[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021; 71, 209−49. doi: 10.3322/caac.21660 |
[2] |
Smola S. Immunopathogenesis of HPV-associated cancers and prospects for immunotherapy. Viruses, 2017; 9, 254. doi: 10.3390/v9090254 |
[3] |
Müller-Coan BG, Caetano BFR, Pagano JS, et al. Cancer progression goes viral: the role of oncoviruses in aggressiveness of malignancies. Trends Cancer, 2018; 4, 485−98. doi: 10.1016/j.trecan.2018.04.006 |
[4] |
Krump NA, You JX. From merkel cell polyomavirus infection to merkel cell carcinoma oncogenesis. Front Microbiol, 2021; 12, 739695. doi: 10.3389/fmicb.2021.739695 |
[5] |
Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe, 2014; 15, 266−82. doi: 10.1016/j.chom.2014.02.011 |
[6] |
McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta (BBA)-Mol Basis Dis, 2008; 1782, 127−50. doi: 10.1016/j.bbadis.2007.12.005 |
[7] |
Chen JD, Wang JH, Zhang JP, et al. Advances in development and application of influenza vaccines. Front Immunol, 2021; 12, 711997. doi: 10.3389/fimmu.2021.711997 |
[8] |
Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol Mech Dis, 2008; 3, 499−522. doi: 10.1146/annurev.pathmechdis.3.121806.154316 |
[9] |
Taubenberger JK, Morens DM. Influenza: the once and future pandemic. Public Health Rep, 2010; 125, 16−26. doi: 10.1177/00333549101250S405 |
[10] |
Angrini M, Varthaman A, Garcia-Verdugo I, et al. To vaccinate or not: influenza virus and lung cancer progression. Trends Cancer, 2021; 7, 573−6. doi: 10.1016/j.trecan.2021.02.006 |
[11] |
Iheagwara UK, Beatty PL, Van PT, et al. Influenza virus infection elicits protective antibodies and T cells specific for host cell antigens also expressed as tumor-associated antigens: a new view of cancer immunosurveillance. Cancer Immunol Res, 2014; 2, 263−73. doi: 10.1158/2326-6066.CIR-13-0125 |
[12] |
Miri SM, Ebrahimzadeh MS, Abdolalipour E, et al. Synergy between hemagglutinin 2 (HA2) subunit of influenza fusogenic membrane glycoprotein and oncolytic Newcastle disease virus suppressed tumor growth and further enhanced by Immune checkpoint PD-1 blockade. Cancer Cell Int, 2020; 20, 380. doi: 10.1186/s12935-020-01476-5 |
[13] |
Takizawa T, Matsukawa S, Higuchi Y, et al. Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells. J Gen Virol, 1993; 74, 2347−55. doi: 10.1099/0022-1317-74-11-2347 |
[14] |
Chaganty BKR, Qiu SB, Lu Y, et al. Redirecting host preexisting influenza A virus immunity for cancer immunotherapy. Cancer Immunol Immunother, 2022; 71, 1611−23. doi: 10.1007/s00262-021-03099-9 |
[15] |
Eierhoff T, Hrincius ER, Rescher U, et al. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS Pathog, 2010; 6, e1001099. doi: 10.1371/journal.ppat.1001099 |
[16] |
Ueki IF, Min-Oo G, Kalinowski A, et al. Respiratory virus-induced EGFR activation suppresses IRF1-dependent interferon λ and antiviral defense in airway epithelium. J Exp Med, 2013; 210, 1929−36. doi: 10.1084/jem.20121401 |
[17] |
Wang QS, Pan WL, Wang S, et al. Protein tyrosine phosphatase SHP2 suppresses host innate immunity against influenza A virus by regulating EGFR-mediated signaling. J Virol, 2021; 95, e02001−20. |
[18] |
Ampomah PB, Kong WT, Zharkova O, et al. Annexins in influenza virus replication and pathogenesis. Front Pharmacol, 2018; 9, 1282. doi: 10.3389/fphar.2018.01282 |
[19] |
Londrigan SL, Turville SG, Tate MD, et al. N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN. J Virol, 2011; 85, 2990−3000. doi: 10.1128/JVI.01705-10 |
[20] |
Pirooz SD, He SS, Zhang T, et al. UVRAG is required for virus entry through combinatorial interaction with the class C-Vps complex and SNAREs. Proc Natl Acad Sci USA, 2014; 111, 2716−21. doi: 10.1073/pnas.1320629111 |
[21] |
Orr-Burks N, Murray J, Todd KV, et al. G-protein-coupled receptor and ion channel genes used by influenza virus for replication. J Virol, 2021; 95, e02410−20. |
[22] |
Olivier M, Asmis R, Hawkins GA, et al. The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci, 2019; 20, 4781. doi: 10.3390/ijms20194781 |
