[1] Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016; 64, 73−84. doi:  10.1002/hep.28431
[2] Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol, 2020; 73, 202−9. doi:  10.1016/j.jhep.2020.03.039
[3] Colaci C, Gambardella ML, Scarlata GGM, et al. Dysmetabolic comorbidities and non-alcoholic fatty liver disease: a stairway to metabolic dysfunction-associated steatotic liver disease. Hepatoma Res, 2024; 10, 16. doi:  10.20517/2394-5079.2023.134
[4] Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol, 2020; 17, 279−97. doi:  10.1038/s41575-020-0269-9
[5] Wang LJ, Zhang K, Zeng YJ, et al. Gut mycobiome and metabolic diseases: the known, the unknown, and the future. Pharmacol Res, 2023; 193, 106807. doi:  10.1016/j.phrs.2023.106807
[6] Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab, 2022; 34, 1700−18. doi:  10.1016/j.cmet.2022.09.017
[7] Pabst O, Hornef MW, Schaap FG, et al. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol, 2023; 20, 447−61. doi:  10.1038/s41575-023-00771-6
[8] Brandl K, Schnabl B. Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol, 2017; 33, 128−33. doi:  10.1097/MOG.0000000000000349
[9] Forlano R, Martinez-Gili L, Takis P, et al. Disruption of gut barrier integrity and host-microbiome interactions underlie MASLD severity in patients with type-2 diabetes mellitus. Gut Microbes, 2024; 16, 2304157. doi:  10.1080/19490976.2024.2304157
[10] Lee G, You HJ, Bajaj JS, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun, 2020; 11, 4982. doi:  10.1038/s41467-020-18754-5
[11] Leung H, Long XX, Ni YQ, et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci Transl Med, 2022; 14, eabk0855. doi:  10.1126/scitranslmed.abk0855
[12] Burgess S, Timpson NJ, Ebrahim S, et al. Mendelian randomization: where are we now and where are we going?. Int J Epidemiol, 2015; 44, 379−88. doi:  10.1093/ije/dyv108
[13] Jovel J, Patterson J, Wang WW, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol, 2016; 7, 459.
[14] Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet, 2021; 53, 156−65. doi:  10.1038/s41588-020-00763-1
[15] Zhang LL, Zi LL, Kuang TR, et al. Investigating causal associations among gut microbiota, metabolites, and liver diseases: a Mendelian randomization study. Front Endocrinol, 2023; 14, 1159148. doi:  10.3389/fendo.2023.1159148
[16] Zhai QL, Wu HY, Zheng SY, et al. Association between gut microbiota and NAFLD/NASH: a bidirectional two-sample Mendelian randomization study. Front Cell Infect Microbiol, 2023; 13, 1294826. doi:  10.3389/fcimb.2023.1294826
[17] Li Y, Liang XF, Lyu Y, et al. Association between the gut microbiota and nonalcoholic fatty liver disease: a two-sample Mendelian randomization study. Dig Liver Dis, 2023; 55, 1464−71. doi:  10.1016/j.dld.2023.07.014
[18] Ouyang C, Liu PP, Liu YW, et al. Metabolites mediate the causal associations between gut microbiota and NAFLD: a Mendelian randomization study. BMC Gastroenterol, 2024; 24, 244. doi:  10.1186/s12876-024-03277-w
[19] Dai XY, Jiang KP, Ma XJ, et al. Mendelian randomization suggests a causal relationship between gut microbiota and nonalcoholic fatty liver disease in humans. Medicine, 2024; 103, e37478. doi:  10.1097/MD.0000000000037478
[20] Pan TT, Su LH, Zhang YY, et al. Impact of gut microbiota on nonalcoholic fatty liver disease: insights from a leave-one-out cross-validation study. Front Microbiol, 2023; 14, 1320279.
