[1] Liu YJ, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol, 2019; 48, 455−63. doi:  10.1093/ije/dyz009
[2] van der Linde D, Konings EEM, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol, 2011; 58, 2241−7. doi:  10.1016/j.jacc.2011.08.025
[3] Zhao QM, Liu F, Wu L, et al. Prevalence of congenital heart disease at live birth in China. J Pediatr, 2019; 204, 53−8. doi:  10.1016/j.jpeds.2018.08.040
[4] Knowles R, Griebsch I, Dezateux C, et al. Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis. Health Technol Assess, 2005; 9, 1−152, iii-iv.
[5] Wang TT, Chen LZ, Yang TB, et al. Congenital heart disease and risk of cardiovascular disease: a meta-analysis of cohort studies. J Am Heart Assoc, 2019; 8, e012030.
[6] Ye ZW, Wang LS, Yang TB, et al. Maternal viral infection and risk of fetal congenital heart diseases: a meta-analysis of observational studies. J Am Heart Assoc, 2019; 8, e011264.
[7] Persson M, Razaz N, Edstedt Bonamy AK, et al. Maternal overweight and obesity and risk of congenital heart defects. J Am Coll Cardiol, 2019; 73, 44−53.
[8] Zhao LJ, Chen LZ, Yang TB, et al. Parental smoking and the risk of congenital heart defects in offspring: an updated meta-analysis of observational studies. Eur J Prev Cardiol, 2020; 27, 1284−93. doi:  10.1177/2047487319831367
[9] Cresci M, Foffa I, Ait-Ali L, et al. Maternal and paternal environmental risk factors, metabolizing GSTM1 and GSTT1 polymorphisms, and congenital heart disease. Am J Cardiol, 2011; 108, 1625−31. doi:  10.1016/j.amjcard.2011.07.022
[10] Moreau JLM, Kesteven S, Martin EMMA, et al. Gene-environment interaction impacts on heart development and embryo survival. Development, 2019; 146, dev172957. doi:  10.1242/dev.172957
[11] Satomi Y, Nishino H. Inhibition of the enzyme activity of cytochrome P450 1A1, 1A2 and 3A4 by fucoxanthin, a marine carotenoid. Oncol Lett, 2013; 6, 860−4. doi:  10.3892/ol.2013.1457
[12] Shoulders CC. A new Thematic Series: genetics of human lipid diseases. J Lipid Res, 2010; 51, 1621−3. doi:  10.1194/jlr.E006833
[13] McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol, 2012; 8, 371−82. doi:  10.1517/17425255.2012.657626
[14] Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition-toxic effects and benefits. Drug Metab Rev, 2018; 50, 256−342. doi:  10.1080/03602532.2018.1483401
[15] Elfaki I, Mir R, Almutairi FM, et al. Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac J Cancer Prev, 2018; 19, 2057−70.
[16] Li YH, Diao JY, Li JQ, et al. Association of maternal dietary intakes and CBS gene polymorphisms with congenital heart disease in offspring. Int J Cardiol, 2021; 322, 121−8. doi:  10.1016/j.ijcard.2020.08.018
[17] Zhao MY, Diao JY, Huang P, et al. Association of maternal diabetes mellitus and polymorphisms of the NKX2. 5 gene in children with congenital heart disease:a single centre-based case-control study. J Diabetes Res, 2020; 2020, 3854630.
[18] Xin JC, Yuan M, Peng YL, et al. Analysis of the deleterious single-nucleotide polymorphisms associated with antidepressant efficacy in major depressive disorder. Front Psychiatry, 2020; 11, 151.