[23] |
Chen DS, Tan C, Ding PW, et al. VThunter: a database for single-cell screening of virus target cells in the animal kingdom. Nucleic Acids Res, 2022; 50, D934−42. doi: 10.1093/nar/gkab894 |
[24] |
Liao Y, Liu ZP, Ye WL, et al. Exploring the characteristics of monkeypox-related genes in pan-cancer. Cells, 2022; 11, 3909. doi: 10.3390/cells11233909 |
[25] |
Liao Y, Wang JJ, Zou JM, et al. Multi-omics analysis reveals genomic, clinical and immunological features of SARS-CoV-2 virus target genes in pan-cancer. Front Immunol, 2023; 14, 1112704. doi: 10.3389/fimmu.2023.1112704 |
[26] |
Hutter C, Zenklusen JC. The cancer genome atlas: creating lasting value beyond its data. Cell, 2018; 173, 283−5. doi: 10.1016/j.cell.2018.03.042 |
[27] |
Liu CJ, Hu FF, Xie GY, et al. GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief Bioinform, 2023; 24, bbac558. doi: 10.1093/bib/bbac558 |
[28] |
Li J, Lu YL, Akbani R, et al. TCPA: a resource for cancer functional proteomics data. Nat Methods, 2013; 10, 1046−7. |
[29] |
Yang WJ, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res, 2013; 41, D955−61. |
[30] |
Mermel CH, Schumacher SE, Hill B, et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol, 2011; 12, R41. doi: 10.1186/gb-2011-12-4-r41 |
[31] |
Schlattl A, Anders S, Waszak SM, et al. Relating CNVs to transcriptome data at fine resolution: assessment of the effect of variant size, type, and overlap with functional regions. Genome Res, 2011; 21, 2004−13. doi: 10.1101/gr.122614.111 |
[32] |
Chen MJM, Li J, Wang YM, et al. TCPA v3.0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Mol Cell Proteomics, 2019; 18, S15−25. |
[33] |
Akbani R, Ng PK, Werner HMJ, et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun, 2014; 5, 3887. doi: 10.1038/ncomms4887 |
[34] |
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005; 102, 15545−50. doi: 10.1073/pnas.0506580102 |
[35] |
Miao YR, Zhang Q, Lei Q, et al. ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci, 2020; 7, 1902880. doi: 10.1002/advs.201902880 |
[36] |
Ru BB, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics, 2019; 35, 4200−2. doi: 10.1093/bioinformatics/btz210 |
[37] |
Tang ZF, Kang BX, Li CW, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res, 2019; 47, W556−60. doi: 10.1093/nar/gkz430 |
[38] |
GTEx project maps wide range of normal human genetic variation: a unique catalog and follow-up effort associate variation with gene expression across dozens of body tissues. Am J Med Genet A, 2018; 176, 263-4. |
[39] |
Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science, 2015; 349, 1483−9. doi: 10.1126/science.aab4082 |
[40] |
Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 2010; 463, 191−6. doi: 10.1038/nature08658 |
[41] |
Hastings PJ, Lupski JR, Rosenberg SM, et al. Mechanisms of change in gene copy number. Nat Rev Genet, 2009; 10, 551−64. |
[42] |
Zhao SG, Chen WS, Li HL, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet, 2020; 52, 778−89. doi: 10.1038/s41588-020-0648-8 |
[43] |
Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet, 2018; 392, 777−86. doi: 10.1016/S0140-6736(18)31268-6 |
[44] |
Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol, 2016; 34, 539−73. doi: 10.1146/annurev-immunol-032414-112049 |
[45] |
Zhang YY, Zhang ZM. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol, 2020; 17, 807−21. doi: 10.1038/s41423-020-0488-6 |
[46] |
Wang LH, Chard Dunmall LS, Cheng ZG, et al. Remodeling the tumor microenvironment by oncolytic viruses: beyond oncolysis of tumor cells for cancer treatment. J Immunother Cancer, 2022; 10, e004167. doi: 10.1136/jitc-2021-004167 |
[47] |
de Oliveira DE, Ballon G, Cesarman E. NF-κB signaling modulation by EBV and KSHV. Trends Microbiol, 2010; 18, 248−57. doi: 10.1016/j.tim.2010.04.001 |
[48] |
Biggi AFB, de Oliveira DE. The epstein-barr virus hacks immune checkpoints: evidence and consequences for lymphoproliferative disorders and cancers. Biomolecules, 2022; 12, 397. doi: 10.3390/biom12030397 |