[1] Branco NAAC, Alves-Pereira M. Vibroacoustic disease. Noise Health, 2004; 6, 3−20.
[2] Cheng HJ, Sun GD, Li M, et al. Neuron loss and dysfunctionality in hippocampus explain aircraft noise induced working memory impairment: a resting-state fMRI study on military pilots. BioSci Trends, 2019; 13, 430−40. doi:  10.5582/bst.2019.01190
[3] Gomes LM, Pimenta AJM, Branco NAC. Effects of occupational exposure to low frequency noise on cognition. Aviat, Space, Environ Med, 1999; 70, A115−8.
[4] Tzivian L, Dlugaj M, Winkler A, et al. Long-term air pollution and traffic noise exposures and mild cognitive impairment in older adults: a cross-sectional analysis of the Heinz Nixdorf recall study. Environ Health Perspect, 2016; 124, 1361−8. doi:  10.1289/ehp.1509824
[5] Tzivian L, Jokisch M, Winkler A, et al. Associations of long-term exposure to air pollution and road traffic noise with cognitive function-An analysis of effect measure modification. Environ Int, 2017; 103, 30−8. doi:  10.1016/j.envint.2017.03.018
[6] Ma L, He H, Liu XD, et al. Involvement of cannabinoid receptors in infrasonic noise-induced neuronal impairment. Acta Biochim Biophys Sin, 2015; 47, 647−53. doi:  10.1093/abbs/gmv049
[7] Shi M, Du F, Liu Y, et al. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment. Acta Neuropathol, 2013; 126, 725−39. doi:  10.1007/s00401-013-1166-x
[8] Cai J, Jing D, Shi M, et al. Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation. J Nutr Biochem, 2014; 25, 716−25. doi:  10.1016/j.jnutbio.2014.02.012
[9] Davis RL, Zhong Y. The biology of forgetting-a perspective. Neuron, 2017; 95, 490−503. doi:  10.1016/j.neuron.2017.05.039
[10] Lamprecht R. The role of actin cytoskeleton in memory formation in amygdala. Front Mol Neurosci, 2016; 9, 23.
[11] Craddock TJA, Tuszynski JA, Hameroff S. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput Biol, 2012; 8, e1002421.
[12] Beste C, Stock AK, Zink N, et al. How minimal variations in neuronal cytoskeletal integrity modulate cognitive control. NeuroImage, 2019; 185, 129−39. doi:  10.1016/j.neuroimage.2018.10.053
[13] Lamprecht R. Actin cytoskeleton role in the maintenance of neuronal morphology and long-term memory. Cells, 2021; 10, 1795. doi:  10.3390/cells10071795
[14] Ballatore C, Brunden KR, Huryn DM, et al. Microtubule stabilizing agents as potential treatment for Alzheimer's disease and related neurodegenerative tauopathies. J Med Chem, 2012; 55, 8979−96. doi:  10.1021/jm301079z
[15] Didonna A, Opal P. The role of neurofilament aggregation in neurodegeneration: lessons from rare inherited neurological disorders. Mol Neurodegener, 2019; 14, 19. doi:  10.1186/s13024-019-0318-4
[16] Alves-Pereira M. Noise-induced extra-aural pathology: a review and commentary. Aviat, Space, Environ Med, 1999; 70, A7−21.
[17] Branco NAA, Monteiro E, Silva ACE, et al. Respiratory epithelia in Wistar rats born in low frequency noise plus varying amounts of additional exposure. Rev Port Pneumol, 2003; 9, 481−92. doi:  10.1016/S0873-2159(15)30702-9
[18] Lawhorn BG, Brnardic EJ, Behm DJ. TRPV4 antagonists: a patent review (2015-2020). Expert Opin Ther Pat, 2021; 31, 773−84. doi:  10.1080/13543776.2021.1903432
[19] Goswami C, Kuhn J, Heppenstall PA, et al. Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One, 2010; 5, e11654. doi:  10.1371/journal.pone.0011654
[20] Ryskamp DA, Frye AM, Phuong TTT, et al. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye. Sci Rep, 2016; 6, 30583. doi:  10.1038/srep30583
[21] Clark K, Middelbeek J, Van Leeuwen FN. Interplay between TRP channels and the cytoskeleton in health and disease. Eur J Cell Biol, 2008; 87, 631−40. doi:  10.1016/j.ejcb.2008.01.009
[22] Simon SA, Nicolelis MAL. Frontiers in neuroscience. In: Liedtke WB, Heller S. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. CRC Press/Taylor & Francis. 2007.
