[1] |
Griffith DE. Nontuberculous mycobacterial lung disease. Curr Opin Infect Dis, 2010; 23, 185−90. doi: 10.1097/QCO.0b013e328336ead6 |
[2] |
Iseman MD, Marras TK. The importance of nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med, 2008; 178, 999−1000. doi: 10.1164/rccm.200808-1258ED |
[3] |
Van Ingen J, Boeree MJ, van Soolingen D, et al. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat, 2012; 15, 149−61. doi: 10.1016/j.drup.2012.04.001 |
[4] |
Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007; 175, 367−416. doi: 10.1164/rccm.200604-571ST |
[5] |
Daley CL, Griffith DE. Pulmonary non-tuberculous mycobacterial infections. Int J Tuberc Lung Dis, 2010; 14, 665−71. |
[6] |
Griffith DE, Aksamit TR. Therapy of refractory nontuberculous mycobacterial lung disease. Curr Opin Infect Dis, 2012; 25, 218−27. doi: 10.1097/QCO.0b013e3283511a64 |
[7] |
Nessar R, Cambau E, Reyrat JM, et al. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother, 2012; 67, 810−8. doi: 10.1093/jac/dkr578 |
[8] |
Medjahed H, Gaillard JL, Reyrat JM. Mycobacterium abscessus: a new player in the mycobacterial field. Trends Microbiol, 2010; 18, 117−23. doi: 10.1016/j.tim.2009.12.007 |
[9] |
Roux AL, Catherinot E, Ripoll F, et al. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J Clin Microbiol, 2009; 47, 4124−8. doi: 10.1128/JCM.01257-09 |
[10] |
Aitken ML, Limaye A, Pottinger P, et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med, 2012; 185, 231−2. doi: 10.1164/ajrccm.185.2.231 |
[11] |
Bryant JM, Grogono DM, Rodriguez-Rincon D, et al. Emergence and spread of a human transmissible multidrug-resistant nontuberculous mycobacterium. Science, 2016; 354, 751−7. doi: 10.1126/science.aaf8156 |
[12] |
Haworth CS, Banks J, Capstick T, et al. British Thoracic Society Guideline for the management of nontuberculous mycobacterial pulmonary disease (NTM-PD). Thorax, 2017; 72, ii1−64. |
[13] |
Pang H, Li G, Wan L, et al. In vitro drug susceptibility of 40 international reference rapidly growing mycobacteria to 20 antimicrobial agents. Int J Clin Exp Med, 2015; 8, 15423−31. |
[14] |
Nie W, Duan H, Huang H, et al. Species identification of Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii using rpoB and hsp65, and susceptibility testing to eight antibiotics. Int J Infect Dis, 2014; 25, 170−4. doi: 10.1016/j.ijid.2014.02.014 |
[15] |
Tang SS, Lye DC, Jureen R, et al. Rapidly growing mycobacteria in Singapore, 2006-2011. Clin Microbiol Infect, 2015; 21, 236−41. doi: 10.1016/j.cmi.2014.10.018 |
[16] |
Hatakeyama S, Ohama Y, Okazaki M, et al. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis, 2017; 17, 197. doi: 10.1186/s12879-017-2298-8 |
[17] |
Lee MC, Sun PL, Wu TL, et al. Antimicrobial resistance in Mycobacterium abscessus complex isolated from patients with skin and soft tissue infections at a tertiary teaching hospital in Taiwan. J Antimicrob Chemother, 2017; 72, 2782−6. doi: 10.1093/jac/dkx212 |
[18] |
Cho EH, Huh HJ, Song DJ, et al. Drug susceptibility patterns of Mycobacterium abscessus and Mycobacterium massiliense isolated from respiratory specimens. Diagn Microbiol Infect Dis, 2019; 93, 107−11. doi: 10.1016/j.diagmicrobio.2018.08.008 |
[19] |
Bernut A, Le Moigne V, Lesne T, et al. In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system. Antimicrob Agents Chemother, 2014; 58, 4054−63. doi: 10.1128/AAC.00142-14 |
[20] |
