[1] Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet, 2019; 393, 2636−46. doi:  10.1016/S0140-6736(19)31138-9
[2] Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle, 2016; 7, 512−4. doi:  10.1002/jcsm.12147
[3] Syddall HE, Martin HJ, Harwood RH, et al. The SF-36: a simple, effective measure of mobility-disability for epidemiological studies. J Nutr Health Aging, 2009; 13, 57−62. doi:  10.1007/s12603-009-0010-4
[4] Janssen I, Baumgartner RN, Ross R, et al. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol, 2004; 159, 413−21. doi:  10.1093/aje/kwh058
[5] Brooks JM, Titus AJ, Bruce ML, et al. Depression and Handgrip Strength Among U. S. Adults Aged 60 Years and Older from NHANES 2011-2014. J Nutr Health Aging, 2018; 22, 938−43. doi:  10.1007/s12603-018-1041-5
[6] Celis-Morales CA, Welsh P, Lyall DM, et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. BMJ, 2018; 361, k1651.
[7] Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal, 2011; 23, 1896−906. doi:  10.1016/j.cellsig.2011.07.013
[8] Buckinx F, Landi F, Cesari M, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle, 2018; 9, 269−78. doi:  10.1002/jcsm.12268
[9] Deschenes MR. Effects of aging on muscle fibre type and size. Sports Med, 2004; 34, 809−24. doi:  10.2165/00007256-200434120-00002
[10] Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 2019; 48, 16−31. doi:  10.1093/ageing/afy169
[11] Tay L, Leung BP, Wee S, et al. Association of nutrition and immune-endocrine dysfunction with muscle mass and performance in cognitively impaired older adults. Arch Gerontol Geriatr, 2018; 75, 20−7. doi:  10.1016/j.archger.2017.11.008
[12] García-Fernández M, Puche JE, Delgado G, et al. 149 Insulin-like growth factor-I (IGF-I) reduces the impact of age in oxidative liver damage and restores insulin resistance and lipid metabolism. J Hepatol, 2008; 48, S65−6.
[13] Malafarina V, Uriz-Otano F, Iniesta R, et al. Sarcopenia in the elderly: diagnosis, physiopathology and treatment. Maturitas, 2012; 71, 109−14. doi:  10.1016/j.maturitas.2011.11.012
[14] Bano G, Trevisan C, Carraro S, et al. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas, 2017; 96, 10−5. doi:  10.1016/j.maturitas.2016.11.006
[15] Schaap LA, Pluijm SM, Deeg DJ, et al. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med, 2006; 119, 526.e9−17. doi:  10.1016/j.amjmed.2005.10.049
[16] Visser M, Pahor M, Taaffe DR, et al. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci, 2002; 57, M326−32. doi:  10.1093/gerona/57.5.M326
[17] Tuttle C, Thang L, Maier AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res Rev, 2020; 64, 101185. doi:  10.1016/j.arr.2020.101185
[18] Chung TH, Shim JY, Lee YJ. Association between leukocyte count and sarcopenia in postmenopausal women: The Korean National Health and Nutrition Examination Survey. Maturitas, 2016; 84, 89−93. doi:  10.1016/j.maturitas.2015.11.011
[19] Park WJ, Jung DH, Lee JW, et al. Association of platelet count with sarcopenic obesity in postmenopausal women: A nationwide population-based study. Clin Chim Acta, 2018; 477, 113−8. doi:  10.1016/j.cca.2017.12.004
[20] Gholizade M, Farhadi A, Marzban M, et al. Association between platelet, white blood cell count, platelet to white blood cell ratio and sarcopenia in community-dwelling older adults: focus on Bushehr Elderly Health (BEH) program. BMC Geriatr, 2022; 22, 300. doi:  10.1186/s12877-022-02954-3
[21] Zhao WY, Zhang Y, Hou LS, et al. The association between systemic inflammatory markers and sarcopenia: Results from the West China Health and Aging Trend Study (WCHAT). Arch Gerontol Geriatr, 2021; 92, 104262. doi:  10.1016/j.archger.2020.104262
[22] Tang T, Xie L, Tan L, et al. Inflammatory indexes are not associated with sarcopenia in Chinese community-dwelling older people: a cross-sectional study. BMC Geriatr, 2020; 20, 457. doi:  10.1186/s12877-020-01857-5
[23] Lv Y, Mao C, Yin Z, et al. Healthy Ageing and Biomarkers Cohort Study (HABCS): a cohort profile. BMJ Open, 2019; 9, e026513. doi:  10.1136/bmjopen-2018-026513
[24] Zeng Y, Feng Q, Hesketh T, et al. Survival, disabilities in activities of daily living, and physical and cognitive functioning among the oldest-old in China: a cohort study. Lancet, 2017; 389, 1619−29. doi:  10.1016/S0140-6736(17)30548-2
[25] Baker JF, Long J, Leonard MB, et al. Estimation of Skeletal Muscle Mass Relative to Adiposity Improves Prediction of Physical Performance and Incident Disability. J Gerontol A Biol Sci Med Sci, 2018; 73, 946−52. doi:  10.1093/gerona/glx064
[26] Lee CD, Folsom AR, Nieto FJ, et al. White blood cell count and incidence of coronary heart disease and ischemic stroke and mortality from cardiovascular disease in African-American and White men and women: atherosclerosis risk in communities study. Am J Epidemiol, 2001; 154, 758−64. doi:  10.1093/aje/154.8.758
[27] Margolis KL, Manson JE, Greenland P, et al. Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women's Health Initiative Observational Study. Arch Intern Med, 2005; 165, 500−8. doi:  10.1001/archinte.165.5.500
[28] Willems JM, Trompet S, Blauw GJ, et al. White blood cell count and C-reactive protein are independent predictors of mortality in the oldest old. J Gerontol A Biol Sci Med Sci, 2010; 65, 764−8.
