[1] Baeza A, Vallet-Regí M. Smart mesoporous silica nanocarriers for antitumoral therapy. Curr Top Med Chem, 2015; 15, 2306-15. doi:  10.2174/1568026615666150605114826
[2] Bharti C, Nagaich U, Pal AK. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig, 2015; 5, 124-33. doi:  10.4103/2230-973X.160844
[3] Borzęcka W, Trindade T, Torres T, et al. Targeting cancer cells with photoactive silica nanoparticles. Curr Pharm Des, 2016; 22, 6021-38. doi:  10.2174/1381612822666160614083804
[4] van der Zande M, Vandebriel RJ, Groot MJ, et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol, 2014; 11, 8. doi:  10.1186/1743-8977-11-8
[5] Bauer AT, Strozyk EA, Gorzelanny C, et al. Cytotoxicity of silica nanoparticles through exocytosis of von willebrand factor and necrotic cell death in primary human endothelial cells. Biomaterials, 2011; 32, 8385-93. doi:  10.1016/j.biomaterials.2011.07.078
[6] Eom HJ, Choi J. Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Toxicol. In Vitro, 2009; 23, 1326-32. doi:  10.1016/j.tiv.2009.07.010
[7] Irfan A, Cauchi M, Edmands W, et al. Assessment of temporal dose-toxicity relationship of fumed silica nanoparticle in human lung A549 cells by conventional cytotoxicity and 1H-NMR-based extracellular metabonomic assays. Toxicol Sci, 2014; 138, 354-64. doi:  10.1093/toxsci/kfu009
[8] Liang H, Jin C, Tang Y, et al. Cytotoxicity of silica nanoparticles on HaCaT cells. J Appl Toxicol, 2014; 34, 367-72. doi:  10.1002/jat.2953
[9] Napierska D, Thomassen LC, Lison D, et al. The nanosilica hazard: another variable entity. Part Fibre Toxicol, 2010; 7, 39. doi:  10.1186/1743-8977-7-39
[10] Brown DM, Kanase N, Gaiser B, et al. Inflammation and gene expression in the rat lung after instillation of silica nanoparticles: effect of size, dispersion medium and particle surface charge. Toxicol Lett, 2014; 224, 147-56. doi:  10.1016/j.toxlet.2013.10.019
[11] Zhu X, Cao W, Chang B, et al. Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers. Int J Nanomed, 2016; 11, 1593-605. https://www.researchgate.net/publication/301483304_Polyacrylatenanosilica_causes_pleural_and_pericardial_effusion_and_pulmonary_fibrosis_and_granuloma_in_rats_similar_to_those_observed_in_exposed_workers
[12] Kaewamatawong T, Shimada A, Okajima M, et al. Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. J Toxicol Pathol, 2006; 34, 958-65. doi:  10.1080/01926230601094552
[13] Chen Y, Chen J, Dong J, et al. Comparing study of the effect of nanosized silicon dioxide and microsized silicon dioxide on fibrogenesis in rats. Toxicol Ind Health, 2004; 20, 21-7. doi:  10.1191/0748233704th190oa
[14] Niu YM, Zhu XL, Chang B, et al. Nanosilica and polyacrylate/nanosilica: a comparative study of acute toxicity. Biomed Res Int, 2016; 9353275. http://or.nsfc.gov.cn/handle/00001903-5/364435
[15] Wottrich R, Diabate S, Krug HF. Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono-and coculture. Int J Hyg Envir Heal, 2004; 207, 353-61. doi:  10.1078/1438-4639-00300
[16] Akhtar MJ, Ahamed M, Kumar S, et al. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology, 2010; 276, 95-102. doi:  10.1016/j.tox.2010.07.010
[17] Cho WS, Choi M, Han BS, et al. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett, 2007; 175, 24-33. doi:  10.1016/j.toxlet.2007.09.008
[18] Lin Z, Ma L, X ZG, et al. A comparative study of lung toxicity in rats induced by three types of Nanomaterials. Nanoscale Res Lett, 2013; 8, 521. doi:  10.1186/1556-276X-8-521
[19] Kim YH, Boykin E, Stevens T, et al. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches. J Nanobiotechnol, 2014; 12, 47. doi:  10.1186/s12951-014-0047-3
[20] Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci, 2007; 97, 163-80. doi:  10.1093/toxsci/kfm018
[21] Maynard AD, Aitken RJ, Butz T, et al. Safe handling of nanotechnology. Nature, 2006; 444, 267-9. doi:  10.1038/444267a
[22] Seagrave J, Mcdonald JD, Mauderly JL. In vitro versus in vivo exposure to combustion emissions. Exp Toxicol Pathol, 2005; 57 Suppl 1, 233-8.
