[1] Zhou Youyou, Wang Yanfu, Su Juan, et al. Integration of microRNAome, proteomics and metabolomics to analyze arsenic induced malignant cell transformation. Oncotarget, 2017; 53, 90879-96. http://cn.bing.com/academic/profile?id=0f2adf26b9fc0c0eb6fb06e435e62788&encoded=0&v=paper_preview&mkt=zh-cn
[2] Brenda C Minatel, Adam P Sage, Christine Anderson, et al. Environmental arsenic exposure:From genetic susceptibility to pathogenesis. Environ Int, 2018; 112, 183-97. doi:  10.1016/j.envint.2017.12.017
[3] Katherine M Hunt, Ritesh K Srivastava, Craig A Elmets, et al. The mechanistic basis of arsenicosis:Pathogenesis of skin cancer. Cancer Lett, 2014; 354, 211-9. doi:  10.1016/j.canlet.2014.08.016
[4] Liu Xinlu, Luo Fei, Ling Min, et al. MicroRNA-21 activation of ERK signaling via PTEN is involved in arsenite-induced autophagy in human hepatic L-02 cells. Toxicol Lett, 2016; 252, 1-10. doi:  10.1016/j.toxlet.2016.04.015
[5] Tang Yiting, Zhou Xifa, Ji Jianfeng, et al. High expression levels of miR-21 and miR-210 predict unfavorable survival in breast cancer:a systemic review and meta-analysis. Int J Biol Marker, 2015; 30, e347-58. doi:  10.5301/jbm.5000160
[6] Poyil Pratheeshkumar, Young-Ok Son, Sasidharan Padmaja Divya, et al. Oncogenic transformation of human lung bronchial epithelial cells induced by arsenic involves ROS-dependent activation of STAT3-miR-21-PDCD4 mechanism. Sci Rep-uk, 2016; 6, 37227. doi:  10.1038/srep37227
[7] Sun Jiaying, Yu Miaomiao, Lu Yongju, et al. Carcinogenic metalloid arsenic induces expression of mdig oncogene through JNK and STAT3 activation. Cancer Lett, 2014; 346, 257-63. doi:  10.1016/j.canlet.2014.01.002
[8] Luo Fei, Xu Yuan, Ling Min, et al. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells. Toxicol Appl Pharm, 2013; 273, 27-34. doi:  10.1016/j.taap.2013.08.025
[9] Gu Jingyi, Zhu Xuejiao, Li Yumin, et al. miRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Med Oncol, 2011; 28, 211-8. doi:  10.1007/s12032-009-9413-7
[10] Cárdenas-González M, Osorio-Yáñez C, Gaspar-Ramírez O, et al. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ Res, 2016; 150, 653-62. doi:  10.1016/j.envres.2016.06.032
[11] Li Dongjie, Wei Yutao, Xu Shangzhi, et al. A systematic review and meta‑analysis of bidirectional effect of arsenic on ERK signaling pathway. Mol Med Rep, 2017; 17, 4422-32. http://cn.bing.com/academic/profile?id=45fe68234a44a0e11ad8a159747e4956&encoded=0&v=paper_preview&mkt=zh-cn
[12] Lu Xiaolin, Luo Fei, Liu Yi, et al. The IL-6/STAT3 pathway via miR-21 is involved in the neoplastic and metastatic properties of arsenite-transformed human keratinocytes. Toxicol Lett, 2015; 237, 191-9. doi:  10.1016/j.toxlet.2015.06.011
[13] Ling Min, Li Yuan, Xu Yuan, et al. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radical Bio Med, 2012; 52, 1508-18. doi:  10.1016/j.freeradbiomed.2012.02.020
[14] Wang Zhao-Xia, Lu Bin-Bin, Wang He, et al. MicroRNA-21 Modulates Chemosensitivity of Breast Cancer Cells to Doxorubicin by Targeting PTEN. Arch Med Res, 2011; 42, 281-90. doi:  10.1016/j.arcmed.2011.06.008
[15] Nilanjana Banerjee, Apurba K Bandyopadhyay, Suman Dutta, et al. Increased microRNA 21 expression contributes to arsenic induced skin lesions, skin cancers and respiratory distress in chronically exposed individuals. Toxicology, 2017; 378, 10-6. doi:  10.1016/j.tox.2017.01.006
[16] Xu Yuan, Luo Fei, Liu Yi, et al. Exosomal miR-21 derived from arsenite-transformed human bronchial epithelial cells promotes cell proliferation associated with arsenite carcinogenesis. Arch Toxicol, 2015; 89, 1071-82. doi:  10.1007/s00204-014-1291-x
[17] Luo Fei, Ji Jie, Liu Yi, et al. MicroRNA-21, up-regulated by arsenite, directs the epithelial mesenchymal transition and enhances the invasive potential of transformed human bronchial epithelial cells by targeting PDCD4. Toxicol Lett, 2015; 232, 301-9. doi:  10.1016/j.toxlet.2014.11.001
[18] Li Yumin, Zhu Xuejiao, Gu Jingyi, et al. Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Res, 2010; 101, 948-54. http://cn.bing.com/academic/profile?id=0bdc4af2bd9894c983e46104f33315b9&encoded=0&v=paper_preview&mkt=zh-cn
