Supplementary files to the manuscript

Contents of Supplementary Files

Supplementary File 1
PRISMA NMA Checklist
Supplementary File 2
Search strategy and results
Supplementary File 3
References for included trials and boxplots among trials included2
Supplementary File 4
Risk of bias assessment6
Supplementary File 5
Effects of incretin-based regimens on weight, body mass index and waist circumference
by standard pairwise meta-analysis8
Supplementary File 6
Sensitivity network meta-analyses
Supplementary File 7
Contribution plots for the incretin-based regimens network on weight, body mass index
and waist circumference9
Supplementary File 8
Assessment of inconsistency: results of the loop-specific approach and the
node-splitting model99
Supplementary File 9
Predictive intervals plots for the incretin-based regimens network on weight, body mass
index and waist circumference100
Supplementary File 10
Comparison-adjusted funnel plots for weight, body mass index and waist circumference
Supplementary File 1110
Supplementary File 11 10 Plots of cumulative ranking probability (SUCRA) 10
Supplementary File 11 100 Plots of cumulative ranking probability (SUCRA) 100 Supplementary File 12 100
Supplementary File 11 100 Plots of cumulative ranking probability (SUCRA) 100 Supplementary File 12 100 Contribution summary of risk of bias assessments 100
Supplementary File 11 100 Plots of cumulative ranking probability (SUCRA) 100 Supplementary File 12 100 Contribution summary of risk of bias assessments 100 Supplementary File 13 100
Supplementary File 11 100 Plots of cumulative ranking probability (SUCRA) 100 Supplementary File 12 100 Contribution summary of risk of bias assessments 100 Supplementary File 13 110 Evaluation of the quality of evidence using GRADE framework 110
Supplementary File 11 100 Plots of cumulative ranking probability (SUCRA) 100 Supplementary File 12 100 Contribution summary of risk of bias assessments 100 Supplementary File 13 100 Evaluation of the quality of evidence using GRADE framework 110 Supplementary File 14 14
Supplementary File 11 100 Plots of cumulative ranking probability (SUCRA) 100 Supplementary File 12 100 Contribution summary of risk of bias assessments 100 Supplementary File 13 101 Evaluation of the quality of evidence using GRADE framework 111 Supplementary File 14 14 Subgroup network meta-analyses for weight, body mass index and waist circumference 101
Supplementary File 11 100 Plots of cumulative ranking probability (SUCRA) 100 Supplementary File 12 100 Contribution summary of risk of bias assessments 100 Supplementary File 13 100 Supplementary File 13 110 Evaluation of the quality of evidence using GRADE framework 111 Supplementary File 14 14 Subgroup network meta-analyses for weight, body mass index and waist circumference compared with placebo 14
Supplementary File 11 100 Plots of cumulative ranking probability (SUCRA) 100 Supplementary File 12 100 Contribution summary of risk of bias assessments 100 Supplementary File 13 100 Supplementary File 13 100 Supplementary File 13 110 Evaluation of the quality of evidence using GRADE framework 111 Supplementary File 14 114 Subgroup network meta-analyses for weight, body mass index and waist circumference 114 Supplementary File 15 145

Supplementary File 1

PRISMA NMA Checklist

Section/Tonio	Itom	Checklist Item	Departed on
Section/1 opic	Item	Cnecklist Item	Reported on
	#		Page #
TITLE			
Title	1	Identify the report as a systematic review incorporating a network meta-analysis (or related form of meta-analysis).	3
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable:	4
		Background: main objectives	
		Methods: data sources; study eligibility criteria, participants, and interventions; study appraisal; and <i>synthesis methods</i> , <i>such as network meta-analysis</i> .	
		Results: number of studies and participants identified; summary estimates with corresponding confidence/credible	
		intervals; treatment rankings may also be discussed. Authors may choose to summarize pairwise comparisons against a	
		chosen treatment included in their analyses for brevity.	
		Discussion/Conclusions: limitations; conclusions and implications of findings.	
		Other: primary source of funding; systematic review registration number with registry name.	
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known, including mention of why a network	5-6
		meta-analysis has been conducted	
Objectives	4	Provide an explicit statement of questions being addressed, with reference to participants, interventions, comparisons,	5-6
		outcomes, and study design (PICOS).	