[23] Chen Y, Chen J, Dong J, et al. Antifibrotic effect of interferon gamma in silicosis model of rat. Toxicol Lett, 2005; 155, 353-60. doi:  10.1016/j.toxlet.2004.10.011
[24] Corsini E, Giani A, Lucchi L, et al. Resistance to acute silicosis insenescent rats: role of alveolar macrophages. Chem Res Toxicol, 2003; 16, 1520-6. doi:  10.1021/tx034139+
[25] Brain JD, Knudson DE, Sorokin SP, et al. Pulmonary distribution of particles given by intratracheal instillation or by aerosol inhalation. Environ Res, 1976; 11, 13-33. doi:  10.1016/0013-9351(76)90107-9
[26] Driscoll KE, Costa DL, Hatch G, et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci, 2000; 55, 24-35. doi:  10.1093/toxsci/55.1.24
[27] Henderson RF, Driscoll KE, Harkema JR, et al. A comparison of the inflammatory response of the lung to inhaled versus instilled particles in F344 rats, Fundam. Appl Toxicol, 1995; 24, 183-97. doi:  10.1006/faat.1995.1022
[28] Donaldson K. Nonneoplastic lung responses induced in experimental animals by exposure to poorly soluble nonfibrous particles. Inhal Toxicol, 2000; 12, 121-39. doi:  10.1080/0895-8378.1987.11463187
[29] Nagelsehmidt G. The relation between lung dust and lung pathology in pneumoeoniosis. Br J Ind Med, 1960; 247-59. http://oem.bmj.com/content/17/4/247.full.pdf
[30] Kaewamatawong T, Kawamura N, Okajima M, et al. Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicol Pathol, 2005; 33, 743-9. http://tpx.sagepub.com/content/33/7/745.full.pdf
[31] Hoffmann EO, Lamberty J, Pizzolato P, et al. The ultrastructure of acute silicosis. Arch Pathol, 1973; 96, 104-7. http://www.cabdirect.org/abstracts/19732703317.html
[32] Xipeli JM, Ham KN, Price CG, et al. Acute silicoproteinosis. Thorax, 1977; 32, 104-11. doi:  10.1136/thx.32.1.104
[33] Zetterberg G, Elmberger G, Johansson A, et al. Rat alveolar and interstitial macrophages in the fibrosing stage following quartz exposure. Hum Exp Toxicol, 2000; 19, 402-11 doi:  10.1191/096032700678816124
[34] Lesur O, Cantin AM, Tanswell AK, et al. Silica exposure induces cytotoxicity and proliferative activity of type Ⅱ pneumocytes. Exp Lung Res, 1992; 18, 173-90. doi:  10.3109/01902149209031679
[35] Oomen LC, Ten Have-Opbroek AA, Hageman PC, et al. Fetal mouse alveolar type Ⅱ cells in culture express several type Ⅱ cell characteristics found in vivo, together with major histocompatibility antigens. Am J Resp Cell Mol, 1990; 3, 325-39. doi:  10.1165/ajrcmb/3.4.325
[36] He X, Nie H, Wang K, et al. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem, 2008; 80, 9597-603. doi:  10.1021/ac801882g
[37] Johnston CJ, Driscoll KE, Finkelstein JN, et al. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci, 2000; 56, 405-13. doi:  10.1093/toxsci/56.2.405
[38] Arts JH, Muijser H, Duistermaat E, et al. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol, 2007; 45, 1856-67. doi:  10.1016/j.fct.2007.04.001
[39] Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Bio Med, 2008; 44, 1689-99. doi:  10.1016/j.freeradbiomed.2008.01.028
[40] Lubos E, Handy DE, Loscalzo J. Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci, 2008; 13, 5323-44. https://www.researchgate.net/publication/5341560_Role_of_oxidative_stress_and_nitric_oxide_in_atherothrombosis