[19] Zhao Yue, Xu Yuan, Luo Fei, et al. Angiogenesis, mediated by miR-21, is involved arsenite-induced carcinogenesis. Toxicol Lett, 2013; 223, 35-41. doi:  10.1016/j.toxlet.2013.08.020
[20] Zhao Xin, Shi Yuan-Qi, Yan Cai-Chuan, et al. Up-regulation of miR-21 and miR-23a Contributes to As2O3-induced hERG Channel Deficiency. Basic Clin Pharmacol, 2015; 116, 516-23. doi:  10.1111/bcpt.2015.116.issue-6
[21] Shen Lu, Ling Min, Li Yuan, et al. Feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1 Are Involved in Arsenite-Induced Cell Malignant Transformation. Plos One, 2013; 8, e57652. doi:  10.1371/journal.pone.0057652
[22] Chen Bailing, Liu Jia, Chang Qingshan, et al. JNK and STAT3 signaling pathways converge on Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells induced by arsenic. Cell Cycle, 2013; 12, 112-21. doi:  10.4161/cc.23030
[23] Li Yuming, Gu Jingyi, Zhu Xuejiao, et al. Study on the sensitivity of leukemic cells to arsenic trioxide enhanced by targeted suppression of mIRNA21. Chin J Integr Trad West Med, 2010; 30, 170-3. (In Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zxyjh201002016
[24] Wang Zhao-Xia, Lu Bin-Bin, Wang He, et al. MicroRNA-21 Modulates Chemosensitivity of Breast Cancer Cells to Doxorubicin by Targeting PTEN. Arch Med Res, 2011; 42, 281-90. doi:  10.1016/j.arcmed.2011.06.008
[25] Rebecca T Marquez, Erik Wendlandt, Courtney Searcey Galle, et al. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-κB signaling. AM J Physiol-gastr L, 2010; 298, G535-41. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2853303
[26] Sha Min, Ye Jun, Zhang Li-xin, et al. Celastrol Induces Apoptosis of Gastric Cancer Cells by miR-21 Inhibiting PI3K/Akt-NF-κB Signaling Pathway. Pharmacology, 2014; 93, 39-46. doi:  10.1159/000357683
[27] Mao Xu-Hua, Chen Min, Wang Yan, et al. MicroRNA-21 regulates the ERK/NF-κB signaling pathway to affect the proliferation, migration and apoptosis of human melanoma A375 cells by targeting SPRY1, PDCD4 and PTEN. Mol Carcinogen, 2016; 56, 886-910. http://www.ncbi.nlm.nih.gov/pubmed/27533779
[28] Radha Madhyastha, Harish Kumar Madhyastha, Yutthana Pengjam, et al. NFkappaB activation is essential for miR-21 induction by TGFb1 in high glucose conditions. Biochem bioph Res Co, 2014; 451, 615-21. doi:  10.1016/j.bbrc.2014.08.035
[29] Amit Bera, Nandini Ghosh-Choudhury, Nirmalya Dey, et al. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation. Cell Signal, 2013; 25, 2575-86. doi:  10.1016/j.cellsig.2013.08.005
[30] Ling Min, Li Yuan, Xu Yuan, et al. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radical Bio med, 2012; 52, 1508-18. doi:  10.1016/j.freeradbiomed.2012.02.020
[31] Wei C, Li L, Kim IK, et al. NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radical Res, 2014; 48, 282-91. doi:  10.3109/10715762.2013.865839
[32] Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions 5.2[updated June 2017]. In: The Cochrane Library, version 5.2. Chichester, UK: John Wiley & Sons, Ltd, 2017.
[33] Xu Mengchuan, Rui Dongsheng, Yan Yizhong, et al. Oxidative Damage Induced by Arsenic in Mice or Rats:A Systematic Review and Meta-Analysis. Biol Trace Elem Res, 2017; 176, 154-75. doi:  10.1007/s12011-016-0810-4
[34] He Qian, Cai Lei, Shuai Ling, et al. Ars2 Is Overexpressed in Human Cholangiocarcinomas and Its Depletion Increases PTEN and PDCD4 by Decreasing MicroRNA-21. Molecular Carcinogenesis, 2013; 52, 286-96. doi:  10.1002/mc.v52.4
[35] Lu Lu, Xu Hui, Yang Ping, et al. Involvement of HIF-1α-regulated miR-21, acting via the Akt/NF-κB pathway, in malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol Lett, 2018; 289. http://www.ncbi.nlm.nih.gov/pubmed/29501572
[36] Liu Haiwei, Cheng Le, Cao Dengke, et al. Suppression of miR-21 Expression Inhibits Cell Proliferation and Migration of Liver Cancer Cells by Targeting Phosphatase and Tension Homolog (PTEN). Med Sci Monitor, 2018; 24, 3571-7. doi:  10.12659/MSM.907038
[37] Alessio Crippa, Nicola Orsini. Dose-response meta-analysis of differences in means. BMC Med Res Methodol, 2016; 16, 91. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971698/