[1] Chen HT, Padilla WJ, Zide JM, et al. Active terahertz metamaterial devices. Nature, 2006; 444, 597−600. doi:  10.1038/nature05343
[2] Dey I, Jana K, Fedorov VY, et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nat Commun, 2017; 8, 1184. doi:  10.1038/s41467-017-01382-x
[3] Hughes S, Citrin DS. Broadband terahertz emission through exciton trapping in a semiconductor quantum well. Opt Lett, 2001; 26, 1−3. doi:  10.1364/OL.26.000001
[4] Tomaino JL, Jameson AD, Lee YS, et al. Terahertz excitation of a coherent lambda-type three-level system of exciton-polariton modes in a quantum-well microcavity. Phys Rev Lett, 2012; 108, 267402. doi:  10.1103/PhysRevLett.108.267402
[5] Dworak V, Augustin S, Gebbers R. Application of terahertz radiation to soil measurements: initial results. Sensors (Basel), 2011; 11, 9973−88. doi:  10.3390/s111009973
[6] Elayan H, Stefanini C, Shubair RM, et al. End-to-End Noise Model for Intra-Body Terahertz Nanoscale Communication. IEEE Trans Nanobioscience, 2018; 17, 464−73. doi:  10.1109/TNB.2018.2869124
[7] Hermelo MF, Shih PB, Steeg M, et al. Spectral efficient 64-QAM-OFDM terahertz communication link. Opt Express, 2017; 25, 19360−70. doi:  10.1364/OE.25.019360
[8] Lui HS, Taimre T, Bertling K, et al. Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry with a quantum cascade laser. Opt Lett, 2014; 39, 2629−32. doi:  10.1364/OL.39.002629
[9] Wilmink GJ, Rivest BD, Roth CC, et al. In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation. Lasers Surg Med, 2011; 43, 152−63. doi:  10.1002/lsm.20960
[10] Smye SW, Chamberlain JM, Fitzgerald AJ, et al. The interaction between Terahertz radiation and biological tissue. Phys Med Biol, 2001; 46, R101−12. doi:  10.1088/0031-9155/46/9/201
[11] Alexandrov BS, Gelev V, Bishop AR, et al. DNA Breathing Dynamics in the Presence of a Terahertz Field. Phys Lett A, 2010; 374, 1214. doi:  10.1016/j.physleta.2009.12.077
[12] Hwang Y, Ahn J, Mun J, et al. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy. Opt Express, 2014; 22, 11465−75. doi:  10.1364/OE.22.011465
[13] Altunkaynak BZ, Altun G, Yahyazadeh A, et al. Different methods for evaluating the effects of microwave radiation exposure on the nervous system. J Chem Neuroanat, 2016; 75, 62−9. doi:  10.1016/j.jchemneu.2015.11.004
[14] Tan S, Wang H, Xu X, et al. Study on dose-dependent, frequency-dependent, and accumulative effects of 1.5 GHz and 2.856 GHz microwave on cognitive functions in Wistar rats. Sci Rep, 2017; 7, 10781. doi:  10.1038/s41598-017-11420-9
[15] Vorobyov VV, Galchenko AA, Kukushkin NI, et al. Effects of weak microwave fields amplitude modulated at ELF on EEG of symmetric brain areas in rats. Bioelectromagnetics, 1997; 18, 293−8. doi:  10.1002/(SICI)1521-186X(1997)18:4<293::AID-BEM1>3.0.CO;2-Y
[16] Perea G, Sur M, Araque A. Neuron-glia networks: integral gear of brain function. Front Cell Neurosci, 2014; 8, 378.
[17] Cardinale A, de Stefano MC, Mollinari C, et al. Biochemical characterization of sirtuin 6 in the brain and its involvement in oxidative stress response. Neurochem Res, 2015; 40, 59−69. doi:  10.1007/s11064-014-1465-1
[18] Unger EL, Wiesinger JA, Hao L, et al. Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. J Nutr, 2008; 138, 2487−94. doi:  10.3945/jn.108.095224
[19] Linsenbardt AJ, Breckenridge JM, Wilken GH, et al. Dopaminochrome induces caspase-independent apoptosis in the mesencephalic cell line, MN9D. J Neurochem, 2012; 122, 175−84. doi:  10.1111/j.1471-4159.2012.07756.x
[20] Cheng N, Cao X. Neuron-like PC12 cell patterning on a photoactive self-assembled monolayer. J Biomed Mater Res A, 2013; 101, 3066−75.
[21] Adamczyk A, Kazmierczak A, Czapski GA, et al. Alpha-synuclein induced cell death in mouse hippocampal (HT22) cells is mediated by nitric oxide-dependent activation of caspase-3. FEBS Lett, 2010; 584, 3504−8. doi:  10.1016/j.febslet.2010.07.019
[22] Baldi I, Coureau G, Jaffre A, et al. Occupational and residential exposure to electromagnetic fields and risk of brain tumors in adults: a case-control study in Gironde, France. Int J Cancer, 2011; 129, 1477−84. doi:  10.1002/ijc.25765
[23] Zhang J, Sumich A, Wang GY. Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function. Bioelectromagnetics, 2017; 38, 329−38. doi:  10.1002/bem.22052
[24] Ol'shevskaia Iu S, Kozlov AS, Petrov AK, et al. Influence of terahertz (submillimeter) laser radiation on neurons in vitro. Zh Vyssh Nerv Deiat Im I P Pavlova, 2009; 59, 353−9.
