[1] |
Clemens JD, Nair GB, Ahmed T, et al. Cholera. Lancet, 2017; 390, 1539−49. doi: 10.1016/S0140-6736(17)30559-7 |
[2] |
Tamayo R, Patimalla B, Camilli A. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun, 2010; 78, 3560−9. doi: 10.1128/IAI.00048-10 |
[3] |
Sengupta C, Mukherjee O, Chowdhury R. Adherence to intestinal cells promotes biofilm formation in Vibrio cholerae. J Infect Dis, 2016; 214, 1571−8. doi: 10.1093/infdis/jiw435 |
[4] |
Pruzzo C, Vezzulli L, Colwell RR. Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol, 2008; 10, 1400−10. doi: 10.1111/j.1462-2920.2007.01559.x |
[5] |
Yildiz FH, Visick KL. Vibrio biofilms: so much the same yet so different. Trends Microbiol, 2009; 17, 109−18. doi: 10.1016/j.tim.2008.12.004 |
[6] |
Zamorano-Sánchez D, Fong JCN, Kilic S, et al. Identification and characterization of VpsR and VpsT binding sites in Vibrio cholerae. J Bacteriol, 2015; 197, 1221−35. doi: 10.1128/JB.02439-14 |
[7] |
Beyhan S, Bilecen K, Salama SR, et al. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J Bacteriol, 2007; 189, 388−402. doi: 10.1128/JB.00981-06 |
[8] |
Teschler JK, Cheng AT, Yildiz FH. The two-component signal transduction system VxrAB positively regulates Vibrio cholerae biofilm formation. J Bacteriol, 2017; 199, e00139−17. |
[9] |
Ayala JC, Wang HX, Silva AJ, et al. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol Microbiol, 2015; 97, 630−45. doi: 10.1111/mmi.13058 |
[10] |
Fong JCN, Yildiz FH. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J Bacteriol, 2008; 190, 6646−59. doi: 10.1128/JB.00466-08 |
[11] |
Bilecen K, Yildiz FH. Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ Microbiol, 2009; 11, 2015−29. doi: 10.1111/j.1462-2920.2009.01923.x |
[12] |
Sultan SZ, Silva AJ, Benitez JA. The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol Lett, 2010; 302, 22−31. doi: 10.1111/j.1574-6968.2009.01837.x |
[13] |
Gao H, Ma LZ, Qin Q, et al. Fur represses Vibrio cholerae biofilm formation via direct regulation of vieSAB, cdgD, vpsU, and vpsA-K transcription. Front Microbiol, 2020; 11, 587159. doi: 10.3389/fmicb.2020.587159 |
[14] |
Zhu J, Mekalanos JJ. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell, 2003; 5, 647−56. doi: 10.1016/S1534-5807(03)00295-8 |
[15] |
Waters CM, Lu WY, Rabinowitz JD, et al. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol, 2008; 190, 2527−36. doi: 10.1128/JB.01756-07 |
[16] |
Mills E, Pultz IS, Kulasekara HD, et al. The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol, 2011; 13, 1122−9. doi: 10.1111/j.1462-5822.2011.01619.x |
[17] |
Fernandez NL, Srivastava D, Ngouajio AL, et al. Cyclic di-GMP positively regulates DNA repair in Vibrio cholerae. J Bacteriol, 2018; 200, e00005−18. |
[18] |
Fernandez NL, Hsueh BY, Nhu NTQ, et al. Vibrio cholerae adapts to sessile and motile lifestyles by cyclic di-GMP regulation of cell shape. Proc Natl Acad Sci USA, 2020; 117, 29046−54. doi: 10.1073/pnas.2010199117 |
[19] |
Beyhan S, Tischler AD, Camilli A, et al. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol, 2006; 188, 3600−13. doi: 10.1128/JB.188.10.3600-3613.2006 |
[20] |
Seshasayee ASN, Fraser GM, Luscombe NM. Comparative genomics of cyclic-di-GMP signalling in bacteria: post-translational regulation and catalytic activity. Nucl Acids Res, 2010; 38, 5970−81. doi: 10.1093/nar/gkq382 |
