[1] LUFT R, IKKOS D, PALMIERI G, et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest, 1962; 41, 1776-804. doi:  10.1172/JCI104637
[2] Ueno H, Nishigaki Y, Kong QP, et al. Analysis of mitochondrial DNA variants in Japanese patients with schizophrenia. Mitochondrion, 2009; 9, 385-93. doi:  10.1016/j.mito.2009.06.003
[3] Zhu HY, Wang SW, Liu L, et al. A mitochondrial mutation A4401G is involved in the pathogenesis of left ventricular hypertrophy in Chinese hypertensives. Eur J Hum Genet, 2009; 17, 172-8. doi:  10.1038/ejhg.2008.151
[4] Zhu HY, Wang SW, Liu L, et al. Genetic variants in mitochondrial tRNA genes are associated with essential hypertension in a Chinese Han population. Clinica Chimica Acta, 2009; 410, 64-9. doi:  10.1016/j.cca.2009.09.023
[5] Zhu HY, Wang SW, Martin LJ, et al. The role of mitochondrial genome in essential hypertension in a Chinese Han population. Eur J Hum Genet, 2009; 17, 1501-6. doi:  10.1038/ejhg.2009.63
[6] Nishigaki Y, Yamada Y, Fuku N, et al. Mitochondrial haplogroup N9b is protective against myocardial infarction in Japanese males. Hum Genet, 2007; 120, 827-36. doi:  10.1007/s00439-006-0269-z
[7] Nishigaki Y, Yamada Y, Fuku N, et al. Mitochondrial haplogroup A is a genetic risk factor for atherothrombotic cerebral infarction in Japanese females. Mitochondrion, 2007; 7, 72-9. doi:  10.1016/j.mito.2006.11.002
[8] Tanaka M, Fuku N, Nishigaki Y, et al. Women with mitochondrial haplogroup N9a are protected against metabolic syndrome. Diabetes, 2007; 56, 518-21. doi:  10.2337/db06-1105
[9] Alexe G, Fuku N, Bilal E, et al. Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population. Hum Genet, 2007; 121, 347-56. doi:  10.1007/s00439-007-0330-6
[10] Bilal E, Rabadan R, Alexe G, et al. Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan. PLoS One, 2008; 3, e2421. doi:  10.1371/journal.pone.0002421
[11] Kofler B, Mueller EE, Eder W, et al. Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study. BMC Med Genet, 2009; 10, 35. http://www.biomedcentral.com/imedia/1544545222509253_manuscript.pdf
[12] Muntean DM, Sturza A, Danila MD, et al. The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. Oxid Med Cell Longev, 2016; 2016, 8254942. http://downloads.hindawi.com/journals/omcl/2016/8254942.pdf
[13] O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 2013; 6, e78-e140. https://www.guideline.gov/summaries/summary/39429
[14] Jneid H, Anderson JL, Wright RS, et al. 2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/non-ST-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 2012; 60, 645-81. doi:  10.1016/j.jacc.2012.06.004
[15] Bandelt HJ, Kloss-Brandstatter A, Richards MB, et al. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies. J Hum Genet, 2014; 59, 66-77. doi:  10.1038/jhg.2013.120
[16] Meyer MR, Barton M. Estrogens and Coronary Artery Disease: New Clinical Perspectives. Adv Pharmacol, 2016; 77, 307-60. doi:  10.1016/bs.apha.2016.05.003
[17] Monsalve M, Borniquel S, Valle I, et al. Mitochondrial dysfunction in human pathologies. Front Biosci, 2007; 12, 1131-53. doi:  10.2741/2132
[18] Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol, 2007; 27, 130-43. doi:  10.1016/j.semnephrol.2007.01.006
[19] Schleicher E, Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl, 2007; 106, S17-S26. http://www.kidney-international.org/article/S0085-2538(15)52547-7/pdf
[20] Hurst S, Hoek J, Sheu SS. Mitochondrial Ca2+ and regulation of the permeability transition pore. J Bioenerg Biomembr, 2017; 49, 27-47. doi:  10.1007/s10863-016-9672-x
[21] El-Hattab AW, Scaglia F. Mitochondrial Cardiomyopathies. Front Cardiovasc Med, 2016; 3, 25. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783139/pdf/20130900s00007p385.pdf
[22] Dorsch M, Behmenburg F, Raible M, et al. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore. PLoS One, 2016; 11, e151025. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788451/
[23] Lee HL, Chen CL, Yeh ST, et al. Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol, 2012; 302, H1410-22. doi:  10.1152/ajpheart.00731.2011
[24] Paradies G, Petrosillo G, Pistolese M, et al. Decrease in mitochondrial complex Ⅰ activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res, 2004; 94, 53-9. doi:  10.1161/01.RES.0000109416.56608.64
[25] Gadicherla AK, Stowe DF, Antholine WE, et al. Damage to mitochondrial complex Ⅰ during cardiac ischemia reperfusion injury is reduced indirectly by anti-anginal drug ranolazine. Biochim Biophys Acta, 2012; 1817, 419-29. doi:  10.1016/j.bbabio.2011.11.021
[26] Zhang DX, Borbouse L, Gebremedhin D, et al. H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res, 2012; 110, 471-80. doi:  10.1161/CIRCRESAHA.111.258871
[27] Liu Y, Zhao H, Li H, et al. Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res, 2003; 93, 573-80. doi:  10.1161/01.RES.0000091261.19387.AE
[28] Pung YF, Sam J, Stevanov K, et al. Mitochondrial oxidative stress corrupts coronary collateral growth by activating adenosine monophosphate activated kinase-alpha signaling. Arterioscler Thromb Vasc Biol, 2013; 33, 1911-9. doi:  10.1161/ATVBAHA.113.301591
[29] Zuo L, Pannell BK, Re AT, et al. Po2 cycling protects diaphragm function during reoxygenation via ROS, Akt, ERK, and mitochondrial channels. Am J Physiol Cell Physiol, 2015; 309, C759-66. http://paper.medlive.cn/literature/1950224
[30] Ohanyan V, Yin L, Bardakjian R, et al. Requisite Role of Kv1. 5 Channels in Coronary Metabolic Dilation. Circ Res, 2015; 11, 612-21. http://circres.ahajournals.org/content/early/2015/07/29/CIRCRESAHA.115.306642?related-urls=yeslCIRCRESAHA.115.306642v1
[31] Song J, Liu X, Zhai P, et al. A putative mitochondrial calcium uniporter in A. fumigatus contributes to mitochondrial Ca2+ homeostasis and stress responses. Fungal Genet Biol, 2016; 94, 15-22. doi:  10.1016/j.fgb.2016.07.001
[32] Akar FG, O'Rourke B. Mitochondria are sources of metabolic sink and arrhythmias. Pharmacol Ther, 2011; 131, 287-94. doi:  10.1016/j.pharmthera.2011.04.005
[33] Kim JB, Kim C, Choi E, et al. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase Ⅱ activation. Toxicol Appl Pharmacol, 2012; 259, 66-73. doi:  10.1016/j.taap.2011.12.007