De Groote MA, Johnson L, Podell B, et al. GM-CSF knockout mice for preclinical testing of agents with antimicrobial activity against Mycobacterium abscessus. J Antimicrob Chemother, 2013; 69, 1057−64. |
[21] |
Lerat I, Cambau E, Roth Dit Bettoni R, et al. In vivo evaluation of antibiotic activity against Mycobacterium abscessus. J Infect Dis, 2013; 209, 905−12. |
[22] |
Davis JM, Clay H, Lewis JL, et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity, 2002; 17, 693−702. doi: 10.1016/S1074-7613(02)00475-2 |
[23] |
Van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CM, et al. A star with stripes: Zebrafish as an infection model. Trends Microbiol, 2004; 12, 451−7. doi: 10.1016/j.tim.2004.08.001 |
[24] |
Dupont C, Viljoen A, Thomas S, et al. Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish. Antimicrob Agents Chemother, 2017; 61, e01225. |
[25] |
Lefebvre AL, Le Moigne V, Bernut A, et al. Inhibition of the β-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus. Antimicrob Agents Chemother, 2017; 61, e02440. |
[26] |
Bernut A, Herrmann JL, Kissa K, et al. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci USA, 2014; 111, e943−52. doi: 10.1073/pnas.1321390111 |
[27] |
Dupont C, Viljoen A, Dubar F,, et al. A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus. Mol Microbiol, 2016; 101, 515−29. doi: 10.1111/mmi.13406 |
[28] |
Dubée V, Bernut A, Cortes M, et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother, 2015; 70, 1051−8. |
[29] |
Martiniano SL, Nick JA, Daley CL. Nontuberculous mycobacterial infections in cystic fibrosis. Clin Chest Med, 2016; 37, 83−96. doi: 10.1016/j.ccm.2015.11.001 |
[30] |
Ferro BE, Srivastava S, Deshpande D, et al. Failure of the amikacin, cefoxitin, and clarithromycin combination regimen for treating pulmo- nary Mycobacterium abscessus infection. Antimicrob Agents Chemother, 2016; 60, 6374−6. doi: 10.1128/AAC.00990-16 |
[31] |
Byrd TF, Lyons CR. Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection. Infect Immun, 1999; 67, 4700−7. doi: 10.1128/IAI.67.9.4700-4707.1999 |
[32] |
Catherinot E, Clarissou J, Etienne G, et al. Hypervirulence of a rough variant of the Mycobacterium abscessus type strain. Infect Immun, 2007; 75, 1055−8. doi: 10.1128/IAI.00835-06 |
[33] |
Jönsson BE, Gilljam M, Lindblad A, et al. Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. J Clin Microbiol, 2007; 45, 1497−1504. doi: 10.1128/JCM.02592-06 |
[34] |
Cullen AR, Cannon CL, Mark EJ, et al. Mycobacterium abscessus infection in cystic fibrosis. Colonization or infection? Am J Respir Crit Care Med, 2000; 161, 641−5. doi: 10.1164/ajrccm.161.2.9903062 |
[35] |
Catherinot E, Roux AL, Macheras E, et al. Acute respiratory failure involving an R variant of Mycobacterium abscessus. J Clin Microbiol, 2009; 47, 271−4. doi: 10.1128/JCM.01478-08 |
[36] |
Howard ST, Rhoades E, Recht J, et al. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycol-peptidolipid and reacquisition of an invasive phenotype. Microbiology, 2006; 152, 1581−90. doi: 10.1099/mic.0.28625-0 |
[37] |
Nie W, Duan H, Huang H, et al. Species identification and clarithromycin susceptibility testing of 278 clinical nontuberculosis mycobacteria isolates. Biomed Res Int, 2015; 2015, e506598. |
[38] |
Ferro BE, Srivastava S, Deshpande D, et al. Moxifloxacin's limited efficacy in the Hollow-Fiber model of Mycobacterium abscessus disease. Antimicrob Agents Chemother, 2016; 60, 3779−85. doi: 10.1128/AAC.02821-15 |
[39] |
Ambrose PM. Rational susceptibility test interpretive criteria. Perspectives from the USCAST, 2016. |