[21] |
Kovacikova G, Lin W, Skorupski K. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol, 2005; 57, 420−33. doi: 10.1111/j.1365-2958.2005.04700.x |
[22] |
Lim B, Beyhan S, Meir J, et al. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol Microbiol, 2006; 60, 331−48. doi: 10.1111/j.1365-2958.2006.05106.x |
[23] |
Lim B, Beyhan S, Yildiz FH. Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. J Bacteriol, 2007; 189, 717−29. doi: 10.1128/JB.00834-06 |
[24] |
Syed KA, Beyhan S, Correa N, et al. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol, 2009; 191, 6555−70. doi: 10.1128/JB.00949-09 |
[25] |
Beyhan S, Odell LS, Yildiz FH. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. J Bacteriol, 2008; 190, 7392−405. doi: 10.1128/JB.00564-08 |
[26] |
Liu XX, Beyhan S, Lim B, et al. Identification and characterization of a phosphodiesterase that inversely regulates motility and biofilm formation in Vibrio cholerae. J Bacteriol, 2010; 192, 4541−52. doi: 10.1128/JB.00209-10 |
[27] |
Tamayo R, Schild S, Pratt JT, et al. Role of cyclic Di-GMP during el tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA. Infect Immun, 2008; 76, 1617−27. doi: 10.1128/IAI.01337-07 |
[28] |
Bordeleau E, Brouillette E, Robichaud N, et al. Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol, 2010; 12, 510−23. doi: 10.1111/j.1462-2920.2009.02094.x |
[29] |
Bomchil N, Watnick P, Kolter R. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J Bacteriol, 2003; 185, 1384−90. doi: 10.1128/JB.185.4.1384-1390.2003 |
[30] |
Chouhan OP, Bandekar D, Hazra M, et al. Effect of site-directed mutagenesis at the GGEEF domain of the biofilm forming GGEEF protein from Vibrio cholerae. AMB Express, 2016; 6, 2. doi: 10.1186/s13568-015-0168-6 |
[31] |
Dey AK, Bhagat A, Chowdhury R. Host cell contact induces expression of virulence factors and VieA, a cyclic di-GMP phosphodiesterase, in Vibrio cholerae. J Bacteriol, 2013; 195, 2004−10. doi: 10.1128/JB.02127-12 |
[32] |
Tamayo R, Tischler AD, Camilli A. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem, 2005; 280, 33324−30. doi: 10.1074/jbc.M506500200 |
[33] |
Beyhan S, Yildiz FH. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol Microbiol, 2007; 63, 995−1007. doi: 10.1111/j.1365-2958.2006.05568.x |
[34] |
Roelofs KG, Jones CJ, Helman SR, et al. Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLoS Pathog, 2015; 11, e1005232. doi: 10.1371/journal.ppat.1005232 |
[35] |
Hunter JL, Severin GB, Koestler BJ, et al. The Vibrio cholerae diguanylate cyclase VCA0965 has an AGDEF active site and synthesizes cyclic di-GMP. BMC Microbiol, 2014; 14, 22. doi: 10.1186/1471-2180-14-22 |
[36] |
Massie JP, Reynolds EL, Koestler BJ, et al. Quantification of high-specificity cyclic diguanylate signaling. Proc Natl Acad Sci USA, 2012; 109, 12746−51. doi: 10.1073/pnas.1115663109 |
[37] |
Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet, 2009; 43, 197−222. doi: 10.1146/annurev-genet-102108-134304 |
[38] |
Davies BW, Bogard RW, Mekalanos JJ. Mapping the regulon of Vibrio cholerae ferric uptake regulator expands its known network of gene regulation. Proc Natl Acad Sci USA, 2011; 108, 12467−72. doi: 10.1073/pnas.1107894108 |
[39] |
