[1] Sahoo T, Dzidic N, Strecker MN, et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet Med, 2017; 19, 83−9. doi:  10.1038/gim.2016.69
[2] Levy B, Sigurjonsson S, Pettersen B, et al. Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis. Obstet Gynecol, 2014; 124, 202−9. doi:  10.1097/AOG.0000000000000325
[3] Shi SS, Lin SB, Chen BJ, et al. Isolated chromosome 8p23. 2-pter deletion:novel evidence for developmental delay, intellectual disability, microcephaly and neurobehavioral disorders. Mol Med Rep, 2017; 16, 6837−45.
[4] Hagens O, Minina E, Schweiger S, et al. Characterization of FBX25, encoding a novel brain-expressed F-box protein. Biochim Biophys Acta, 2006; 1760, 110−8. doi:  10.1016/j.bbagen.2005.09.018
[5] Harich B, Klein M, Ockeloen CW, et al. From man to fly - convergent evidence links FBXO25 to ADHD and comorbid psychiatric phenotypes. J Child Psychol Psychiat, 2020; 61, 545−5. doi:  10.1111/jcpp.13161
[6] Ranta S, Zhang YH, Ross B, et al. The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet, 1999; 23, 233−6. doi:  10.1038/13868
[7] Ranta S, Topcu M, Tegelberg S, et al. Variant late infantile neuronal ceroid lipofuscinosis in a subset of Turkish patients is allelic to Northern epilepsy. Hum Mutat, 2004; 23, 300−5. doi:  10.1002/humu.20018
[8] Reinhardt K, Grapp M, Schlachter K, et al. Novel CLN8 mutations confirm the clinical and ethnic diversity of late infantile neuronal ceroid lipofuscinosis. Clin Genet, 2010; 77, 79−85. doi:  10.1111/j.1399-0004.2009.01285.x
[9] Guo JY, Johnson GS, Cook J, et al. Neuronal ceroid lipofuscinosis in a german shorthaired pointer associated with a previously reported CLN8 nonsense variant. Mol Genet Metab Rep, 2019; 21, 100521. doi:  10.1016/j.ymgmr.2019.100521
[10] Guo JY, Johnson GS, Brown HA, et al. A CLN8 nonsense mutation in the whole genome sequence of a mixed breed dog with neuronal ceroid lipofuscinosis and Australian Shepherd ancestry. Mol Genet Metab, 2014; 112, 302−9. doi:  10.1016/j.ymgme.2014.05.014
[11] Lonka L, Aalto A, Kopra O, et al. The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy. BMC Neurosci, 2005; 6, 27. doi:  10.1186/1471-2202-6-27
[12] Adhikari B, De Silva B, Molina JA, et al. Neuronal ceroid lipofuscinosis related ER membrane protein CLN8 regulates PP2A activity and ceramide levels. Biochim Biophys Acta Mol Basis Dis, 2019; 1865, 322−8. doi:  10.1016/j.bbadis.2018.11.011
[13] Allen NM, O'HIci B, Anderson G, et al. Variant late-infantile neuronal ceroid lipofuscinosis due to a novel heterozygous CLN8 mutation and de novo 8p23. 3 deletion. Clin Genet, 2012; 81, 602−4. doi:  10.1111/j.1399-0004.2011.01777.x
[14] Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003; 421, 231−7. doi:  10.1038/nature01278
[15] Li JM, Lu CL, Cheng MC, et al. Role of the DLGAP2 gene encoding the SAP90/PSD-95-associated protein 2 in schizophrenia. PLoS One, 2014; 9, e85373. doi:  10.1371/journal.pone.0085373
[16] Verhoeven K, De Jonghe P, Van De Putte T, et al. Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10. Am J Hum Genet, 2003; 73, 926−32. doi:  10.1086/378159
[17] Zheng Y. Dbl family guanine nucleotide exchange factors. Trends Biochem Sci, 2001; 26, 724−32. doi:  10.1016/S0968-0004(01)01973-9
[18] Jin SC, Lewis SA, Bakhtiari S, et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet, 2020; 52, 1046−56. doi:  10.1038/s41588-020-0695-1
[19] Barbosa S, Greville-Heygate S, Bonnet M, et al. Opposite modulation of RAC1 by mutations in TRIO is associated with distinct, domain-specific neurodevelopmental disorders. Am J Hum Genet, 2020; 106, 338−55. doi:  10.1016/j.ajhg.2020.01.018
[20] De Filippis B, Valenti D, Chiodi V, et al. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome. Eur Neuropsychopharmacol, 2015; 25, 889−901. doi:  10.1016/j.euroneuro.2015.03.012
[21] Van Der Bijl I, Nawaz K, Kazlauskaite U, et al. Reciprocal integrin/integrin antagonism through kindlin-2 and Rho GTPases regulates cell cohesion and collective migration. Matrix Biol, 2020; 93, 60−78. doi:  10.1016/j.matbio.2020.05.005
[22] Hiraide T, Kaba Yasui H, Kato M, et al. A de novo variant in RAC3 causes severe global developmental delay and a middle interhemispheric variant of holoprosencephaly. J Hum Genet, 2019; 64, 1127−32. doi:  10.1038/s10038-019-0656-7
[23] Droppelmann CA, Campos-Melo D, Volkening K, et al. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases. Front Cell Neurosci, 2014; 8, 282.
