. Biomolecules, 2020; 10, 493. doi:  10.3390/biom10030493
[13] Regitz-Zagrosek V. Sex and gender differences in health: science & society series on sex and science. EMBO Rep, 2012; 13, 596−603. doi:  10.1038/embor.2012.87
[14] Yoon H, Jeong DK, Park CE, et al. The association between gender difference with metabolic syndrome, metabolic syndrome score and serum vitamin D levels in Korean adults. Int J Food Sci Nutr, 2017; 68, 121−9. doi:  10.1080/09637486.2016.1221899
[15] de Jongh RT, Lips P, Rijs KJ, et al. Associations between vitamin D receptor genotypes and mortality in a cohort of older Dutch individuals. Eur J Endocrinol, 2011; 164, 75−82. doi:  10.1530/EJE-10-0688
[16] Khan MI, Bielecka ZF, Najm MZ, et al. Vitamin D receptor gene polymorphisms in breast and renal cancer: current state and future approaches (review). Int J Oncol, 2014; 44, 349−63. doi:  10.3892/ijo.2013.2204
[17] Iqbal MUN, Khan TA. Association between Vitamin D receptor (Cdx2, Fok1, Bsm1, Apa1, Bgl1, Taq1, and Poly (A)) gene polymorphism and breast cancer: a systematic review and meta-analysis. Tumor Biol, 2017; 39, 1−9.
[18] Cobayashi F, Lourenço BH, Cardoso MA. 25-hydroxyvitamin D3 levels, BsmI polymorphism and insulin resistance in Brazilian Amazonian children. Int J Mol Sci, 2015; 16, 12531−46. doi:  10.3390/ijms160612531
[19] Rahmadhani R, Zaharan NL, Mohamed Z, et al. The associations between VDR BsmI polymorphisms and risk of vitamin D deficiency, obesity and insulin resistance in adolescents residing in a tropical country. PLoS One, 2017; 12, e0178695. doi:  10.1371/journal.pone.0178695
[20] Santos BR, Mascarenhas LPG, Satler F, et al. Vitamin D deficiency in girls from South Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants. BMC Pediatr, 2012; 12, 62.
[21] Ni WQ, Liu XL, Zhuo ZP, et al. Serum lipids and associated factors of dyslipidemia in the adult population in Shenzhen. Lipids Health Dis, 2015; 14, 71. doi:  10.1186/s12944-015-0073-7
[22] Joint Committee for Guideline Revision National Expert Committee on Cardiovascular Diseases, National Center for Cardiovascular DiseasesChinese Society of Cardiology, Chinese Medical AssociationChinese Diabetes Society, et al. 2016 Chinese guidelines for the management of dyslipidemia in adults. J Geriatr Cardiol, 2018; 15, 1−29.
[23] Xu P, Zhu YM, Liang XS, et al. Genetic polymorphisms of superoxide dismutase 1 are associated with the serum lipid profiles of Han Chinese adults in a sexually dimorphic manner. PLoS One, 2020; 15, e0234716. doi:  10.1371/journal.pone.0234716
[24] Zhou JC, Zhu YM, Gong CM, et al. The GC2 haplotype of the vitamin D binding protein is a risk factor for a low plasma 25-hydroxyvitamin D concentration in a Han Chinese population. Nutr Metab, 2019; 16, 5. doi:  10.1186/s12986-019-0332-0
[25] Xu YX, Lou Y, Kong J. VDR regulates energy metabolism by modulating remodeling in adipose tissue. Eur J Pharmacol, 2019; 865, 172761. doi:  10.1016/j.ejphar.2019.172761
[26] Xiang W, Cheng S, Zhou Y, et al. Effects of 1, 25(OH)2D3 on lipid droplet growth in adipocytes. BioFactors, 2020; 46, 943−54. doi:  10.1002/biof.1610
[27] Kong J, Li YC. Molecular mechanism of 1, 25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab, 2006; 290, E916−24. doi:  10.1152/ajpendo.00410.2005
[28] Wood RJ. Vitamin D and adipogenesis: new molecular insights. Nutr Rev, 2008; 66, 40−6. doi:  10.1111/j.1753-4887.2007.00004.x
[29] Dace A, Martin-el Yazidi C, Bonne J, et al. Calcitriol is a positive effector of adipose differentiation in the OB 17 cell line: relationship with the adipogenic action of triiodothyronine. Biochem Biophys Res Commun, 1997; 232, 771−6. doi:  10.1006/bbrc.1997.6372
