[1] |
Bopp SK, Barouki R, Brack W, et al. Current EU research activities on combined exposure to multiple chemicals. Environ Int, 2018; 120, 544−62. doi: 10.1016/j.envint.2018.07.037 |
[2] |
Yu LL, Liu W, Wang X, et al. A review of practical statistical methods used in epidemiological studies to estimate the health effects of multi-pollutant mixture. Environ Pollut, 2022; 306, 119356. doi: 10.1016/j.envpol.2022.119356 |
[3] |
Tanner EM, Bornehag CG, Gennings C. Repeated holdout validation for weighted quantile sum regression. MethodsX, 2019; 6, 2855−60. doi: 10.1016/j.mex.2019.11.008 |
[4] |
Traini E, Huss A, Portengen L, et al. A multipollutant approach to estimating causal effects of air pollution mixtures on overall mortality in a large, prospective cohort. Epidemiology, 2022; 33, 514−22. doi: 10.1097/EDE.0000000000001492 |
[5] |
Carlin DJ, Rider CV, Woychik R, et al. Unraveling the health effects of environmental mixtures: an NIEHS priority. Environ Health Perspect, 2013; 121, A6−8. |
[6] |
Taylor KW, Joubert BR, Braun JM, et al. Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology: lessons from an innovative workshop. Environ Health Perspect, 2016; 124, A227−9. |
[7] |
Gibson EA, Nunez Y, Abuawad A, et al. An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length. Environ Health, 2019; 18, 76. doi: 10.1186/s12940-019-0515-1 |
[8] |
Chiu YH, Bellavia A, James-Todd T, et al. Evaluating effects of prenatal exposure to phthalate mixtures on birth weight: a comparison of three statistical approaches. Environ Int, 2018; 113, 231−9. doi: 10.1016/j.envint.2018.02.005 |
[9] |
Carrico C, Gennings C, Wheeler DC, et al. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat, 2015; 20, 100−20. doi: 10.1007/s13253-014-0180-3 |
[10] |
Renzetti S, Gennings C, Calza S. A weighted quantile sum regression with penalized weights and two indices. Front Public Health, 2023; 11, 1151821. doi: 10.3389/fpubh.2023.1151821 |
[11] |
Keil AP, Buckley JP, O'Brien KM, et al. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect, 2020; 128, 47004. doi: 10.1289/EHP5838 |
[12] |
Bobb JF, Valeri L, Henn BC, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics, 2015; 16, 493−508. doi: 10.1093/biostatistics/kxu058 |
[13] |
Fan RZ, Wang YF, Mills JL, et al. Functional linear models for association analysis of quantitative traits. Genet Epidemiol, 2013; 37, 726−42. doi: 10.1002/gepi.21757 |
[14] |
Wu MC, Lee S, Cai TX, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet, 2011; 89, 82−93. doi: 10.1016/j.ajhg.2011.05.029 |
[15] |
Ramsay JO, Silverman BW. Functional data analysis. Springer. 1997. |
[16] |
Ramsay J, Hooker G, Graves S. Functional data analysis with R and MATLAB. Springer. 2009. |
[17] |
Ferraty F, Romain Y. The Oxford handbook of functional data analysis. Oxford University Press. 2010. |
[18] |
de Boor C. A practical guide to splines, revised edition. Springer. 2001. |
[19] |
Horváth L, Kokoszka P. Inference for functional data with applications. Springer. 2012. |
[20] |
Duchesne P, De Micheaux PL. Computing the distribution of quadratic forms: further comparisons between the Liu-Tang-Zhang approximation and exact methods. Comput Stat Data An, 2010; 54, 858−62. doi: 10.1016/j.csda.2009.11.025 |
[21] |
Davies RB. The distribution of a linear combination of χ2 random variables. Appl Stat, 1980; 29, 323−33. doi: 10.2307/2346911 |
[22] |
Liu H, Tang YQ, Zhang HH. A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Comput Stat Data An, 2009; 53, 853−56. doi: 10.1016/j.csda.2008.11.025 |
[23] |
Lin XH. Variance component testing in generalised linear models with random effects. Biometrika, 1997; 84, 309−26. doi: 10.1093/biomet/84.2.309 |
[24] |
Kwee LC, Liu DW, Lin XH, et al. A powerful and flexible multilocus association test for quantitative traits. Am J Hum Genet, 2008; 82, 386−97. doi: 10.1016/j.ajhg.2007.10.010 |
[25] |
Buscemi J, Pugach O, Springfield S, et al. Associations between fiber intake and Body Mass Index (BMI) among African-American women participating in a randomized weight loss and maintenance trial. Eat Behav, 2018; 29, 48−53. doi: 10.1016/j.eatbeh.2018.02.005 |
[26] |
Carrasquilla GD, Jakupović H, Kilpeläinen TO. Dietary fat and the genetic risk of type 2 diabetes. Curr Diab Rep, 2019; 19, 109. doi: 10.1007/s11892-019-1251-1 |
[27] |
D'Angelo S, Motti ML, Meccariello R. ω-3 and ω-6 polyunsaturated fatty acids, obesity and cancer. Nutrients, 2020; 12, 2751. doi: 10.3390/nu12092751 |
[28] |
Friedman AN, Fadem SZ. Reassessment of albumin as a nutritional marker in kidney disease. J Am Soc Nephrol, 2010; 21, 223-30. 1. 29. Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA, 2009; 302, 1993-2000. |