[24] Nelis E, De Jonghe P, De Vriendt E, et al. Mutation analysis of the nerve specific promoter of the peripheral myelin protein 22 gene in CMT1 disease and HNPP. J Med Genet, 1998; 35, 590−3. doi:  10.1136/jmg.35.7.590
[25] Chaya T, Shibata S, Tokuhara Y, et al. Identification of a negative regulatory region for the exchange activity and characterization of T332I mutant of Rho guanine nucleotide exchange factor 10 (ARHGEF10). J Biol Chem, 2011; 286, 29511−20. doi:  10.1074/jbc.M111.236810
[26] Beutler AS, Kulkarni AA, Kanwar R, et al. Sequencing of Charcot-Marie-Tooth disease genes in a toxic polyneuropathy. Ann Neurol, 2014; 76, 727−37. doi:  10.1002/ana.24265
[27] Jungerius BJ, Hoogendoorn MLC, Bakker SC, et al. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol Psychiatry, 2008; 13, 1060−8. doi:  10.1038/sj.mp.4002080
[28] Lu DH, Liao HM, Chen CH, et al. Impairment of social behaviors in Arhgef10 knockout mice. Mol Autism, 2018; 9, 11. doi:  10.1186/s13229-018-0197-5
[29] Li XD, Tu HW, Hu KQ, et al. Effects of toluene on the development of the inner ear and lateral line sensory system of zebrafish. Biomed Environ Sci, 2021; 34, 110−8.
[30] Jowett T. Analysis of protein and gene expression. Methods Cell Biol, 1999; 59, 63−85.
[31] Chang NN, Sun CH, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013; 23, 465−72. doi:  10.1038/cr.2013.45
[32] Chen YZ, Fang F, Kidwell KM, et al. Genetic variation in Charcot-Marie-Tooth genes contributes to sensitivity to paclitaxel-induced peripheral neuropathy. Pharmacogenomics, 2020; 21, 841−51. doi:  10.2217/pgs-2020-0053
[33] Yamashita Y, Irie K, Kochi A, et al. Involvement of Charcot-Marie-Tooth disease gene mitofusin 2 expression in paclitaxel-induced mechanical allodynia in rats. Neurosci Lett, 2017; 653, 337−40. doi:  10.1016/j.neulet.2017.05.069
[34] Lundbäck V, Kulyté A, Arner P, et al. Genome-wide association study of Diabetogenic Adipose Morphology in the GENetics of Adipocyte Lipolysis (GENiAL) cohort. Cells, 2020; 9, 1085. doi:  10.3390/cells9051085
[35] Lu DH, Hsu CC, Huang SW, et al. ARHGEF10 knockout inhibits platelet aggregation and protects mice from thrombus formation. J Thromb Haemost, 2017; 15, 2053−64. doi:  10.1111/jth.13799
[36] De Toro-Martín J, Guénard F, Rudkowska I, et al. A common variant in ARHGEF10 alters delta-6 desaturase activity and influence susceptibility to hypertriglyceridemia. J Clin Lipidol, 2018; 12, 311−20.e3. doi:  10.1016/j.jacl.2017.10.020
[37] Zee RYL, Wang QM, Chasman DI, et al. Gene variations of ROCKs and risk of ischaemic stroke: the Women's Genome Health Study. Clin Sci (Lond), 2014; 126, 829−35. doi:  10.1042/CS20130652
[38] Joseph J, Radulovich N, Wang T, et al. Rho guanine nucleotide exchange factor ARHGEF10 is a putative tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene, 2020; 39, 308−21. doi:  10.1038/s41388-019-0985-1
[39] Shibata S, Kawanai T, Hara T, et al. ARHGEF10 directs the localization of Rab8 to Rab6-positive executive vesicles. J Cell Sci, 2016; 129, 3620−34.
[40] Aoki T, Ueda S, Kataoka T, et al. Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10. BMC Cell Biol, 2009; 10, 56. doi:  10.1186/1471-2121-10-56