[41] Park EJ, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett, 2009; 184, 18-25. doi:  10.1016/j.toxlet.2008.10.012
[42] Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol, 2009; 29, 69-78. doi:  10.1002/jat.v29:1
[43] Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radical Bio Med, 2003; 34, 1507-16. doi:  10.1016/S0891-5849(03)00149-7
[44] Porter DW, Millecchia LL, Willard P, et al. Nitric oxide and reactive oxygen species production causes progressive damage in rats after cessation of silica inhalation. Toxicol Sci, 2006; 90, 188-97. http://toxsci.oxfordjournals.org/content/early/2005/12/09/toxsci.kfj075.full.pdf
[45] Hamilton RF, Thakur SA, Holian A. Silica binding and toxicity in alveolar macrophages. Free Radical Bio Med, 2008; 44, 1246-58. doi:  10.1016/j.freeradbiomed.2007.12.027
[46] Vanhée D, Gosset P, Boitelle A, et al. Cytokines and cytokine network in silicosis and coal workers' Pneumoconiosis. Eur Respi J, 1995; 8, 834-42. http://erj.ersjournals.com/content/erj/8/5/834.full.pdf
[47] Choi M, Cho WS, Han BS, et al. Transient pulmonary fibrogenic effect induced by intratracheal instillation of ultrafine amorphous silica in A/J mice. Toxicol Lett, 2008; 182, 97-101. doi:  10.1016/j.toxlet.2008.08.019
[48] Baroni T, Bodo M, D'Alessandro A, et al. Silica and its antagonistic effects on transforming growth factor-beta in lung fibroblast extracellular matrix production. J Invest Med, 2001; 49, 146-56. doi:  10.2310/6650.2001.34041
[49] Scabilloni JF, Wang L, Antonini JM, et al. Matrix metalloproteinase induction in fibrosis and fibrotic nodule formation due to silica inhalation. Am J Physiol-Lung C, 2005; 288, L709-17. http://ajplung.physiology.org/content/ajplung/early/2004/12/17/ajplung.00034.2004.full.pdf
[50] Lugano EM, Dauber JH, Elias JA, et al. The regulation of lung fibroblast proliferation by alveolar macrophage in experimental silicosis. Am Rev Respir Dis, 1984; 129, 767-71. doi:  10.1164/arrd.1984.129.5.767
[51] Hepplston AG, Styles JA. Activity of a macrophage factor in collagen formation by silica. Nature, 1967; 214, 521-2. doi:  10.1038/214521a0
[52] Yang H, Wu Q, Tang M, et al. Cell membrane injury induced by silica nanoparticles in mouse macrophage. J Biomed Nanotechnol, 2009; 5, 528-35. doi:  10.1166/jbn.2009.1061
[53] Shamsi A, Ahmed A, Bano B. Structural transition of kidney cystatin induced by silicon dioxide nanoparticles: An implication for renal diseases. Int J Biol Macromol. 2017; 94, 754-61. doi:  10.1016/j.ijbiomac.2016.10.019
[54] Zhuravskii S, Yukina G, Kulikova O, et al. Mast cell accumulation precedes tissue fibrosis induced by intravenously administered amorphous silica nanoparticles. Toxicol Mech Methods, 2016; 26, 260-9. doi:  10.3109/15376516.2016.1169341
[55] Kim IY, Joachim E, Choi H, et al. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine, 2015; 11, 1407-16. doi:  10.1016/j.nano.2015.03.004
[56] Decan N, Wu D, Williams A, et al. Characterization of in vitro genotoxic, cytotoxic and transcriptomic responses following exposures to amorphous silica of different sizes. Mutat Res Genet Toxicol Environ Mutagen, 2016; 796, 8-22. doi:  10.1016/j.mrgentox.2015.11.011
[57] Lin W, Huang YW, Zhou XD, et al. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol, 2006; 217, 252-9. doi:  10.1016/j.taap.2006.10.004