[1] Thariat J, Hannoun-Levi JM, Myint AS, et al. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol, 2013; 10, 52−60. doi:  10.1038/nrclinonc.2012.203
[2] Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer, 2004; 4, 737−47. doi:  10.1038/nrc1451
[3] Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer, 2011; 11, 239−53. doi:  10.1038/nrc3007
[4] Victor CTS, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature, 2015; 520, 373−7. doi:  10.1038/nature14292
[5] Moncharmont C, Levy A, Guy JB, et al. Radiation-enhanced cell migration/invasion process: a review. Crit Rev Oncol/Hematol, 2014; 92, 133−42. doi:  10.1016/j.critrevonc.2014.05.006
[6] Vilalta M, Rafat M, Graves EE. Effects of radiation on metastasis and tumor cell migration. Cell Mol Life Sci, 2016; 73, 2999−3007. doi:  10.1007/s00018-016-2210-5
[7] Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer, 2017; 16, 10. doi:  10.1186/s12943-016-0577-4
[8] Thiery JP, Acloque H, Huang RYJ, et al. Epithelial-mesenchymal transitions in development and disease. Cell, 2009; 139, 871−90. doi:  10.1016/j.cell.2009.11.007
[9] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014; 15, 178−96. doi:  10.1038/nrm3758
[10] Li MJ, Xiong D, Huang H, et al. Ezrin promotes the proliferation, migration, and invasion of ovarian cancer cells. Biomed Environ Sci, 2021; 34, 139−51.
[11] Sannino G, Marchetto A, Kirchner T, et al. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: a paradox in sarcomas? Cancer Res, 2017; 77, 4556−61. doi:  10.1158/0008-5472.CAN-17-0032
[12] Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol, 2018; 13, 395−412. doi:  10.1146/annurev-pathol-020117-043854
[13] Yu Y, Luo W, Yang ZJ, et al. miR-190 suppresses breast cancer metastasis by regulation of TGF-β-induced epithelial-mesenchymal transition. Mol Cancer, 2018; 17, 70. doi:  10.1186/s12943-018-0818-9
[14] Siraj AK, Pratheeshkumar P, Divya SP, et al. TGFβ-induced SMAD4-dependent apoptosis proceeded by EMT in CRC. Mol Cancer Ther, 2019; 18, 1312−22. doi:  10.1158/1535-7163.MCT-18-1378
[15] Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov, 2012; 11, 790−811. doi:  10.1038/nrd3810
[16] Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol, 2017; 9, a022277. doi:  10.1101/cshperspect.a022277
[17] Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, et al. TGF-β in radiotherapy: mechanisms of tumor resistance and normal tissues injury. Pharmacol Res, 2020; 155, 104745. doi:  10.1016/j.phrs.2020.104745
[18] Zhou YC, Liu JY, Li J, et al. Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Int J Radiat Oncol Biol Phys, 2011; 81, 1530−7. doi:  10.1016/j.ijrobp.2011.06.1956
[19] Chen ZY, Gao H, Dong Z, et al. NRP1 regulates radiation-induced EMT via TGF-β/Smad signaling in lung adenocarcinoma cells. Int J Radiat Biol, 2020; 96, 1281−95. doi:  10.1080/09553002.2020.1793015
[20] Carl C, Flindt A, Hartmann J, et al. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway. Cell Mol Life Sci, 2016; 73, 427−43. doi:  10.1007/s00018-015-2003-2
[21] Park HR, Choi YJ, Kim JY, et al. Repeated irradiation with γ-ray induces cancer stemness through TGF-β-DLX2 signaling in the A549 human lung cancer cell line. Int J Mol Sci, 2021; 22, 4284. doi:  10.3390/ijms22084284
[22] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009; 136, 215−33. doi:  10.1016/j.cell.2009.01.002
[23] Chang SC, Sun GL, Zhang D, et al. MiR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4. Cell Death Dis, 2020; 11, 592. doi:  10.1038/s41419-020-02789-z
[24] Li QZ, Cheng Q, Chen ZG, et al. MicroRNA-663 inhibits the proliferation, migration and invasion of glioblastoma cells via targeting TGF-β1. Oncol Rep, 2016; 35, 1125−34. doi:  10.3892/or.2015.4432
[25] Wang ZH, Zhang H, Zhang P, et al. MicroRNA-663 suppresses cell invasion and migration by targeting transforming growth factor beta 1 in papillary thyroid carcinoma. Tumour Biol, 2016; 37, 7633−44. doi:  10.1007/s13277-015-4653-y
[26] Metheetrairut C, Slack FJ. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Devel, 2013; 23, 12−9. doi:  10.1016/j.gde.2013.01.002
[27] Ding N, Wu X, He JP, et al. Detection of novel human MiRNAs responding to X-ray irradiation. J Radiat Res, 2011; 52, 425−32. doi:  10.1269/jrr.10158
[28] Liu Z, Liang X, Li XP, et al. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res, 2019; 8, 328−40. doi:  10.1039/C9TX00019D
[29] Wang D, Liu Z, Yan ZY, et al. MiRNA-155-5p inhibits epithelium-to-mesenchymal transition (EMT) by targeting GSK-3β during radiation-induced pulmonary fibrosis. Arch Biochem Biophy, 2021; 697, 108699. doi:  10.1016/j.abb.2020.108699
[30] Chang L, Hu WT, Ye CY, et al. miR-3928 activates ATR pathway by targeting Dicer. RNA Biol, 2012; 9, 1247−54. doi:  10.4161/rna.21821
[31] Hu WT, Xu S, Yao B, et al. MiR-663 inhibits radiation-induced bystander effects by targeting TGFB1 in a feedback mode. RNA Biol, 2014; 11, 1189−98. doi:  10.4161/rna.34345
[32] He JP, Feng X, Hua JR, et al. miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells. Cell Cycl, 2017; 16, 1943−53. doi:  10.1080/15384101.2017.1367070
[33] Andarawewa KL, Erickson AC, Chou WS, et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β-induced epithelial to mesenchymal transition. Cancer Res, 2007; 67, 8662−70. doi:  10.1158/0008-5472.CAN-07-1294
[34] Gu YQ, Zhang B, Gu GL, et al. Metformin increases the chemosensitivity of pancreatic cancer cells to gemcitabine by reversing EMT through regulation DNA methylation of miR-663. Onco Targets Ther, 2020; 13, 10417−29. doi:  10.2147/OTT.S261570
[35] Shih JY, Yang PC. The EMT regulator slug and lung carcinogenesis. Carcinogenesis, 2011; 32, 1299−304. doi:  10.1093/carcin/bgr110
[36] Zhao LQ, Lu XB, Cao Y. MicroRNA and signal transduction pathways in tumor radiation response. Cell Signal, 2013; 25, 1625−34. doi:  10.1016/j.cellsig.2013.04.004
[37] Ding N, Hua JR, He JP, et al. The role of MiR-5094 as a proliferation suppressor during cellular radiation response via downregulating STAT5b. J Cancer, 2020; 11, 2222−33. doi:  10.7150/jca.39679
[38] Song M, Xie DF, Gao SS, et al. A biomarker panel of radiation-upregulated miRNA as signature for ionizing radiation exposure. Life (Basel), 2020; 10, 361.
[39] Hao Y, Baker D, Ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci, 2019; 20, 2767. doi:  10.3390/ijms20112767
[40] Okada T, Kamada T, Tsuji H, et al. Carbon ion radiotherapy: clinical experiences at National Institute of Radiological Science (NIRS). J Radiat Res, 2010; 51, 355−64. doi:  10.1269/jrr.10016