[21] Dai WH, Cai DD, Zhou S, et al. Uncovering a causal connection between the Lachnoclostridium genus in fecal microbiota and non-alcoholic fatty liver disease: a two-sample Mendelian randomization analysis. Front Microbiol, 2023; 14, 1276790. doi:  10.3389/fmicb.2023.1276790
[22] Lopera-Maya EA, Kurilshikov A, Van Der Graaf A, et al. Effect of host genetics on the gut microbiome in 7, 738 participants of the Dutch Microbiome Project. Nat Genet, 2022; 54, 143−51. doi:  10.1038/s41588-021-00992-y
[23] Qin YW, Havulinna AS, Liu Y, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet, 2022; 54, 134−42. doi:  10.1038/s41588-021-00991-z
[24] Miele L, Zocco MA, Pizzolante F, et al. Use of imaging techniques for non-invasive assessment in the diagnosis and staging of non-alcoholic fatty liver disease. Metabolism, 2020; 112, 154355. doi:  10.1016/j.metabol.2020.154355
[25] Ghodsian N, Abner E, Emdin CA, et al. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Rep Med, 2021; 2, 100437. doi:  10.1016/j.xcrm.2021.100437
[26] Chen YH, Lu TY, Pettersson-Kymmer U, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet, 2023; 55, 44−53. doi:  10.1038/s41588-022-01270-1
[27] Sekula P, Del Greco MF, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol, 2016; 27, 3253−65. doi:  10.1681/ASN.2016010098
[28] Sanderson E. Multivariable mendelian randomization and mediation. Cold Spring Harb Perspect Med, 2021; 11, a038984. doi:  10.1101/cshperspect.a038984
[29] Yu GJ, Chen QL, Chen JX, et al. Gut microbiota alterations are associated with functional outcomes in patients of acute ischemic stroke with non-alcoholic fatty liver disease. Front Neurosci, 2023; 17, 1327499. doi:  10.3389/fnins.2023.1327499
[30] Liu GH, Zhao QX, Wei HY. Characteristics of intestinal bacteria with fatty liver diseases and cirrhosis. Ann Hepatol, 2019; 18, 796−803. doi:  10.1016/j.aohep.2019.06.020
[31] Michels N, Zouiouich S, Vanderbauwhede B, et al. Human microbiome and metabolic health: an overview of systematic reviews. Obes Rev, 2022; 23, e13409. doi:  10.1111/obr.13409
[32] Song Q, Zhang X, Liu WX, et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Hepatol, 2023; 79, 1352−65. doi:  10.1016/j.jhep.2023.07.005
[33] Li FX, Ye JZ, Shao CX, et al. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis. Lipids Health Dis, 2021; 20, 22. doi:  10.1186/s12944-021-01440-w
[34] Gentry EC, Collins SL, Panitchpakdi M, et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature, 2024; 626, 419−26. doi:  10.1038/s41586-023-06906-8
[35] Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol, 2017; 19, 29−41. doi:  10.1111/1462-2920.13589
[36] Rivière A, Selak M, Lantin D, et al. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol, 2016; 7, 979.
[37] Qin N, Yang FL, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014; 513, 59−64. doi:  10.1038/nature13568
[38] Kuraji R, Ye CC, Zhao CJ, et al. Nisin lantibiotic prevents NAFLD liver steatosis and mitochondrial oxidative stress following periodontal disease by abrogating oral, gut and liver dysbiosis. NPJ Biofilms Microbiomes, 2024; 10, 3. doi:  10.1038/s41522-024-00476-x
[39] Macierzanka A, Torcello-Gómez A, Jungnickel C, et al. Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci, 2019; 274, 102045. doi:  10.1016/j.cis.2019.102045
[40] Horejs C. Bile salt particles locally dissolve fat. Nat Rev Mater, 2021; 6, 107.
[41] Yoon JH, Do JS, Velankanni P, et al. Gut microbial metabolites on host immune responses in health and disease. Immune Netw, 2023; 23, e6. doi:  10.4110/in.2023.23.e6
[42] Alenezi T, Alrubaye B, Fu Y, et al. Recombinant bile salt hydrolase enhances the inhibition efficiency of taurodeoxycholic acid against Clostridium perfringens virulence. Pathogens, 2024; 13, 464. doi:  10.3390/pathogens13060464
[43] Wang LL, Jiao T, Yu QQ, et al. Bifidobacterium bifidum shows more diversified ways of relieving non-alcoholic fatty liver compared with bifidobacterium adolescentis. Biomedicines, 2021; 10, 84. doi:  10.3390/biomedicines10010084