| [1] | M Colombo, G Raposo, C Thery. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 2014; 30, 255−89. doi: 10.1146/annurev-cellbio-101512-122326 |
| [2] | C Thery, L Zitvogel, S Amigorena. Exosomes: composition, biogenesis and function. Nat Rev Immunol, 2002; 2, 569−79. doi: 10.1038/nri855 |
| [3] | H Valadi, K Ekstrom, A Bossios, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007; 9, 654−9. doi: 10.1038/ncb1596 |
| [4] | A Montecalvo, AT Larregina, WJ Shufesky, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 2012; 119, 756−66. doi: 10.1182/blood-2011-02-338004 |
| [5] | J Skog, T Würdinger, S Van Rijn, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol, 2008; 10, 1470−6. doi: 10.1038/ncb1800 |
| [6] | G SK, X R, S RJ, et al. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol, 2015; 40, 72−81. doi: 10.1016/j.semcdb.2015.02.009 |
| [7] | E McLafferty, C Johnstone, C Hendry, et al. Male and female reproductive systems and associated conditions. Nurs Stand, 2014; 28, 37−44. |
| [8] | CC Ho, P Singam, GE Hong, et al. Male sexual dysfunction in Asia. Asian J Androl, 2011; 13, 537−42. doi: 10.1038/aja.2010.135 |
| [9] | MP McCabe, I D Sharlip, R Lewis, et al. Incidence and Prevalence of Sexual Dysfunction in Women and Men: A Consensus Statement from the Fourth International Consultation on Sexual Medicine 2015. J Sex Med, 2016; 13, 144−52. doi: 10.1016/j.jsxm.2015.12.034 |
| [10] | M C Chang. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature, 1951; 168, 697−8. |
| [11] | R Yanagimachi and C A Mahi. The sperm acrosome reaction and fertilization in the guinea-pig: a study in vivo. J Reprod Fertil, 1976; 46, 49−54. doi: 10.1530/jrf.0.0460049 |
| [12] | G Raposo, W Stoorvogel. Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology, 2013; 200, 373−83. doi: 10.1083/jcb.201211138 |
| [13] | K R, L VS. The biology function and biomedical applications of exosomes. Science (New York, N.Y.), 2020; 367. |
| [14] | I Huang-Doran, CY Zhang, A Vidal-Puig. Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. Trends Endocrinol Metab, 2017; 28, 3−18. doi: 10.1016/j.tem.2016.10.003 |
| [15] | LN Ventimiglia, MA Alonso. Biogenesis and Function of T Cell-Derived Exosomes. Front Cell Dev Biol, 2016; 4, 84. |
| [16] | JM Escola, MJ Kleijmeer, W Stoorvogel, et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem, 1998; 273, 20121−7. doi: 10.1074/jbc.273.32.20121 |
| [17] | J Kowal, G Arras, M Colombo, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences, 2016; 113, E968−E77. doi: 10.1073/pnas.1521230113 |
| [18] | R Xu, X Shen, Y Si, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell, 2018; e12794. |
| [19] | R Sullivan, F Saez, J Girouard, et al. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis, 2005; 35, 1−10. doi: 10.1016/j.bcmd.2005.03.005 |
| [20] | M Albersen, M Kendirci, F Van der Aa, et al. Multipotent stromal cell therapy for cavernous nerve injury-induced erectile dysfunction. J Sex Med, 2012; 9, 385−403. doi: 10.1111/j.1743-6109.2011.02556.x |
| [21] | M Li, H Li, Y Ruan, et al. Stem Cell Therapy for Diabetic Erectile Dysfunction in Rats: A Meta-Analysis. PLoS One, 2016; 11, e0154341. doi: 10.1371/journal.pone.0154341 |
| [22] | C Lin, Z Xin, J Dai, et al. Stem-cell therapy for erectile dysfunction. Expert Opin Biol Ther, 2013; 13, 1585−97. doi: 10.1517/14712598.2013.847085 |
| [23] | F Castiglione, P Hedlund, F Van der Aa, et al. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie's disease. Eur Urol, 2013; 63, 551−60. doi: 10.1016/j.eururo.2012.09.034 |
| [24] | F Chen, H Zhang, Z Wang, et al. Adipose-Derived Stem Cell-Derived Exosomes Ameliorate Erectile Dysfunction in a Rat Model of Type 2 Diabetes. The Journal of Sexual Medicine, 2017; 14, 1084−94. doi: 10.1016/j.jsxm.2017.07.005 |
