[1] Mondino S, Schmidt S, Rolando M, et al. Legionnaires' disease: state of the art knowledge of pathogenesis mechanisms of Legionella. Annu Rev Pathol, 2020; 15, 439−66. doi:  10.1146/annurev-pathmechdis-012419-032742
[2] Cunha BA, Burillo A, Bouza E. Legionnaires' disease. Lancet, 2016; 387, 376−85. doi:  10.1016/S0140-6736(15)60078-2
[3] Yu VL, Plouffe JF, Pastoris MC, et al. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis, 2002; 186, 127−8. doi:  10.1086/341087
[4] Doleans A, Aurell H, Reyrolle M, et al. Clinical and environmental distributions of Legionella strains in France are different. J Clin Microbiol, 2004; 42, 458−60. doi:  10.1128/JCM.42.1.458-460.2004
[5] Jia XY, Ren HY, Nie XD, et al. Antibiotic resistance and azithromycin resistance mechanism of Legionella pneumophila serogroup 1 in China. Antimicrob Agents Chemother, 2019; 63, e00768−19.
[6] Viasus D, Gaia V, Manzur-Barbur C, et al. Legionnaires' disease: update on diagnosis and treatment. Infect Dis Ther, 2022; 11, 973−86. doi:  10.1007/s40121-022-00635-7
[7] Makarova KS, Wolf YI, Koonin EV. Classification and nomenclature of CRISPR-Cas systems: where from here?. CRISPR J, 2018; 1, 325−36. doi:  10.1089/crispr.2018.0033
[8] Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol, 2017; 37, 67−78. doi:  10.1016/j.mib.2017.05.008
[9] Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015; 13, 722−36. doi:  10.1038/nrmicro3569
[10] Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol, 2015; 1311, 47−75.
[11] Lau HY, Ashbolt NJ. The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol, 2009; 107, 368−78. doi:  10.1111/j.1365-2672.2009.04208.x
[12] Crawley AB, Henriksen JR, Barrangou R. CRISPRdisco: an automated pipeline for the discovery and analysis of CRISPR-Cas systems. CRISPR J, 2018; 1, 171−81. doi:  10.1089/crispr.2017.0022
[13] Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011; 9, 467−77. doi:  10.1038/nrmicro2577
[14] Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet, 2010; 11, 181−90.
[15] Al-Attar S, Westra ER, van der Oost J, et al. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem, 2011; 392, 277−89.
[16] Karimi Z, Ahmadi A, Najafi A, et al. Bacterial CRISPR regions: general features and their potential for epidemiological molecular typing studies. Open Microbiol J, 2018; 12, 59−70. doi:  10.2174/1874285801812010059
[17] Koonin EV, Makarova KS. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol, 2013; 10, 679−86. doi:  10.4161/rna.24022
[18] Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008; 321, 960−4. doi:  10.1126/science.1159689
[19] Mitić D, Radovčić M, Markulin D, et al. StpA represses CRISPR-Cas immunity in H-NS deficient Escherichia coli. Biochimie, 2020; 174, 136−43. doi:  10.1016/j.biochi.2020.04.020
[20] Peters JE, Makarova KS, Shmakov S, et al. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc Natl Acad Sci USA, 2017; 114, E7358−66.
[21] Gleditzsch D, Müller-Esparza H, Pausch P, et al. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Res, 2016; 44, 5872−82. doi:  10.1093/nar/gkw469
[22] McDonald ND, Regmi A, Morreale DP, et al. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics, 2019; 20, 105. doi:  10.1186/s12864-019-5439-1
[23] Li QC, Xie XL, Yin KQ, et al. Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites. Microbiol Res, 2016; 193, 103−10. doi:  10.1016/j.micres.2016.09.003
[24] Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008; 322, 1843−5. doi:  10.1126/science.1165771
[25] Barros MPS, França CT, Lins RHFB, et al. Dynamics of CRISPR loci in microevolutionary process of Yersinia pestis strains. PLoS One, 2014; 9, e108353. doi:  10.1371/journal.pone.0108353
[26] Wang G, Song GB, Xu YH. Association of CRISPR/Cas system with the drug resistance in Klebsiella pneumoniae. Infect Drug Resist, 2020; 13, 1929−35. doi:  10.2147/IDR.S253380
[27] Haider MZ, Shabbir MAB, Yaqub T, et al. CRISPR-Cas system: an adaptive immune system's association with antibiotic resistance in Salmonella enterica Serovar enteritidis. Biomed Res Int, 2022; 2022, 9080396. doi:  10.1155/2022/9080396
[28] Fu SZ, Hiley L, Octavia S, et al. Comparative genomics of Australian and international isolates of Salmonella Typhimurium: correlation of core genome evolution with CRISPR and prophage profiles. Sci Rep, 2017; 7, 9733. doi:  10.1038/s41598-017-06079-1
[29] Ostria-Hernández ML, Sánchez-Vallejo CJ, Ibarra JA, et al. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. BMC Res Notes, 2015; 8, 332. doi:  10.1186/s13104-015-1285-7
[30] Rao CT, Guyard C, Pelaz C, et al. Active and adaptive Legionella CRISPR-Cas reveals a recurrent challenge to the pathogen. Cell Microbiol, 2016; 18, 1319−38. doi:  10.1111/cmi.12586
[31] Xu PX, Ren HY, Zhao N, et al. Distribution characteristics of the Legionella CRISPR-Cas system and its regulatory mechanism underpinning phenotypic function. Infect Immun, 2024; 92, e0022923. doi:  10.1128/iai.00229-23
[32] Gunderson FF, Mallama CA, Fairbairn SG, et al. Nuclease activity of Legionella pneumophila Cas2 promotes intracellular infection of amoebal host cells. Infect Immun, 2015; 83, 1008−18. doi:  10.1128/IAI.03102-14
[33] Gunderson FF, Cianciotto NP. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio, 2013; 4, e00074−13.