[25] Kim DH, Huh JW, Jang M, et al. Sitagliptin increases tau phosphorylation in the hippocampus of rats with type 2 diabetes and in primary neuron cultures. Neurobiol Dis, 2012; 46, 52−8. doi:  10.1016/j.nbd.2011.12.043
[26] Kim IS, Choi DK, Jung HJ. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules, 2011; 16, 5349−61. doi:  10.3390/molecules16075349
[27] Nagakannan P, Islam MI, Karimi-Abdolrezaee S, et al. Inhibition of VDAC1 Protects Against Glutamate-Induced Oxytosis and Mitochondrial Fragmentation in Hippocampal HT22 Cells. Cell Mol Neurobiol, 2019; 39, 73−85. doi:  10.1007/s10571-018-0634-1
[28] Song Q, Gou WL, Zou YL. FAM3A Protects Against Glutamate-Induced Toxicity by Preserving Calcium Homeostasis in Differentiated PC12 Cells. Cell Physiol Biochem, 2017; 44, 2029−41. doi:  10.1159/000485943
[29] Yang M, Li Y, Wang Y, et al. The effects of lead exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells. Toxicol Lett, 2018; 288, 111−8. doi:  10.1016/j.toxlet.2018.02.010
[30] Zhang Z, Sun S, Du C, et al. Effects of Leptin on Na+/Ca2+ Exchanger in PC12 Cells. Cell Physiol Biochem, 2016; 40, 1529−37. doi:  10.1159/000453203
[31] Kandel ME, Fernandes D, Taylor AM, et al. Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy. Cytometry A, 2017; 91, 519−26. doi:  10.1002/cyto.a.23081
[32] Xiong L, Sun CF, Zhang J, et al. Microwave exposure impairs synaptic plasticity in the rat hippocampus and PC12 cells through over-activation of the NMDA receptor signaling pathway. Biomed Environ Sci, 2015; 28, 13−24.
[33] Rees CL, White CM, Ascoli GA. Neurochemical Markers in the Mammalian Brain: Structure, Roles in Synaptic Communication, and Pharmacological Relevance. Curr Med Chem, 2017; 24, 3077−103.
[34] Draguhn A, Heinemann U. Different mechanisms regulate IPSC kinetics in early postnatal and juvenile hippocampal granule cells. J Neurophysiol, 1996; 76, 3983−93. doi:  10.1152/jn.1996.76.6.3983
[35] Garaschuk O, Kovalchuk Y, Krishtal O. Glutamate and theta-rhythm stimulation selectively enhance NMDA component of EPSC in CA1 neurons of young rats. Neurosci Lett, 1993; 151, 29−32. doi:  10.1016/0304-3940(93)90037-L
[36] Rhee JS, Wang ZM, Nabekura J, et al. ATP facilitates spontaneous glycinergic IPSC frequency at dissociated rat dorsal horn interneuron synapses. J Physiol, 2000; 524(Pt 2), 471−83.
[37] Szpetnar M, Luchowska-Kocot D, Boguszewska-Czubara A, et al. The Influence of Manganese and Glutamine Intake on Antioxidants and Neurotransmitter Amino Acids Levels in Rats' Brain. Neurochem Res, 2016; 41, 2129−39. doi:  10.1007/s11064-016-1928-7
[38] Gu JX, Cheng XJ, Luo X, et al. Luteolin Ameliorates Cognitive Impairments by Suppressing the Expression of Inflammatory Cytokines and Enhancing Synapse-Associated Proteins GAP-43 and SYN Levels in Streptozotocin-Induced Diabetic Rats. Neurochem Res, 2018; 43, 1905−13. doi:  10.1007/s11064-018-2608-6
[39] Ma J, Wang J, Lv C, et al. The Role of Hippocampal Structural Synaptic Plasticity in Repetitive Transcranial Magnetic Stimulation to Improve Cognitive Function in Male SAMP8 Mice. Cell Physiol Biochem, 2017; 41, 137−44. doi:  10.1159/000455982
[40] Ricciardi S, Ungaro F, Hambrock M, et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol, 2012; 14, 911−23. doi:  10.1038/ncb2566
[41] Wang J, Yuan J, Pang J, et al. Effects of Chronic Stress on Cognition in Male SAMP8 Mice. Cell Physiol Biochem, 2016; 39, 1078−86. doi:  10.1159/000447816
[42] Sen T, Gupta R, Kaiser H, et al. Activation of PERK Elicits Memory Impairment through Inactivation of CREB and Downregulation of PSD95 After Traumatic Brain Injury. J Neurosci, 2017; 37, 5900−11. doi:  10.1523/JNEUROSCI.2343-16.2017