| [25] | L L Zhu, X Huang, W Yu, et al. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia, 2018; 50, e12871. doi: 10.1111/and.12871 |
| [26] | M Li, H Lei, Y Xu, et al. Exosomes derived from mesenchymal stem cells exert therapeutic effect in a rat model of cavernous nerves injury. Andrology, 2018; 6, 927−35. doi: 10.1111/andr.12519 |
| [27] | R Yiou, M Mahrouf-Yorgov, C Trebeau, et al. Delivery of human mesenchymal adipose-derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue-specific paracrine mechanisms. Stem Cells, 2016; 34, 392−404. doi: 10.1002/stem.2226 |
| [28] | Z Liu, L Gan, T Zhang, et al. Melatonin alleviates adipose inflammation through elevating alpha-ketoglutarate and diverting adipose-derived exosomes to macrophages in mice. J Pineal Res, 2018; 64, e12455. doi: 10.1111/jpi.12455 |
| [29] | S Ekici, A I Dogan Ekici, G Ozturk, et al. Comparison of melatonin and ozone in the prevention of reperfusion injury following unilateral testicular torsion in rats. Urology, 2012; 80, 899−906. doi: 10.1016/j.urology.2012.06.049 |
| [30] | Y Matsuda, M Sasaki, Y Kataoka-Sasaki, et al. Intravenous Infusion of Bone Marrow-Derived Mesenchymal Stem Cells Reduces Erectile Dysfunction Following Cavernous Nerve Injury in Rats. Sex Med, 2018; 6, 49−57. doi: 10.1016/j.esxm.2017.10.005 |
| [31] | X Ouyang, X Han, Z Chen, et al. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Res Ther, 2018; 9, 246. doi: 10.1186/s13287-018-1003-1 |
| [32] | W Zhang, C Yang, W Guo, et al. rotective effect of bone marrow mesenchymal stem cells-derived exosomes against testicular ischemia-reperfusion injury in rats. Journal of Southern Medical University, 2018; 38, 910−6. (In Chinese) |
| [33] | K Ning, T Wang, X Sun, et al. UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer. J Surg Oncol, 2017; 115, 932−40. doi: 10.1002/jso.24614 |
| [34] | D Kumar, R Manek, V Raghavan, et al. Protein Characterization of Extracellular Microvesicles/Exosomes Released from Cytotoxin-Challenged Rat Cerebrocortical Mixed Culture and Mouse N2a Cells. Mol Neurobiol, 2018; 55, 2112−24. doi: 10.1007/s12035-017-0474-x |
| [35] | Y Wang, L Wang, H Gao, et al. UCHL1 expression and localization on testicular development and spermatogenesis of Chinese giant salamanders. Oncotarget, 2017; 8, 86043−55. |
| [36] | S Yoshida. From cyst to tubule: innovations in vertebrate spermatogenesis. Wiley Interdiscip Rev Dev Biol, 2016; 5, 119−31. doi: 10.1002/wdev.204 |
| [37] | J Du, J Shen, Y Wang, et al. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget, 2016; 7, 58832−47. |
| [38] | M Aalberts, T Stout, W Stoorvogel. Prostasomes: extracellular vesicles from the prostate. Reproduction, 2014; 147, R1−14. doi: 10.1530/REP-13-0358 |
| [39] | I Brody, G Ronquist, A Gottfries. Ultrastructural localization of the prostasome - an organelle in human seminal plasma. Ups J Med Sci, 1983; 88, 63−80. doi: 10.3109/03009738309178440 |
| [40] | L Siciliano, V Marciano, A Carpino. Prostasome-like vesicles stimulate acrosome reaction of pig spermatozoa. Reprod Biol Endocrinol, 2008; 6, 5. doi: 10.1186/1477-7827-6-5 |
| [41] | E Carlini, C Palmerini, E Cosmi, et al. Fusion of sperm with prostasomes: effects on membrane fluidity. Arch Biochem Biophys, 1997; 343, 6−12. doi: 10.1006/abbi.1997.9999 |
| [42] | R Fabiani, L Johansson, O Lundkvist, et al. Enhanced recruitment of motile spermatozoa by prostasome inclusion in swim-up medium. Hum Reprod, 1994; 9, 1485−9. doi: 10.1093/oxfordjournals.humrep.a138735 |
| [43] | G Arienti, E Carlini, A Nicolucci, et al. The motility of human spermatozoa as influenced by prostasomes at various pH levels. Biol Cell, 1999; 91, 51−4. doi: 10.1111/j.1768-322X.1999.tb01083.x |
| [44] | R Fabiani, L Johansson, O Lundkvist, et al. Prolongation and improvement of prostasome promotive effect on sperm forward motility. Eur J Obstet Gynecol Reprod Biol, 1995; 58, 191−8. doi: 10.1016/0028-2243(95)80022-K |
