[1] Yu LX, Li BV. FDA bioequivalence standards. New York: AAPS Press/Springer, 2014.
[2] Chow SC, Liu JP. Design and analysis of bioavailability and bioequivalence studies. Boca Raton: CRC Press, 2009.
[3] Endrenyi L, Blume HH, Tothfalusi L. The Two Main Goals of Bioequivalence Studies. AAPS J, 2017; 19, 885-90. doi:  10.1208/s12248-017-0048-x
[4] Harigaya Y, Jiang X, Zhang H, et al. Bioequivalence Study Methods with Pharmacokinetic Endpoints for Topical Ophthalmic Corticosteroid Suspensions and Effects of Subject Demographics. Pharmaceutical Res, 2018; 36, 13. doi:  10.1007/s11095-018-2537-8
[5] Zhu H, Chauhan A. Effect of viscosity on tear drainage and ocular residence time. Optom Vis Sci, 2008; 85, 715-25. doi:  10.1097/OPX.0b013e3181824dc4
[6] Li M, Wang ZL, Gou LY, et al. Evaluation of the protein requirement in Chinese young adults using the indicator amino acid oxidation technique. Biomed Environ Sci, 2013; 26, 655-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bes201308004
[7] Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci, 1985; 26, 584-7. http://www.ncbi.nlm.nih.gov/pubmed/3884542
[8] Zhang YP, Peng XY, Li ZH, et al. Hyperglycemic effects of a periocular dexamethasone injection in diabetic patients after vitreoretinal surgery. Biomed Environ Sci, 2012; 25, 311-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bes201203009
[9] Deng F, Ranta VP, Kidron H, et al. General Pharmacokinetic Model for Topically Administered Ocular Drug Dosage Forms. Pharmaceutical Research, 2016; 33, 2680-90. doi:  10.1007/s11095-016-1993-2
[10] Wolfsegger MJ. Establishing bioequivalence in serial sacrifice designs. J Pharmacokinet Pharmacodyn, 2007; 34, 103-13. doi:  10.1007/s10928-006-9037-x
[11] Jaki T, Wolfsegger MJ, Lawo JP. Establishing Bioequivalence in Complete and Incomplete Data Designs Using AUCs. J Biopharm Stat, 2010; 20, 803-20. doi:  10.1080/10543401003618835
[12] Wolfsegger MJ, Jaki T. Assessing Systemic Drug Exposure in Repeated Dose Toxicity Studies in the Case of Complete and Incomplete Sampling. Biom J, 2009; 51, 1017-29. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19998360
[13] Jaki T, Wolfsegger MJ, Ploner M. Confidence intervals for ratios of AUCs in the case of serial sampling:a comparison of seven methods. Pharm Stat, 2009; 8, 12-24. doi:  10.1002/pst.321
[14] Hua SY, Hawkins DL, Zhou J. Statistical considerations in bioequivalence of two area under the concentration-time curves obtained from serial sampling data AU-Hua, Steven Y. J Applied Stat, 2013; 40, 1140-54. doi:  10.1080/02664763.2013.780234
[15] Shen MY, Machado SG. Bioequivalence evaluation of sparse sampling pharmacokinetics data using bootstrap resampling method. J Biopharm Stat, 2017; 27, 257-64. doi:  10.1080/10543406.2016.1265543
[16] Jaki T, Pallmann P, Wolfsegger MJ. Estimation in AB/BA crossover trials with application to bioequivalence studies with incomplete and complete data designs. Stat Med, 2013; 32, 5469-83. doi:  10.1002/sim.5886
[17] Locke CS. An exact confidence interval from untransformed data for the ratio of two formulation means. J Pharmacokinet Biopharm, 1984; 12, 649-55. doi:  10.1007/BF01059558
[18] Herson J. Fieller's theorem vs. The delta method for significance intervals for ratios. J Stat Computation Simulation, 1975; 3, 265-74. doi:  10.1080/00949657508810091
[19] Bailer AJ. Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokine Biopharm, 1988; 16, 303-9. doi:  10.1007/BF01062139
[20] Jones B, Kenward MG. Design and analysis of cross-over trials. Boca Raton: CRC Press/Taylor & Francis, 2014.
[21] Satterthwaite FE. An Approximate Distribution of Estimates of Variance Components. Biometrics Bulletin, 1946; 2, 110-4. doi:  10.2307/3002019
[22] Fieller EC. Some Problems in Interval Estimation. Journal of the Royal Statistical Society Series B (Methodological), 1954; 16, 175-85. doi:  10.1111/j.2517-6161.1954.tb00159.x
[23] Hauschke D, Kieser M, Diletti E, et al. Sample size determination for proving equivalence based on the ratio of two means for normally distributed data. Stat Med, 1999; 18, 93-105. doi:  10.1002/(SICI)1097-0258(19990115)18:1<93::AID-SIM992>3.0.CO;2-8
[24] Berger RL, Hsu JC. Bioequivalence Trials, Intersection-Union Tests and Equivalence Confidence Sets. Stat Sci, 1996; 11, 283-302. doi:  10.1214/ss/1032280304
[25] Sasabuchi S. A Test of a Multivariate Normal Mean with Composite Hypotheses Determined by Linear Inequalities. Biometrika, 1980; 67, 429-39. doi:  10.1093/biomet/67.2.429
[26] Hirschberg J, Lye J. A Geometric Comparison of the Delta and Fieller Confidence Intervals. Am Stat, 2010; 64, 234-41. doi:  10.1198/tast.2010.08130
[27] Julious SA. Sample sizes for clinical trials with Normal data. Stat Med, 2004; 23, 1921-86. doi:  10.1002/sim.1783
[28] Chiambaretta F, Garraffo R, Elena PP, et al. Tear concentrations of azithromycin following topical administration of a single dose of azithromycin 0.5%, 1.0%, and 1.5% eyedrops (T1225) in healthy volunteers. Eur J Ophthalmol, 2008; 18, 13-20. doi:  10.1177/112067210801800103
[29] Mehta CR, Pocock SJ. Adaptive increase in sample size when interim results are promising:A practical guide with examples. Stat Med, 2011; 30, 3267-84. doi:  10.1002/sim.4102
[30] Maurer W, Jones B, Chen Y. Controlling the type Ⅰ error rate in two-stage sequential adaptive designs when testing for average bioequivalence. Stat Med, 2018; 37, 1587-607. doi:  10.1002/sim.7614
[31] Potvin D, DiLiberti CE, Hauck WW, et al. Sequential design approaches for bioequivalence studies with crossover designs. Pharmaceutical Stat, 2008; 7, 245-62. doi:  10.1002/pst.294
[32] Kieser M, Rauch G. Two-stage designs for cross-over bioequivalence trials. Stat Med, 2015; 34, 2403-16. doi:  10.1002/sim.6487
[33] Xu J, Audet C, DiLiberti CE, et al. Optimal adaptive sequential designs for crossover bioequivalence studies. Pharmaceutical Stat, 2016; 15, 15-27. doi:  10.1002/pst.1721
[34] Yan F, Zhu H, Liu J, et al. Design and inference for 3-stage bioequivalence testing with serial sampling data. Pharmaceutical Stat, 2018; 17, 458-76. http://europepmc.org/abstract/MED/29726096