| [1] | Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol, 2007; 8, 519−29. doi: 10.1038/nrm2199 |
| [2] | Hetz C, Lee AH, Gonzalez-Romero D, et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci U S A, 2008; 105, 757−62. doi: 10.1073/pnas.0711094105 |
| [3] | Steele AD, Hetz C, Yi CH, et al. Prion pathogenesis is independent of caspase-12. Prion, 2007; 1, 243−7. doi: 10.4161/pri.1.4.5551 |
| [4] | Torres M, Encina G, Soto C, et al. Abnormal calcium homeostasis and protein folding stress at the ER: a common factor in familial and infectious prion disorders. Commun Integr Biol, 2011; 4, 258−61. |
| [5] | Aitken A. 14-3-3 proteins: a historic overview. Semin Cancer Bio, 2006; 16, 162−72. doi: 10.1016/j.semcancer.2006.03.005 |
| [6] | Aitken A, Baxter H, Dubois T, et al. Specificity of 14-3-3 isoform dimer interactions and phosphorylation. Biochem Soc Trans, 2002; 30, 351−60. doi: 10.1042/bst0300351 |
| [7] | Berg D, Holzmann C, Riess O. 14-3-3 proteins in the nervous system. Nat Rev Neurosci, 2003; 4, 752−62. doi: 10.1038/nrg1159-c1 |
| [8] | Giacometti S, Camoni L, Albumi C, et al. Tyrosine phosphorylation inhibits the interaction of 14-3-3 proteins with the plant plasma membrane H+-ATPase. Plant Biol (Stuttg), 2004; 6, 422−31. doi: 10.1055/s-2004-820933 |
| [9] | Obsil T, Obsilova V. Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol, 2011; 22, 663−72. |
| [10] | Steinacker P, Aitken A, Otto M. 14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol, 2011; 22, 696−704. |
| [11] | Takahashi Y. The 14-3-3 proteins: gene, gene expression, and function. Neurochem Res, 2003; 28, 1265−73. doi: 10.1023/A:1024296932670 |
| [12] | van Heusden GP. 14-3-3 proteins: regulators of numerous eukaryotic proteins. IUBMB Life, 2005; 57, 623−9. doi: 10.1080/15216540500252666 |
| [13] | Wang W, Shakes DC. Molecular evolution of the 14-3-3 protein family. J Mol Evol, 1996; 43, 384−98. doi: 10.1007/BF02339012 |
| [14] | Yaffe MB. How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett, 2002; 513, 53−7. doi: 10.1016/S0014-5793(01)03288-4 |
| [15] | VanGuilder HD, Farley JA, Yan H, et al. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis, 2011; 43, 201−12. doi: 10.1016/j.nbd.2011.03.012 |
| [16] | Brewer JW, Diehl JA. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A, 2000; 97, 12625−30. doi: 10.1073/pnas.220247197 |
| [17] | Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Gene Develop, 1999; 13, 1211−33. |
| [18] | Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular cell, 2000; 6, 1099−108. doi: 10.1016/S1097-2765(00)00108-8 |