| [45] | N Subirán, E Agirregoitia, A Valdivia, et al. Expression of enkephalin-degrading enzymes in human semen and implications for sperm motility. Fertil Steril, 2008; 89, 1571−7. doi: 10.1016/j.fertnstert.2007.06.056 |
| [46] | R Sullivan, F Saez. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction, 2013; 146, R21−35. doi: 10.1530/REP-13-0058 |
| [47] | H Rejraji, B Sion, G Prensier, et al. Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation. Biol Reprod, 2006; 74, 1104−13. doi: 10.1095/biolreprod.105.049304 |
| [48] | R Jones, T Mann, RJ Sherins. Adverse effects of peroxidized lipid on human spermatozoa. Proc R Soc Lond B Biol Sci, 1978; 201, 413−7. doi: 10.1098/rspb.1978.0053 |
| [49] | R Yanagimachi, Y Kamiguchi, K Mikamo, et al. Maturation of spermatozoa in the epididymis of the Chinese hamster. Am J Anat, 1985; 172, 317−30. doi: 10.1002/aja.1001720406 |
| [50] | G Frenette, J Girouard, O D'Amours, et al. Characterization of two distinct populations of epididymosomes collected in the intraluminal compartment of the bovine cauda epididymis. Biol Reprod, 2010; 83, 473−80. |
| [51] | E M De Robertis, D Ploper. Sperm Motility Requires Wnt/GSK3 Stabilization of Proteins. Dev Cell, 2015; 35, 401−2. doi: 10.1016/j.devcel.2015.11.009 |
| [52] | G Frenette, C Lessard, and R Sullivan. Polyol pathway along the bovine epididymis. Mol Reprod Dev, 2004; 69, 448−56. doi: 10.1002/mrd.20170 |
| [53] | G Frenette, M Thabet, R Sullivan. Polyol pathway in human epididymis and semen. J Androl, 2006; 27, 233−9. doi: 10.2164/jandrol.05108 |
| [54] | G Frenette, J Girouard, R Sullivan. Comparison between epididymosomes collected in the intraluminal compartment of the bovine caput and cauda epididymidis. Biol Reprod, 2006; 75, 885−90. doi: 10.1095/biolreprod.106.054692 |
| [55] | G Frenette, C Lessard, E Madore, et al. Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol Reprod, 2003; 69, 1586−92. doi: 10.1095/biolreprod.103.019216 |
| [56] | O Jerczynski, N Lacroix-Pepin, E Boilard, et al. Role of Dicer1-Dependent Factors in the Paracrine Regulation of Epididymal Gene Expression. PLoS One, 2016; 11, e0163876. doi: 10.1371/journal.pone.0163876 |
| [57] | U Sharma, CC Conine, JM Shea, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science, 2016; 351, 391−6. doi: 10.1126/science.aad6780 |
| [58] | P Kumar, C Kuscu, A Dutta. Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends Biochem Sci, 2016; 41, 679−89. doi: 10.1016/j.tibs.2016.05.004 |
| [59] | J Ma, Y Fan, J Zhang, et al. Testosterone-Dependent miR-26a-5p and let-7g-5p Act as Signaling Mediators to Regulate Sperm Apoptosis via Targeting PTEN and PMAIP1. Int J Mol Sci, 2018; 19, 1233. doi: 10.3390/ijms19041233 |
| [60] | A Cannistraci, G Federici, A Addario, et al. C-Met/miR-130b axis as novel mechanism and biomarker for castration resistance state acquisition. Oncogene, 2017; 36, 3718−28. doi: 10.1038/onc.2016.505 |
| [61] | W Bartsch, H Klein, U Schiemann, et al. Enzymes of androgen formation and degradation in the human prostate. Ann N Y Acad Sci, 1990; 595, 53−66. doi: 10.1111/j.1749-6632.1990.tb34282.x |
| [62] | J A Locke, L Fazli, H Adomat, et al. A novel communication role for CYP17A1 in the progression of castration-resistant prostate cancer. Prostate, 2009; 69, 928−37. doi: 10.1002/pros.20940 |
| [63] | BP Foster, T Balassa, TD Benen, et al. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci, 2016; 53, 379−95. doi: 10.1080/10408363.2016.1190682 |
| [64] | B Ouyang, X Sun, D Han, et al. Human urine-derived stem cells alone or genetically-modified with FGF2 Improve type 2 diabetic erectile dysfunction in a rat model. PLoS One, 2014; 9, e92825. doi: 10.1371/journal.pone.0092825 |
| [65] | R Machtinger, LC Laurent, AA Baccarelli. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update, 2016; 22, 182−93. |