[30] Burton GR, Guan Y, Nagarajan R, et al. Microarray analysis of gene expression during early adipocyte differentiation. Gene, 2002; 293, 21−31. doi:  10.1016/S0378-1119(02)00726-6
[31] Gerhold DL, Liu F, Jiang GQ, et al. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-γ agonists. Endocrinology, 2002; 143, 2106−18. doi:  10.1210/endo.143.6.8842
[32] Wang JH, Keisala T, Solakivi T, et al. Serum cholesterol and expression of ApoAI, LXRβ and SREBP2 in vitamin D receptor knock-out mice. J Steroid Biochem Mol Biol, 2009; 113, 222−6. doi:  10.1016/j.jsbmb.2009.01.003
[33] Oh J, Riek AE, Darwech I, et al. Deletion of macrophage vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep, 2015; 10, 1872−86. doi:  10.1016/j.celrep.2015.02.043
[34] Al-Daghri NM, Al-Attas OS, Alkharfy KM, et al. Association of VDR-gene variants with factors related to the metabolic syndrome, type 2 diabetes and vitamin D deficiency. Gene, 2014; 542, 129−33. doi:  10.1016/j.gene.2014.03.044
[35] Hasan HA, AbuOdeh RO, Muda WAMBW, et al. Association of vitamin D receptor gene polymorphisms with metabolic syndrome and its components among adult Arabs from the United Arab Emirates. Diabetes Metab Syndr: Clin Res Rev, 2017; 11, S531−7. doi:  10.1016/j.dsx.2017.03.047
[36] Abdeltif E, Benrahma H, Charoute H, et al. Vitamin D receptor gene polymorphisms and vitamin D status and susceptibility to type 2 diabetes mellitus in Moroccans patients. Int J Sci Res Pub, 2014; 4, 1−8.
[37] Jia J, Tang YY, Shen C, et al. Vitamin D receptor polymorphism rs2228570 is significantly associated with risk of dyslipidemia and serum LDL levels in Chinese Han population. Lipids Health Dis, 2018; 17, 193. doi:  10.1186/s12944-018-0819-0
[38] He LN, Wang MH. Association of vitamin d receptor-a gene polymorphisms with coronary heart disease in Han Chinese. Int J Clin Exp Med, 2015; 8, 6224−9.
[39] Filus A, Trzmiel A, Kuliczkowska-Płaksej J, et al. Relationship between vitamin D receptor BsmI and FokI polymorphisms and anthropometric and biochemical parameters describing metabolic syndrome. Aging Male, 2008; 11, 134−9. doi:  10.1080/13685530802273426
[40] Xia Z, Hu YZ, Han ZT, et al. Association of vitamin D receptor gene polymorphisms with diabetic dyslipidemia in the elderly male population in North China. Clin Interv Aging, 2017; 12, 1673−9. doi:  10.2147/CIA.S145700
[41] Hajj A, Chedid R, Chouery E, et al. Relationship between vitamin D receptor gene polymorphisms, cardiovascular risk factors and adiponectin in a healthy young population. Pharmacogenomics, 2016; 17, 1675−86. doi:  10.2217/pgs-2016-0045
[42] Karonova T, Grineva E, Belyaeva O, et al. Relationship between vitamin D status and vitamin D receptor gene polymorphisms with markers of metabolic syndrome among adults. Front Endocrinol, 2018; 9, 448. doi:  10.3389/fendo.2018.00448
[43] Shen F, Wang Y, Sun HL, et al. Vitamin D receptor gene polymorphisms are associated with triceps skin fold thickness and body fat percentage but not with body mass index or waist circumference in Han Chinese. Lipids Health Dis, 2019; 18, 97. doi:  10.1186/s12944-019-1027-2
[44] Vasilopoulos Y, Sarafidou T, Kotsa K, et al. VDR TaqI is associated with obesity in the Greek population. Gene, 2013; 512, 237−9. doi:  10.1016/j.gene.2012.10.044
[45] Safar HA, El Hajj Chehadeh S, Abdel-Wareth L, et al. Vitamin D receptor gene polymorphisms among Emirati patients with type 2 diabetes mellitus. J Steroid Biochem Mol Biol, 2018; 175, 119−24. doi:  10.1016/j.jsbmb.2017.03.012
[46] Al-Daghri NM, Al-Attas O, Alokail MS, et al. Vitamin D receptor gene polymorphisms and HLA DRB1*04 cosegregation in Saudi type 2 diabetes patients. J Immunol, 2012; 188, 1325−32. doi:  10.4049/jimmunol.1101954