Table S1 PRISMA NMA Checklist of Items to Include When Reporting A Systematic Review Involving a Network Meta-analysis

METHODS			
Protocol and registration	5	Indicate whether a review protocol exists and if and where it can be accessed (e.g., Web address); and, if available, provide registration information, including registration number.	6
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. <i>Clearly describe eligible treatments included in the treatment network, and note whether any have been clustered or merged into the same node (with justification)</i>	7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Supplementary File 2
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7
Geometry of the network	S1	Describe methods used to explore the geometry of the treatment network under study and potential biases related to it. This should include how the evidence base has been graphically summarized for presentation, and what characteristics were compiled and used to describe the evidence base to readers.	8-9
Risk of bias within individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7-8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means). Also describe the use of additional summary measures assessed, such as treatment rankings and surface under the cumulative ranking curve (SUCRA) values, as well as modified approaches used to present summary findings from meta-analyses.	8-9

Planned methods of analysis	14	 Describe the methods of handling data and combining results of studies for each network meta-analysis. This should include, but not be limited to: <i>Handling of multi-arm trials;</i> <i>Selection of variance structure;</i> <i>Selection of prior distributions in Bayesian analyses; and</i> <i>Assessment of model fit.</i> 	8-9
Assessment of	S2	Describe the statistical methods used to evaluate the agreement of direct and indirect evidence in the treatment network(s)	8-9
Inconsistency		studied. Describe efforts taken to address its presence when found.	
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7-8
Additional analyses	16	 Describe methods of additional analyses if done, indicating which were pre-specified. This may include, but not be limited to, the following: Sensitivity or subgroup analyses; Meta-regression analyses; Alternative formulations of the treatment network; and Use of alternative prior distributions for Bayesian analyses (if applicable) 	8-9
RESULTS†			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9 Figure 1
Presentation of network structure	S 3	Provide a network graph of the included studies to enable visualization of the geometry of the treatment network.	Figure 2
Summary of network geometry	S4	Provide a brief overview of characteristics of the treatment network. This may include commentary on the abundance of trials and randomized patients for the different interventions and pairwise comparisons in the network, gaps of evidence in	9

		the treatment network, and potential biases reflected by the network structure.	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Supplentary File 3
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment.	Supplementary File 4
Results of individual	20	For all outcomes considered (benefits or harms), present, for each study: 1) simple summary data for each intervention	NG
studies		group, and 2) effect estimates and confidence intervals. Modified approaches may be needed to deal with information	
		from larger networks.	
Synthesis of results	21	Present results of each meta-analysis done, including confidence/credible intervals. In larger networks, authors may focus	Figure 3
		on comparisons versus a particular comparator (e.g. placebo or standard care), with full findings presented in an	
		appendix. League tables and forest plots may be considered to summarize pairwise comparisons. If additional summary	
		measures were explored (such as treatment rankings), these should also be presented.	
Exploration for	S 5	Describe results from investigations of inconsistency. This may include such information as measures of model fit to	13
inconsistency		compare consistency and inconsistency models, P values from statistical tests, or summary of inconsistency estimates	Supplementary
		from different parts of the treatment network.	File 8
Risk of bias across	22	Present results of any assessment of risk of bias across studies for the evidence base being studied.	Supplementary
studies			File 4
Results of additional	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression analyses, alternative	Supplementary
analyses		network geometries studied, alternative choice of prior distributions for Bayesian analyses, and so forth).	File 6
			Supplementary
			File 14
			Supplementary
			File 15

DISCUSSION				
Summary of evidence	24	Summarize the main findings, including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy-makers).	18-19	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias). <i>Comment on the validity of the assumptions, such as transitivity and consistency. Comment on any concerns regarding network geometry (e.g., avoidance of certain comparisons).</i>	20	
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	20	
FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. This should also include information regarding whether funding has been received from manufacturers of treatments in the network and/or whether some of the authors are content experts with professional conflicts of interest that could affect use of treatments in the network.	3	

PICOS = population, intervention, comparators, outcomes, study design.

