[1] Hoyt CL, Burnette JL, Auster-Gussman L. 'Obesity Is a Disease' Examining the Self-Regulatory Impact of This Public-Health Message. Psychol Sci, 2014; 25, 997-1002. doi:  10.1177/0956797613516981
[2] Fock KM, Khoo J. Diet and exercise in management of obesity and overweight. J Gastroenterol Hepatol, 2013; 28, 59-63. doi:  10.1111/jgh.12407
[3] Gesta S, Tseng YH, Kahn CR. Developmental origin of fat:tracking obesity to its source. Cell, 2007; 131, 242-56. doi:  10.1016/j.cell.2007.10.004
[4] Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. New Engl J Med, 2009; 360, 1518-25. doi:  10.1056/NEJMoa0808949
[5] Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. New Engl J Med, 2009; 360, 1509-17. doi:  10.1056/NEJMoa0810780
[6] Siriwardhana N, Kalupahana NS, Cekanova M, et al. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem, 2013; 24, 613-23. doi:  10.1016/j.jnutbio.2012.12.013
[7] Goran MI, Alderete TL. Targeting Adipose Tissue Inflammation to Treat the Underlying Basis of the Metabolic Complications of Obesity. Proceedings of the Nestlé Nutrition Institute workshop series, F, 2012.
[8] Choo J. Green tea reduces body fat accretion caused by high-fat diet in rats through β-adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem, 2003; 14, 671-6. doi:  10.1016/j.jnutbio.2003.08.005
[9] Oi-Kano Y, Kawada T, Watanabe T, et al. Extra virgin olive oil increases uncoupling protein 1 content in brown adipose tissue and enhances noradrenaline and adrenaline secretions in rats. J Nutr Biochem, 2007; 18, 685-92. doi:  10.1016/j.jnutbio.2006.11.009
[10] Pajuelo D, Quesada H, Díaz S, et al. Chronic dietary supplementation of proanthocyanidins corrects the mitochondrial dysfunction of brown adipose tissue caused by diet-induced obesity in Wistar rats. Br J Nutr, 2012; 107, 170-8. doi:  10.1017/S0007114511002728
[11] Sullivan P, Arendt E, Gallagher E. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci Technol, 2013; 29, 124-34. doi:  10.1016/j.tifs.2012.10.005
[12] Madhujith T, Shahidi F. Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. J Agric Food Chem, 2007; 55, 5018-24. doi:  10.1021/jf070072a
[13] Rathore S, Salmerón I, Pandiella SS. Production of potentially probiotic beverages using single and mixed cereal substrates fermented with lactic acid bacteria cultures. Food Microbiol, 2012; 30, 239-44. doi:  10.1016/j.fm.2011.09.001
[14] Zhang J-y, Xiao X, Dong Y, et al. Effect of fermented wheat germ extract with lactobacillus plantarum dy-1 on HT-29 cell proliferation and apoptosis. J Agric Food Chem, 2015; 63, 2449-57. doi:  10.1021/acs.jafc.5b00041
[15] Blandino A, Al-Aseeri M, Pandiella S, et al. Cereal-based fermented foods and beverages. Food Res Intl, 2003; 36, 527-43. doi:  10.1016/S0963-9969(03)00009-7
[16] Farnworth ERT. Handbook of fermented functional foods. CRC press, 2008.