| [66] | R Navakanitworakul, W-T Hung, S Gunewardena, et al. Characterization and Small RNA Content of Extracellular Vesicles in Follicular Fluid of Developing Bovine Antral Follicles. Sci Rep, 2016; 6, 25486. doi: 10.1038/srep25486 |
| [67] | JC Da Silveira, EM Carnevale, QA Winger, et al. Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod Biol Endocrinol, 2014; 12, 44. doi: 10.1186/1477-7827-12-44 |
| [68] | M Santonocito, M Vento, MR Guglielmino, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril, 2014; 102, 1751−61. doi: 10.1016/j.fertnstert.2014.08.005 |
| [69] | JC Da Silveira, DN Veeramachaneni, QA Winger, et al. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod, 2012; 86, 71. |
| [70] | C HC, L FX, C PJ, et al. Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol Biol Cell, 2018; 10, mbcE18080496. |
| [71] | W QA, B GJ, C EM. Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-β signalling during follicle development in the mare. Reprod Fertil Dev, 2015; 27, 897−905. doi: 10.1071/RD14452 |
| [72] | AA Al-Dossary, EE Strehler, PA Martin-Deleon. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One, 2013; 8, e80181. doi: 10.1371/journal.pone.0080181 |
| [73] | K Khanvilkar, MD Donovan, DR Flanagan. Drug transfer through mucus. Advanced Drug Delivery Reviews, 2001; 48, 173−93. doi: 10.1016/S0169-409X(01)00115-6 |
| [74] | Z Q, A N, Y P, et al. Cellular Evidence of Exosomes in the Reproductive Tract of Chinese Soft-Shelled Turtle Pelodiscus sinensis. Journal of experimental zoology. Part A, Ecological and integrative physiology, 2017; 327, 18−27. doi: 10.1002/jez.2065 |
| [75] | C E, T G, A-N AS, et al. Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk.%A Almiñana C. Reproduction (Cambridge, England), 2017; 154, 153−68. doi: 10.1530/REP-17-0068 |
| [76] | Q P, Z Y, W R, et al. Extracellular vesicles derived from donor oviduct fluid improved birth rates after embryo transfer in mice. Reprod Fertil Dev, 2019; 31, 324−32. doi: 10.1071/RD18203 |
| [77] | T G, L V, U R, et al. Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics, 2018; 19, 622. doi: 10.1186/s12864-018-4982-5 |
| [78] | Y H Ng, S Rome, A Jalabert, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One, 2013; 8, e58502. doi: 10.1371/journal.pone.0058502 |
| [79] | GW Burns, KE Brooks, TE Spencer. Extracellular Vesicles Originate from the Conceptus and Uterus During Early Pregnancy in Sheep. Biol Reprod, 2016; 94, 56. |
| [80] | F Marinaro, B Macias-Garcia, FM Sanchez-Margallo, et al. Extracellular vesicles derived from endometrial human mesenchymal stem cells enhance embryo yield and quality in an aged murine model. Biol Reprod, 2019; 100, 1180−92. doi: 10.1093/biolre/ioy263 |
| [81] | VA Mikhailova, OM Ovchinnikova, MS Zainulina, et al. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med, 2014; 157, 751−6. doi: 10.1007/s10517-014-2659-x |
| [82] | AS Leroyer, F Anfosso, R Lacroix, et al. Endothelial-derived microparticles: Biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb Haemost, 2010; 104, 456−63. doi: 10.1160/TH10-02-0111 |
| [83] | CM Gustafson, AJ Shepherd, VM Miller, et al. Age- and sex-specific differences in blood-borne microvesicles from apparently healthy humans. Biol Sex Differ, 2015; 6, 10. doi: 10.1186/s13293-015-0028-8 |
| [84] | RA Dragovic, JH Southcombe, DS Tannetta, et al. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women. Biol Reprod, 2013; 89, 151. |
| [85] | FK Marques, FM Campos, OA Filho, et al. Circulating microparticles in severe preeclampsia. Clin Chim Acta, 2012; 414, 253−8. doi: 10.1016/j.cca.2012.09.023 |
| [86] | E Campello, L Spiezia, CM Radu, et al. Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb Res, 2015; 136, 427−31. doi: 10.1016/j.thromres.2015.05.029 |