[47] Schuch NJ, Garcia VC, Vívolo SRGF, et al. Relationship between Vitamin D Receptor gene polymorphisms and the components of metabolic syndrome. Nutr J, 2013; 12, 96. doi:  10.1186/1475-2891-12-96
[48] Sah SK, Adhikary LP. Association between dyslipidemia and serum level of 25-Hydroxyvitamin-D in early chronic kidney disease, not on dialysis: an observational cross-sectional study from the Himalayan country. Int J Nephrol Renovasc Dis, 2020; 13, 211−8. doi:  10.2147/IJNRD.S267252
[49] Roffe-Vazquez DN, Huerta-Delgado AS, Castillo EC, et al. Correlation of vitamin D with inflammatory cytokines, atherosclerotic parameters, and lifestyle factors in the setting of heart failure: a 12-month follow-up study. Int J Mol Sci, 2019; 20, 5811. doi:  10.3390/ijms20225811
[50] Jin D, Zhu DM, Hu HL, et al. Vitamin D status affects the relationship between lipid profile and high-sensitivity C-reactive protein. Nutr Metab, 2020; 17, 57. doi:  10.1186/s12986-020-00455-x
[51] Glueck CJ, Jetty V, Rothschild M, et al. Associations between serum 25-hydroxyvitamin D and lipids, lipoprotein cholesterols, and homocysteine. North Am J Med Sci, 2016; 8, 284−90. doi:  10.4103/1947-2714.187137
[52] Lupton JR, Faridi KF, Martin SS, et al. Deficient serum 25-hydroxyvitamin D is associated with an atherogenic lipid profile: the Very Large Database of Lipids (VLDL-3) study. J Clin Lipidol, 2016; 10, 72−81. e1. doi:  10.1016/j.jacl.2015.09.006
[53] Li HWR, Brereton RE, Anderson RA, et al. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism, 2011; 60, 1475−81. doi:  10.1016/j.metabol.2011.03.002
[54] Zhou JC, Zhu YM, Guo P, et al. Serum 25(OH)D and lipid levels in Chinese obese and normal weight males before and after oral vitamin D supplementation. Biomed Environ Sci, 2013; 26, 801−7.
[55] Patwardhan VG, Khadilkar AV, Chiplonkar SA, et al. Varying relationship between 25-hydroxy-vitamin D, high density lipoprotein cholesterol, and serum 7-dehydrocholesterol reductase with sunlight exposure. J Clin Lipidol, 2015; 9, 652−7. doi:  10.1016/j.jacl.2015.05.007
[56] Kazemian E, Amouzegar A, Akbari ME, et al. Vitamin D receptor gene polymorphisms affecting changes in visceral fat, waist circumference and lipid profile in breast cancer survivors supplemented with vitamin D3. Lipids Health Dis, 2019; 18, 161. doi:  10.1186/s12944-019-1100-x
[57] Jain R, von Hurst PR, Stonehouse W, et al. Association of vitamin D receptor gene polymorphisms with insulin resistance and response to vitamin D. Metabolism, 2012; 61, 293−301. doi:  10.1016/j.metabol.2011.06.018
[58] El Gendy HI, Sadik NA, Helmy MY, et al. Vitamin D receptor gene polymorphisms and 25(OH) vitamin D: lack of association to glycemic control and metabolic parameters in type 2 diabetic Egyptian patients. J Clin Transl Endocrinol, 2019; 15, 25−9.
[59] Zaki M, Kamal S, Basha WA, et al. Association of vitamin D receptor gene polymorphism (VDR) with vitamin D deficiency, metabolic and inflammatory markers in Egyptian obese women. Genes Dis, 2017; 4, 176−82. doi:  10.1016/j.gendis.2017.07.002
[60] Sangkaew B, Nuinoon M, Jeenduang N. Association of vitamin D receptor gene polymorphisms with serum 25(OH)D levels and metabolic syndrome in Thai population. Gene, 2018; 659, 59−66. doi:  10.1016/j.gene.2018.03.047
[61] Saijo T, Ito M, Takeda E, et al. A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection. Am J Hum Genet, 1991; 49, 668−73.
[62] Arai H, Miyamoto KI, Taketani Y, et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res, 1997; 12, 915−21. doi:  10.1359/jbmr.1997.12.6.915
[63] Arai H, Miyamoto KI, Yoshida M, et al. The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J Bone Miner Res, 2001; 16, 1256−64. doi:  10.1359/jbmr.2001.16.7.1256