[17] Hole AS, Rud I, Grimmer S, et al. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agric Food Chem, 2012; 60, 6369-75. doi:  10.1021/jf300410h
[18] Dueñas M, Fernández D, Hernández T, et al. Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J Sci Food Agric, 2005; 85, 297-304. doi:  10.1002/jsfa.1924
[19] Prunet-Marcassus B, Desbazeille M, Bros A, et al. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology, 2003; 144, 5347-52. doi:  10.1210/en.2003-0693
[20] Singleton V, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic, 1965; 16, 144-58. http://www.researchgate.net/publication/245692552_Colorimetry_of_total_phenolics_with_phosphomolybdic-phosphotungstic_acid_reagents
[21] Zhang J, Xiao X, Dong Y, et al. Dietary supplementation with Lactobacillus plantarum dy-1 fermented barley suppresses body weight gain in high-fat diet-induced obese rats. J Sci Food Agric, 2016; 96, 4907-17. doi:  10.1002/jsfa.7786
[22] Bai J, Zhu Y, Dong Y. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J Ethnopharmacol, 2016; 194, 717-26. doi:  10.1016/j.jep.2016.10.043
[23] Zhang J, Xiao X, Dong Y, et al. The anti-obesity effect of fermented barley extracts with Lactobacillus plantarum dy-1 and Saccharomyces cerevisiae in diet-induced obese rats. Food Function, 2017; 8, 1132-43. doi:  10.1039/C6FO01350C
[24] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976; 72, 248-54. doi:  10.1016/0003-2697(76)90527-3
[25] Sreelatha S, Reddy CN, Velvizhi G, et al. Reductive behaviour of acid azo dye based wastewater:Biocatalyst activity in conjunction with enzymatic and bio-electro catalytic evaluation. Bioresource Technol, 2015; 188, 2-8. doi:  10.1016/j.biortech.2015.02.053
[26] Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 2001; 25, 402-8. doi:  10.1006/meth.2001.1262
[27] Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem, 1985; 54, 1015-69. doi:  10.1146/annurev.bi.54.070185.005055
[28] Yamada T, Katagiri H, Ishigaki Y, et al. Signals from intra-abdominal fat modulate insulin and leptin sensitivity through different mechanisms:neuronal involvement in food-intake regulation. Cell Metab, 2006; 3, 223-9. doi:  10.1016/j.cmet.2006.02.001
[29] Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 2006; 7, 885. doi:  10.1038/nrm2066
[30] Eberle D, Hegarty B, Bossard P, et al. SREBP transcription factors:master regulators of lipid homeostasis. Biochimie, 2004; 86, 839-48. doi:  10.1016/j.biochi.2004.09.018
[31] Hsu C-L, Yen G-C. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem, 2007; 55, 8404-10. doi:  10.1021/jf071695r
[32] Celi FS. Brown adipose tissue-when it pays to be inefficient. TN Engl J Med, 2009; 360, 1553. doi:  10.1056/NEJMe0900466
[33] Kohn B. Does functional brown adipose tissue play an integral role in pediatric energy balance and metabolism? J Pediatr, 2011; 159, 881-3. doi:  10.1016/j.jpeds.2011.08.021
[34] Ayalon I, Shen H, Williamson L, et al. Sepsis induces adipose tissue browning in nonobese mice but not in obese mice. Shock, 2018; 50, 557-64. doi:  10.1097/SHK.0000000000001076
[35] Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance. Physiol Rev, 2004; 84, 277-359. doi:  10.1152/physrev.00015.2003
[36] Pfeifer A, Hoffmann LS. Brown, beige, and white:the new color code of fat and its pharmacological implications. Annu Rev Pharmacol Toxicol, 2015; 55, 207-27. doi:  10.1146/annurev-pharmtox-010814-124346
[37] Symonds ME, Pope M, Budge H. The ontogeny of brown adipose tissue. Annu Rev Nutr, 2015; 35, 295-320. doi:  10.1146/annurev-nutr-071813-105330
[38] Himms-Hagen J. Brown adipose tissue metabolism and thermogenesis. Annu Rev Nutr, 1985; 5, 69-94. doi:  10.1146/annurev.nu.05.070185.000441
[39] Schulz TJ, Huang TL, Tran TT, et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci, 2011; 108, 143-8. doi:  10.1073/pnas.1010929108
[40] Lo KA, Sun L. Turning WAT into BAT:a review on regulators controlling the browning of white adipocytes. Biosci Rep, 2013; 33, e00065. http://www.ncbi.nlm.nih.gov/pubmed/23895241
[41] Kopecky J, Clarke G, Enerbäck S, et al. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest, 1995; 96, 2914-23. doi:  10.1172/JCI118363
[42] Asano H, Yamada T, Hashimoto O, et al. Diet-induced changes in Ucp1 expression in bovine adipose tissues. Gen Comp Endocrinol, 2013; 184, 87-92. doi:  10.1016/j.ygcen.2013.01.006
[43] Djouder N, Tuerk RD, Suter M, et al. PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis. The EMBO J, 2010; 29, 469-81. doi:  10.1038/emboj.2009.339
[44] Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes, 2010; 17, 143. doi:  10.1097/MED.0b013e328337a81f
[45] Villarroya F, Vidal-Puig A. Beyond the sympathetic tone:the new brown fat activators. Cell Metab, 2013; 17, 638-43. doi:  10.1016/j.cmet.2013.02.020
[46] Besseiche A, Riveline JP, Gautier JF, et al. Metabolic roles of PGC-1α and its implications for type 2 diabetes. Diabetes Metab, 2015; 41, 347-57. doi:  10.1016/j.diabet.2015.02.002
[47] Li J, Zhang Y, Liu Y, et al. PGC-1α plays a major role in the anti-apoptotic effect of 15-HETE in pulmonary artery endothelial cells. Respir Physiol Neurobiol, 2015; 205, 84-91. doi:  10.1016/j.resp.2014.10.015