Gao H, Xu JL, Lu X, et al. Expression of hemolysin is regulated under the collective actions of HapR, Fur, and HlyU in Vibrio cholerae El tor serogroup O1. Front Microbiol, 2018; 9, 1310. doi: 10.3389/fmicb.2018.01310 |
[40] |
Wu R, Zhao M, Li J, et al. Direct regulation of the natural competence regulator gene tfoX by cyclic AMP (cAMP) and cAMP receptor protein (CRP) in Vibrios. Sci Rep, 2015; 5, 14921. doi: 10.1038/srep14921 |
[41] |
Sun FJ, Zhang YQ, Qiu YF, et al. H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus. Front Microbiol, 2014; 5, 675. |
[42] |
Fang N, Gao H, Wang L, et al. Optimized methods for biofilm analysis in Yersinia pestis. Biomed Environ Sci, 2013; 26, 408−11. |
[43] |
Xue XF, Zhnag MM, Sun JF, et al. H-NS represses biofilm formation and c-di-GMP synthesis in Vibrio parahaemolyticus. Biomed Environ Sci, 2022; 35, 821−9. |
[44] |
Wang L, Ling Y, Jiang HW, et al. AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol, 2013; 160, 245−51. doi: 10.1016/j.ijfoodmicro.2012.11.004 |
[45] |
Xu X, Stern AM, Liu Z, et al. Virulence regulator AphB enhances toxR transcription in Vibrio cholerae. BMC Microbiol, 2010; 10, 3. doi: 10.1186/1471-2180-10-3 |
[46] |
Kleber-Janke T, Becker WM. Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr Purif, 2000; 19, 419−24. doi: 10.1006/prep.2000.1265 |
[47] |
Gao H, Zhou DS, Li YL, et al. The iron-responsive Fur regulon in Yersinia pestis. J Bacteriol, 2008; 190, 3063−75. doi: 10.1128/JB.01910-07 |
[48] |
Zhang YQ, Qiu YF, Tan YF, et al. Transcriptional regulation of opaR, qrr2-4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus. PLoS One, 2012; 7, e34622. doi: 10.1371/journal.pone.0034622 |
[49] |
Zhang YQ, Zhang Y, Gao H, et al. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity. Gene, 2017; 613, 39−44. doi: 10.1016/j.gene.2017.03.001 |
[50] |
Osei-Adjei G, Gao H, Zhang Y, et al. Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus. Oncotarget, 2017; 8, 65809−22. doi: 10.18632/oncotarget.19498 |
[51] |
Gao H, Zhang LY, Osei-Adjei G, et al. Transcriptional regulation of cpsQ-mfpABC and mfpABC by CalR in Vibrio parahaemolyticus. Microbiologyopen, 2017; 6, e00470. doi: 10.1002/mbo3.470 |
[52] |
Mey AR, Wyckoff EE, Kanukurthy V, et al. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect Immun, 2005; 73, 8167−78. doi: 10.1128/IAI.73.12.8167-8178.2005 |
[53] |
Larocque RC, Harris JB, Dziejman M, et al. Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect Immun, 2005; 73, 4488−93. doi: 10.1128/IAI.73.8.4488-4493.2005 |
[54] |
Hammer BK, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol, 2003; 50, 101−4. doi: 10.1046/j.1365-2958.2003.03688.x |
[55] |
Ball AS, Chaparian RR, van Kessel JC. Quorum sensing gene regulation by LuxR/HapR master regulators in Vibrios. J Bacteriol, 2017; 199, e00105−17. |
[56] |
Zhang YQ, Ma LZ, Gao Y, et al. Master quorum sensing regulator HapR acts as a repressor of the mannitol phosphotransferase system operon in Vibrio cholerae. Biomed Environ Sci, 2022; 35, 69−72. |
[57] |
Milton DL. Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol, 2006; 296, 61−71. doi: 10.1016/j.ijmm.2006.01.044 |
[58] |
Zhu J, Miller MB, Vance RE, et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA, 2002; 99, 3129−34. doi: 10.1073/pnas.052694299 |