[1] NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet, 2021; 398, 957−80. doi:  10.1016/S0140-6736(21)01330-1
[2] Writing Group of 2010 Chinese Guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension. Chin J Cardiol, 2011; 39, 579−616. (In Chinese)
[3] Rabi DM, McBrien KA, Sapir-Pichhadze R, et al. Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children. Can J Cardiol, 2020; 36, 596−624. doi:  10.1016/j.cjca.2020.02.086
[4] Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2018; 138, e484−594.
[5] Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J, 2018; 39, 3021−104. doi:  10.1093/eurheartj/ehy339
[6] Umemura S, Arima H, Arima S, et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res, 2019; 42, 1235−481. doi:  10.1038/s41440-019-0284-9
[7] Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med, 2006; 354, 2368−74. doi:  10.1056/NEJMra060433
[8] Shimbo D, Abdalla M, Falzon L, et al. Role of ambulatory and home blood pressure monitoring in clinical practice: a narrative review. Ann Intern Med, 2015; 163, 691−700. doi:  10.7326/M15-1270
[9] Mancia G, Verdecchia P. Clinical value of ambulatory blood pressure: evidence and limits. Circ Res, 2015; 116, 1034−45. doi:  10.1161/CIRCRESAHA.116.303755
[10] Staessen JA, Li Y, Hara A, et al. Blood pressure measurement anno 2016. Am J Hypertens, 2017; 30, 453−63.
[11] Dolan E, Stanton A, Thijs L, et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension, 2005; 46, 156−61. doi:  10.1161/01.HYP.0000170138.56903.7a
[12] Yang WY, Melgarejo JD, Thijs L, et al. Association of office and ambulatory blood pressure with mortality and cardiovascular outcomes. JAMA, 2019; 322, 409−20. doi:  10.1001/jama.2019.9811
[13] Johansson JK, Niiranen TJ, Puukka PJ, et al. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension, 2012; 59, 212−8. doi:  10.1161/HYPERTENSIONAHA.111.178657
[14] Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol, 2018; 15, 20−32. doi:  10.1038/nrcardio.2017.120
[15] Verhaar BJH, Prodan A, Nieuwdorp M, et al. Gut microbiota in hypertension and atherosclerosis: a review. Nutrients, 2020; 12, 2982. doi:  10.3390/nu12102982
[16] Avery EG, Bartolomaeus H, Maifeld A, et al. The gut microbiome in hypertension: recent advances and future perspectives. Circ Res, 2021; 128, 934−50. doi:  10.1161/CIRCRESAHA.121.318065
[17] Dekkers KF, Sayols-Baixeras S, Baldanzi G, et al. An online atlas of human plasma metabolite signatures of gut microbiome composition. Nat Commun, 2022; 13, 5370. doi:  10.1038/s41467-022-33050-0
[18] Menni C, Zhu JL, Le Roy CI, et al. Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes. Gut Microbes, 2020; 11, 1632−42. doi:  10.1080/19490976.2020.1778261
[19] Kijpaisalratana N, Ament Z, Patki A, et al. Association of circulating metabolites with racial disparities in hypertension and stroke in the REGARDS study. Neurology, 2023; 100, e2312−20. doi:  10.1212/WNL.0000000000202466
[20] Wang ZN, Zhao YZ. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell, 2018; 9, 416−31. doi:  10.1007/s13238-018-0549-0
[21] Jia BL, Zou YQ, Han X, et al. Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease. Trends Microbiol, 2023; 31, 76−91. doi:  10.1016/j.tim.2022.08.003
[22] Ruan ZL, Li JX, Liu FC, et al. Study design, general characteristics of participants, and preliminary findings from the metabolome, microbiome, and dietary salt intervention study (MetaSalt). Chronic Dis Transl Med, 2021; 7, 227−34.
[23] Yang XL, Li JX, Hu DS, et al. Predicting the 10-year risks of atherosclerotic cardiovascular disease in Chinese population: the China-PAR Project (Prediction for ASCVD Risk in China). Circulation, 2016; 134, 1430−40. doi:  10.1161/CIRCULATIONAHA.116.022367
[24] Chinese Preventive Medicine Association, Branch of Heart Disease Prevention and Control, Chinese Preventive Medicine Association, Chinese Diabetes Society, et al. Chinese guideline on healthy lifestyle to prevent cardiometabolic diseases. Chin J Prev Med, 2020; 54, 256−77. (In Chinese)
[25] Yu G, Xu CF, Zhang DN, et al. MetOrigin: discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. iMeta, 2022; 1, e10. doi:  10.1002/imt2.10
[26] Tingley D, Yamamoto T, Hirose K, et al. Mediation: R package for causal mediation analysis. J Stat Softw, 2014; 59, 1−38.