[19] Khadzhieva MB, Lutcenko NN, Volodin IV, et al. Association of oxidative stress-related genes with idiopathic recurrent miscarriage. Free Radic Res, 2014; 48, 534−41. doi:  10.3109/10715762.2014.891735
[20] Wallace HM. A model of gene-gene and gene-environment interactions and its implications for targeting environmental interventions by genotype. Theor Biol Med Model, 2006; 3, 35. doi:  10.1186/1742-4682-3-35
[21] Reefhuis J, Honein MA, Schieve LA, et al. Use of clomiphene citrate and birth defects, national birth defects prevention study, 1997-2005. Hum Reprod, 2011; 26, 451−7. doi:  10.1093/humrep/deq313
[22] Källén BAJ, Otterblad Olausson P. Maternal drug use in early pregnancy and infant cardiovascular defect. Reprod Toxicol, 2003; 17, 255−61. doi:  10.1016/S0890-6238(03)00012-1
[23] Qin JB, Sheng XQ, Wu D, et al. Adverse obstetric outcomes associated with in vitro fertilization in singleton pregnancies: a prospective cohort study. Reprod Sci, 2017; 24, 595−608. doi:  10.1177/1933719116667229
[24] Rothman KJ, Fyler DC, Goldblatt A, et al. Exogenous hormones and other drug exposures of children with congenital heart disease. Am J Epidemiol, 1979; 109, 433−9. doi:  10.1093/oxfordjournals.aje.a112701
[25] Czeizel AE, Rockenbauer M, Sørensen HT, et al. A population-based case-control teratologic study of oral erythromycin treatment during pregnancy. Reprod Toxicol, 1999; 13, 531−6. doi:  10.1016/S0890-6238(99)00046-5
[26] Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Antibiotics potentially used in response to bioterrorism and the risk of major congenital malformations. Paediatr Perinat Epidemiol, 2009; 23, 18−28. doi:  10.1111/j.1365-3016.2008.00978.x
[27] Källén BAJ, Otterblad Olausson P, Danielsson BR. Is erythromycin therapy teratogenic in humans?. Reprod Toxicol, 2005; 20, 209−14. doi:  10.1016/j.reprotox.2005.01.010
[28] Gao SY, Wu QJ, Sun C, et al. Selective serotonin reuptake inhibitor use during early pregnancy and congenital malformations: a systematic review and meta-analysis of cohort studies of more than 9 million births. BMC Med, 2018; 16, 205. doi:  10.1186/s12916-018-1193-5
[29] Bérard A, Iessa N, Chaabane S, et al. The risk of major cardiac malformations associated with paroxetine use during the first trimester of pregnancy: a systematic review and meta-analysis. Br J Clin Pharmacol, 2016; 81, 589−604. doi:  10.1111/bcp.12849
[30] Liang QH, Gong W, Zheng DM, et al. The influence of maternal exposure history to virus and medicine during pregnancy on congenital heart defects of fetus. Environ Sci Pollut Res Int, 2017; 24, 5628−32. doi:  10.1007/s11356-016-8198-4
[31] Zaqout M, Aslem E, Abuqamar M, et al. The impact of oral intake of dydrogesterone on fetal heart development during early pregnancy. Pediatr Cardiol, 2015; 36, 1483−8. doi:  10.1007/s00246-015-1190-9
[32] Leng SG, Dai YF, Niu Y, et al. Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers. Cancer Epidemiol Biomarkers Prev, 2004; 13, 1631−9.
[33] Guo XG, Wang ZH, Dong W, et al. Specific CYP450 genotypes in the Chinese population affect sorafenib toxicity in HBV/HCV-associated hepatocellular carcinoma patients. Biomed Environ Sci, 2018; 31, 586−95.
[34] Shen Y, Xu Q, Ren ML, et al. Role of single nucleotide polymorphisms in estrogen-metabolizing enzymes and susceptibility to uterine leiomyoma in Han Chinese: a case-control study. J Obstet Gynaecol Res, 2014; 40, 1077−84. doi:  10.1111/jog.12275
[35] Hidaka A, Sasazuki S, Matsuo K, et al. CYP1A1, GSTM1 and GSTT1 genetic polymorphisms and gastric cancer risk among Japanese: a nested case-control study within a large-scale population-based prospective study. Int J Cancer, 2016; 139, 759−68. doi:  10.1002/ijc.30130
[36] Chen LH, Li JH. Interactive effects of passive smoking and gene polymorphisms of CYP450 and GST on low birth weight. Matern Child Health Care China, 2012; 27, 2944−7. (In Chinese
[37] Jin Y, Chen DF, Yang F, et al. Association of cytochrome P450 gene MSP1 polymorphism and risk of preterm delivery. J Peking Univ (Health Sci), 2004; 36, 595−9. (In Chinese
[38] Zeng W, Li YW, Lu EY, et al. CYP1A1 rs1048943 and rs4646903 polymorphisms associated with laryngeal cancer susceptibility among Asian populations: a meta-analysis. J Cell Mol Med, 2016; 20, 287−93. doi:  10.1111/jcmm.12720
[39] Matthias C, Bockmühl U, Jahnke V, et al. Polymorphism in cytochrome P450 CYP2D6, CYP1A1, CYP2E1 and glutathione S-transferase, GSTM1, GSTM3, GSTT1 and susceptibility to tobacco-related cancers: studies in upper aerodigestive tract cancers. Pharmacogenetics, 1998; 8, 91−100.
[40] Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician, 2007; 76, 391−6.
[41] Zubiaur P, Ochoa D, Gálvez MÁ, et al. Effect of polymorphisms in CYP2C9 and CYP2C19 on the disposition, safety and metabolism of progesterone administrated orally or vaginally. Adv Ther, 2019; 36, 2744−55. doi:  10.1007/s12325-019-01075-5