[34] Deecker SR, Ensminger AW. Type I-F CRISPR-Cas distribution and array dynamics in Legionella pneumophila. G3 (Bethesda), 2020; 10, 1039−50. doi:  10.1534/g3.119.400813
[35] Deecker SR, Urbanus ML, Nicholson B, et al. Legionella pneumophila CRISPR-Cas suggests recurrent encounters with one or more phages in the family Microviridae. Appl Environ Microbiol, 2021; 87, e0046721. doi:  10.1128/AEM.00467-21
[36] Amitai G, Sorek R. CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol, 2016; 14, 67−76. doi:  10.1038/nrmicro.2015.14
[37] Newsom S, Parameshwaran HP, Martin L, et al. The CRISPR-Cas mechanism for adaptive immunity and alternate bacterial functions fuels diverse biotechnologies. Front Cell Infect Microbiol, 2021; 10, 619763. doi:  10.3389/fcimb.2020.619763
[38] Cianciotto NP. Pathogenicity of Legionella pneumophila. Int J Med Microbiol, 2001; 291, 331−43. doi:  10.1078/1438-4221-00139
[39] Chauhan D, Shames SR. Pathogenicity and virulence of Legionella: intracellular replication and host response. Virulence, 2021; 12, 1122−44. doi:  10.1080/21505594.2021.1903199
[40] Campbell JA, Cianciotto NP. Legionella pneumophila Cas2 promotes the expression of small heat shock protein C2 that is required for thermal tolerance and optimal intracellular infection. Infect Immun, 2022; 90, e0036922. doi:  10.1128/iai.00369-22
[41] Doron S, Melamed S, Ofir G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science, 2018; 359, eaar4120. doi:  10.1126/science.aar4120
[42] Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci, 2016; 371, 20150496. doi:  10.1098/rstb.2015.0496
[43] Tang BY, Gong T, Zhou XD, et al. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol, 2019; 99, 190−7. doi:  10.1016/j.archoralbio.2019.01.016
[44] Cui LQ, Wang XR, Huang DY, et al. CRISPR-cas3 of Salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens, 2020; 9, 53. doi:  10.3390/pathogens9010053
[45] Ronish LA, Sidner B, Yu YF, et al. Recognition of extracellular DNA by type IV pili promotes biofilm formation by Clostridioides difficile. J Biol Chem, 2022; 298, 102449. doi:  10.1016/j.jbc.2022.102449
[46] Ouyang ZR, Zhao HL, Zhao M, et al. Type IV pili are involved in phenotypes associated with Clostridioides difficile pathogenesis. Crit Rev Microbiol, 2024; 50, 1011−9. doi:  10.1080/1040841X.2023.2235002
[47] Steinert M, Hentschel U, Hacker J. Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol Rev, 2002; 26, 149−62. doi:  10.1111/j.1574-6976.2002.tb00607.x
[48] Ge JN, Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol, 2011; 13, 1870−80. doi:  10.1111/j.1462-5822.2011.01710.x
[49] Schroeder GN. The toolbox for uncovering the functions of Legionella Dot/Icm type IVb secretion system effectors: current state and future directions. Front Cell Infect Microbiol, 2018; 7, 528. doi:  10.3389/fcimb.2017.00528
[50] Charpentier X, Gabay JE, Reyes M, et al. Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog, 2009; 5, e1000501. doi:  10.1371/journal.ppat.1000501
[51] Jeong KC, Ghosal D, Chang YW, et al. Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc Natl Acad Sci USA, 2017; 114, 8077−82. doi:  10.1073/pnas.1621438114
[52] Costa TRD, Harb L, Khara P, et al. Type IV secretion systems: advances in structure, function, and activation. Mol Microbiol, 2021; 115, 436−52. doi:  10.1111/mmi.14670
[53] de Oliveira Luz AC, da Silva JMA, Rezende AM, et al. Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas aeruginosa. Mol Genet Genomics, 2019; 294, 1095−105. doi:  10.1007/s00438-019-01575-7
[54] Dwarakanath S, Brenzinger S, Gleditzsch D, et al. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens. Nucleic Acids Res, 2015; 43, 8913−23. doi:  10.1093/nar/gkv882
[55] Camara-Wilpert S, Mayo-Muñoz D, Russel J, et al. Bacteriophages suppress CRISPR-Cas immunity using RNA-based anti-CRISPRs. Nature, 2023; 623, 601−7. doi:  10.1038/s41586-023-06612-5
[56] Przybilski R, Richter C, Gristwood T, et al. Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum. RNA Biol, 2011; 8, 517−28. doi:  10.4161/rna.8.3.15190
[57] Merriam JJ, Mathur R, Maxfield-Boumil R, et al. Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect Immun, 1997; 65, 2497−501. doi:  10.1128/iai.65.6.2497-2501.1997