[27] Verhaar BJH, Collard D, Prodan A, et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J, 2020; 41, 4259−67. doi:  10.1093/eurheartj/ehaa704
[28] Sun S, Lulla A, Sioda M, et al. Gut microbiota composition and blood pressure. Hypertension, 2019; 73, 998−1006. doi:  10.1161/HYPERTENSIONAHA.118.12109
[29] Jackson MA, Verdi S, Maxan ME, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun, 2018; 9, 2655. doi:  10.1038/s41467-018-05184-7
[30] De la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, et al. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients, 2019; 11, 51.
[31] Lal H, Verma SK, Wang YJ, et al. Circadian rhythms in cardiovascular metabolism. Circ Res, 2024; 134, 635−58. doi:  10.1161/CIRCRESAHA.123.323520
[32] Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol, 2019; 20, 227−41. doi:  10.1038/s41580-018-0096-9
[33] Dinakis E, Nakai M, Gill P, et al. Association between the gut microbiome and their metabolites with human blood pressure variability. Hypertension, 2022; 79, 1690−701. doi:  10.1161/HYPERTENSIONAHA.122.19350
[34] Liu Y, Yang KN, Jia YQ, et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nat Microbiol, 2021; 6, 874−84. doi:  10.1038/s41564-021-00912-0
[35] Xia WJ, Xu ML, Yu XJ, et al. Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut Microbes, 2021; 13, 1−24.
[36] Savin Z, Kivity S, Yonath H, et al. Smoking and the intestinal microbiome. Arch Microbiol, 2018; 200, 677−84. doi:  10.1007/s00203-018-1506-2
[37] Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011; 334, 105−8. doi:  10.1126/science.1208344
[38] Lu Q, Chen JX, Jiang LM, et al. Gut microbiota-derived secondary bile acids, bile acids receptor polymorphisms, and risk of cardiovascular disease in individuals with newly diagnosed type 2 diabetes: a cohort study. Am J Clin Nutr, 2024; 119, 324−32. doi:  10.1016/j.ajcnut.2023.08.023
[39] Liu HH, Tian R, Wang H, et al. Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. J Transl Med, 2020; 18, 382. doi:  10.1186/s12967-020-02539-x
[40] Moutsoglou DM, Tatah J, Prisco SZ, et al. Pulmonary arterial hypertension patients have a proinflammatory gut microbiome and altered circulating microbial metabolites. Am J Respir Crit Care Med, 2023; 207, 740−56. doi:  10.1164/rccm.202203-0490OC
[41] Wilmanski T, Rappaport N, Earls JC, et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat Biotechnol, 2019; 37, 1217−28. doi:  10.1038/s41587-019-0233-9
[42] Hu J, Chen JW, Xu XJ, et al. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling. Microbiome, 2023; 11, 102. doi:  10.1186/s40168-023-01551-9
[43] Gutiérrez-Díaz I, Fernández-Navarro T, Salazar N, et al. Could fecal phenylacetic and phenylpropionic acids be used as indicators of health status?. J Agric Food Chem, 2018; 66, 10438−46. doi:  10.1021/acs.jafc.8b04102
[44] Liu S, Zhao WJ, Liu XY, et al. Metagenomic analysis of the gut microbiome in atherosclerosis patients identify cross-cohort microbial signatures and potential therapeutic target. FASEB J, 2020; 34, 14166−81. doi:  10.1096/fj.202000622R
[45] Koh A, Molinaro A, Ståhlman M, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell, 2018; 175, 947-61. e17.
[46] Raju SC, Molinaro A, Awoyemi A, et al. Microbial-derived imidazole propionate links the heart failure-associated microbiome alterations to disease severity. Genome Med, 2024; 16, 27. doi:  10.1186/s13073-024-01296-6
[47] Molinaro A, Nemet I, Bel Lassen P, et al. Microbially produced imidazole propionate is associated with heart failure and mortality. JACC Heart Fail, 2023; 11, 810−21. doi:  10.1016/j.jchf.2023.03.008