| [87] | L Petrozella, M Mahendroo, B Timmons, et al. Endothelial microparticles and the antiangiogenic state in preeclampsia and the postpartum period. Am J Obstet Gynecol, 2012; 207, 140.e20−6. doi: 10.1016/j.ajog.2012.06.011 |
| [88] | SV Brodsky, K Malinowski, M Golightly, et al. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential. Circulation, 2002; 106, 2372−8. doi: 10.1161/01.CIR.0000033972.90653.AF |
| [89] | K YQ, P HN, V K, et al. Effect of exosomes from plasma of dairy cows with or without an infected uterus on prostaglandin production by endometrial cell lines. J Dairy Sci, 2017; 100, 9143−52. doi: 10.3168/jds.2017-13261 |
| [90] | Z L, C W, W M, et al. Maternal exosomes in diabetes contribute to the cardiac development deficiency. Biochem Biophys Res Commun, 2017; 483, 602−8. doi: 10.1016/j.bbrc.2016.12.097 |
| [91] | JY Yoo, M Rho, YA You, et al. 16S rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women. Exp Mol Med, 2016; 48, e208. doi: 10.1038/emm.2015.110 |
| [92] | C Lv, W X Yu, Y Wang, et al. MiR-21 in extracellular vesicles contributes to the growth of fertilized eggs and embryo development in mice. Biosci Rep, 2018; 38, BSR20180036. doi: 10.1042/BSR20180036 |
| [93] | S Liu, L Wei, Y Zhang, et al. Procoagulant activity and cellular origin of microparticles in human amniotic fluid. Thromb Res, 2014; 133, 645−51. doi: 10.1016/j.thromres.2013.12.043 |
| [94] | W Uszynski, E Zekanowska, M Uszynski, et al. New observations on procoagulant properties of amniotic fluid: microparticles (MPs) and tissue factor-bearing MPs (MPs-TF), comparison with maternal blood plasma. Thromb Res, 2013; 132, 757−60. doi: 10.1016/j.thromres.2013.10.001 |
| [95] | S Sheller, J Papaconstantinou, R Urrabaz-Garza, et al. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress. PLoS One, 2016; 11, e0157614. doi: 10.1371/journal.pone.0157614 |
| [96] | T CL, F K, M MJ, et al. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology, 2012; 136, 184−91. doi: 10.1111/j.1365-2567.2012.03568.x |
| [97] | C Salomon, SW Yee, MD Mitchell, et al. The possible role of extravillous trophoblast-derived exosomes on the uterine spiral arterial remodeling under both normal and pathological conditions. Biomed Res Int, 2014; 2014, 693157. |
| [98] | S Ospina-Prieto, W Chaiwangyen, J Herrmann, et al. MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl Res, 2016; 172, 61−72. doi: 10.1016/j.trsl.2016.02.012 |
| [99] | C Salomon, GE Rice. Role of Exosomes in Placental Homeostasis and Pregnancy Disorders. Prog Mol Biol Transl Sci, 2017; 145, 163−79. doi: 10.1016/bs.pmbts.2016.12.006 |
| [100] | SJ Germain, GP Sacks, SR Sooranna, et al. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol, 2007; 178, 5949−56. doi: 10.4049/jimmunol.178.9.5949 |
| [101] | S Guller, Z Tang, YY Ma, et al. Protein composition of microparticles shed from human placenta during placental perfusion: Potential role in angiogenesis and fibrinolysis in preeclampsia. Placenta, 2011; 32, 63−9. doi: 10.1016/j.placenta.2010.10.011 |
| [102] | B V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol Microbiol, 2014; 72, 440−57. doi: 10.1111/aji.12311 |
| [103] | B A, S Y, C CB. Autophagy as a mechanism of antiviral defense at the maternal-fetal interface. Autophagy, 2013; 9, 2173−4. doi: 10.4161/auto.26558 |
| [104] | D RB, M JF, C T, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A, 2013; 110, 12048−53. doi: 10.1073/pnas.1304718110 |
| [105] | J Szekeres-Bartho, S Sucurovic, B Mulac-Jericevic. The Role of Extracellular Vesicles and PIBF in Embryo-Maternal Immune-Interactions. Front Immunol, 2018; 9, 2890. doi: 10.3389/fimmu.2018.02890 |
| [106] | M H, H M, L F, et al. Physiological impact of extracellular vesicles on female reproductive system; highlights to possible restorative effects on female age-related fertility. BioFactors (Oxford, England), 2019; 45, 293−303. doi: 10.1002/biof.1497 |