[29] Wang WJ, Feng SQ, He F, et al. The Viral Load of Epstein-Barr Virus in Blood of Children after Hematopoietic Stem Cell Transplantation. Biomed Environ Sci, 2022; 35, 804−10.
[30] Leng SX, Xue QL, Tian J, et al. Inflammation and frailty in older women. J Am Geriatr Soc, 2007; 55, 864−71. doi:  10.1111/j.1532-5415.2007.01186.x
[31] Lee HS, Koh IH, Kim HS, et al. Platelet and white blood cell count are independently associated with sarcopenia: A nationwide population-based study. Thromb Res, 2019; 183, 36−44. doi:  10.1016/j.thromres.2019.09.007
[32] Melani C, Mattia GF, Silvani A, et al. Interleukin-6 expression in human neutrophil and eosinophil peripheral blood granulocytes. Blood, 1993; 81, 2744−9. doi:  10.1182/blood.V81.10.2744.2744
[33] Xia Z, Cholewa J, Zhao Y, et al. Targeting Inflammation and Downstream Protein Metabolism in Sarcopenia: A Brief Up-Dated Description of Concurrent Exercise and Leucine-Based Multimodal Intervention. Front Physiol, 2017; 8, 434. doi:  10.3389/fphys.2017.00434
[34] Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol, 2016; 229, R67−81. doi:  10.1530/JOE-15-0533
[35] Torres-Ruiz J, Alcalá-Carmona B, Alejandre-Aguilar R, et al. Inflammatory myopathies and beyond: The dual role of neutrophils in muscle damage and regeneration. Front Immunol, 2023; 14, 1113214. doi:  10.3389/fimmu.2023.1113214
[36] De Maeyer R, Chambers ES. The impact of ageing on monocytes and macrophages. Immunol Lett, 2021; 230, 1−10. doi:  10.1016/j.imlet.2020.12.003
[37] Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood, 2015; 126, 582−8.
[38] Biino G, Santimone I, Minelli C, et al. Age- and sex-related variations in platelet count in Italy: a proposal of reference ranges based on 40987 subjects' data. PLoS One, 2013; 8, e54289. doi:  10.1371/journal.pone.0054289
[39] Koenen RR. The prowess of platelets in immunity and inflammation. Thromb Haemost, 2016; 116, 605−12. doi:  10.1160/TH16-04-0300
[40] Thachil J. Platelets in Inflammatory Disorders: A Pathophysiological and Clinical Perspective. Semin Thromb Hemost, 2015; 41, 572−81. doi:  10.1055/s-0035-1556589
[41] Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol, 2015; 6, 98.
[42] Kim SJ, Jenne CN. Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin Immunol, 2016; 28, 546−54. doi:  10.1016/j.smim.2016.10.013
[43] D'Amelio P, Cristofaro MA, De Vivo E, et al. Platelet vitamin D receptor is reduced in osteoporotic patients. Panminerva Med, 2012; 54, 225−31.
[44] Fest J, Ruiter R, Ikram MA, et al. Reference values for white blood-cell-based inflammatory markers in the Rotterdam Study: a population-based prospective cohort study. Sci Rep, 2018; 8, 10566. doi:  10.1038/s41598-018-28646-w
[45] van der Willik KD, Fani L, Rizopoulos D, et al. Balance between innate versus adaptive immune system and the risk of dementia: a population-based cohort study. J Neuroinflammation, 2019; 16, 68. doi:  10.1186/s12974-019-1454-z
[46] Chen Z, Huang Y, Li S, et al. Platelet-to-White Blood Cell Ratio: A Prognostic Predictor for 90-Day Outcomes in Ischemic Stroke Patients with Intravenous Thrombolysis. J Stroke Cerebrovasc Dis, 2016; 25, 2430−8. doi:  10.1016/j.jstrokecerebrovasdis.2016.06.015
[47] Amalia L, Dalimonthe NZ. Clinical significance of Platelet-to-White Blood Cell Ratio (PWR) and National Institute of Health Stroke Scale (NIHSS) in acute ischemic stroke. Heliyon, 2020; 6, e05033. doi:  10.1016/j.heliyon.2020.e05033
[48] Wang K, Li R, Chen X, et al. Platelet-to-white blood cell ratio: A feasible predictor for unfavorable functional outcome in patients with aneurysmal subarachnoid hemorrhage. J Clin Neurosci, 2023; 115, 108−13. doi:  10.1016/j.jocn.2023.07.019
[49] Zhang J, Qiu Y, He X, et al. Platelet-to-white blood cell ratio: A novel and promising prognostic marker for HBV-associated decompensated cirrhosis. J Clin Lab Anal, 2020; 34, e23556. doi:  10.1002/jcla.23556
[50] Xing Y, Wei C, Chu C, et al. Stage-specific gender differences in cognitive and neuropsychiatric manifestations of vascular dementia. Am J Alzheimers Dis Other Demen, 2012; 27, 433−8. doi:  10.1177/1533317512454712
[51] Messier V, Rabasa-Lhoret R, Barbat-Artigas S, et al. Menopause and sarcopenia: A potential role for sex hormones. Maturitas, 2011; 68, 331−6. doi:  10.1016/j.maturitas.2011.01.014
[52] Montenont E, Rondina MT, Campbell RA. Altered functions of platelets during aging. Curr Opin Hematol, 2019; 26, 336−42. doi:  10.1097/MOH.0000000000000526