[23] Kim J, Chung YD, Park DY, et al. A TRPV family ion channel required for hearing in Drosophila. Nature, 2003; 424, 81−4. doi:  10.1038/nature01733
[24] Peri A. Neuroprotective effects of estrogens: the role of cholesterol. J Endocrinol Invest, 2016; 39, 11−8. doi:  10.1007/s40618-015-0332-5
[25] Wang XY, Lai YW, Zhang XJ, et al. Effect of low-frequency but high-intensity noise exposure on swine brain blood barrier permeability and its mechanism of injury. Neurosci Lett, 2018; 662, 122−8. doi:  10.1016/j.neulet.2017.09.040
[26] Lee CH, Kim KW, Lee SM, et al. Effect of acute noise trauma on the gene expression profile of the hippocampus. BMC Neurosci, 2020; 21, 45. doi:  10.1186/s12868-020-00599-9
[27] Yang Y, Zhang X, Ge HF, et al. Epothilone B benefits nigrostriatal pathway recovery by promoting microtubule stabilization after intracerebral hemorrhage. J Am Heart Assoc, 2018; 7, e007626. doi:  10.1161/JAHA.117.007626
[28] Gao ZY, Yang Y, Feng ZY, et al. Chemogenetic stimulation of proprioceptors remodels lumbar interneuron excitability and promotes motor recovery after SCI. Mol Ther, 2021; 29, 2483−98. doi:  10.1016/j.ymthe.2021.04.023
[29] Zhang Q, Yang C, Liu TY, et al. Citalopram restores short-term memory deficit and non-cognitive behaviors in APP/PS1 mice while halting the advance of Alzheimer's disease-like pathology. Neuropharmacology, 2018; 131, 475−86. doi:  10.1016/j.neuropharm.2017.12.021
[30] Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc, 2006; 1, 848−58. doi:  10.1038/nprot.2006.116
[31] Hainmueller T, Bartos M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci, 2020; 21, 153−68. doi:  10.1038/s41583-019-0260-z
[32] Cheng L, Wang SH, Chen QC, et al. Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiol Behav, 2011; 104, 981−8. doi:  10.1016/j.physbeh.2011.06.018
[33] Zhang LQ, Wang JJ, Sun HY, et al. Interactions between the hippocampus and the auditory pathway. Neurobiol Learn Mem, 2022; 189, 107589. doi:  10.1016/j.nlm.2022.107589
[34] Liu LJ, Shen P, He TT, et al. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci Rep, 2016; 6, 20374. doi:  10.1038/srep20374
[35] Cheng L, Wang SH, Jia N, et al. Environmental stimulation influence the cognition of developing mice by inducing changes in oxidative and apoptosis status. Brain Dev, 2014; 36, 51−6. doi:  10.1016/j.braindev.2012.11.015
[36] Zhang LQ, Wu C, Martel DT, et al. Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs. Hippocampus, 2019; 29, 669−82.
[37] Zhang LQ, Wu C, Martel DT, et al. Noise exposure alters glutamatergic and GABAergic synaptic connectivity in the hippocampus and its relevance to tinnitus. Neural Plast, 2021; 2021, 8833087.
[38] Cacucci F, Salinas P, Wills TJ. Hippocampus: activity-driven maturation of neural circuits for navigation. Curr Biol, 2017; 27, R428−30. doi:  10.1016/j.cub.2017.04.006
[39] Hunsaker MR, Rosenberg JS, Kesner RP. The role of the dentate gyrus, CA3a, b, and CA3c for detecting spatial and environmental novelty. Hippocampus, 2008; 18, 1064−73. doi:  10.1002/hipo.20464
[40] Lee JW, Jung MW. Separation or binding? Role of the dentate gyrus in hippocampal mnemonic processing. Neurosci Biobehav Rev, 2017; 75, 183−94. doi:  10.1016/j.neubiorev.2017.01.049
[41] Sasaki T, Piatti VC, Hwaun E, et al. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons. Nat Neurosci, 2018; 21, 258−69. doi:  10.1038/s41593-017-0061-5
[42] Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron, 2015; 87, 1162−79. doi:  10.1016/j.neuron.2015.08.032
[43] Baas PW, Rao AN, Matamoros AJ, et al. Stability properties of neuronal microtubules. Cytoskeleton, 2016; 73, 442−60. doi:  10.1002/cm.21286
[44] Priel A, Tuszynski JA, Woolf NJ. Neural cytoskeleton capabilities for learning and memory. J Biol Phys, 2010; 36, 3−21. doi:  10.1007/s10867-009-9153-0
[45] Pimenta MG, Pimenta AJM, Branco MSC, et al. ERP P300 and brain magnetic resonance imaging in patients with vibroacoustic disease. Aviat, Space, Environ Med, 1999; 70, A107−14.