* Text in italics indicateS wording specific to reporting of network meta-analyses that has been added to guidance from the PRISMA statement.

[†] Authors may wish to plan for use of appendices to present all relevant information in full detail for items in this section.

Supplementary File 2

Search strategy and results

Table	S2.1	Search	strategy	for	Ovid-Me	dline

1	*Glucagon-Like Peptide-1 Receptor/ or glucagon-like peptide-1 agonists.mp. or *Glucagon-Like Peptide 1/
2	glucagon like peptide*.ti,ab.
3	Receptors, Glucagon/ag [Agonists]
4	exenatide.af.
5	liraglutide.af.
6	albiglutide.af.
7	taspoglutide.af.
8	lixisenatide.af.
9	dulaglutide.af.
10	semaglutide.af.
11	Byetta.af.
12	Bydureon.af.
13	Victoza.af.
14	Lyxumia.af.
15	Adlyxin.af.
16	Tanzeum.af.
17	Eperzan.af.
18	Trulicity.af.
19	ZP10A peptide*.af.
20	"AVE 0010".af.
21	GLP 1 Receptor Agonist*.af.
22	GLP 1 RA*.af.
23	GLP 1RA*.af.
24	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23
25	Dipeptidyl Peptidase 4 inhibitor.mp. or exp *Dipeptidyl-Peptidase IV Inhibitors/
26	dipeptidyl peptidase IV inhibit*.af.
27	Dipeptidyl Peptidase 4 Inhibit*.af.
28	DPP 4 inhibit*.af.
29	DPP4 inhibit*.af.
30	DPP4i.af.
31	DPP IV inhibit*.af.

32	DPPIV inhibit*.af.
33	sitagliptin.af.
34	Januvia.af.
35	Janumet.af.
36	Juvisync.af.
37	vildagliptin.af.
38	Galvus.af.
39	Eucreas.af.
40	Galvus Met.af.
41	saxagliptin.af.
42	Onglyza.af.
43	Kombiglyze XR.af.
44	alogliptin.af.
45	Nesina.af.
46	Oseni.af.
47	Kazano.af.
48	linagliptin.af.
49	Trajenta.af.
50	gemigliptin.af.
51	Gemiglo.af.
52	anagliptin.af.
53	Beskoa.af.
54	teneligliptin.af.
55	Tenelia.af.
56	Trelagliptin.af.
57	PF 734200.af.
58	retagliptin.af.
59	Melogliptin.af.
60	evogliptin.af.
61	Carmegliptin.af.
62	"LC15 0444".af.
63	DA-1229.af.
64	omarigliptin.af.

65	gliptin*.af.
66	dutogliptin.af.
67	or/25-66
68	24 or 67
69	(clinical trial or controlled clinical trial or randomized controlled trial).pt.
70	clinical trials.mp. or exp *Clinical Trial/
71	clinical trials as topic/ or controlled clinical trials as topic/ or randomized controlled trials as topic/
72	random*.ti,ab.
73	clinical trial*.ti,ab.
74	controlled trial*.ti,ab.
75	case-control studies/
76	retrospective studies/
77	cohort studies/
78	longitudinal studies/
79	follow-up studies/
80	prospective studies/
81	cohort.ti,ab.
82	longitudinal.ti,ab.
83	follow up.ti,ab.
84	followup.ti,ab.
85	prospective*.ti,ab.
86	retrospective*.ti,ab.
87	nonrandom*.ti,ab.
88	comparison group*.ti,ab.
89	control group*.ti,ab.
90	database*.ti,ab.
91	population*.ti,ab.
92	registries/
93	registries.ti,ab.
94	trial\$1 register.ti.
95	trial\$1 registers.ti.
96	or/69-95
97	24 and 96

98	67 and 96
99	68 and 96
100	limit 97 to humans
101	limit 97 to animals
102	101 not 100
103	97 not 102
104	limit 98 to humans
105	limit 98 to animals
106	105 not 104
107	98 not 106
108	limit 99 to humans
109	limit 99 to animals
110	109 not 108
111	99 not 110
112	103 or 107
113	meta analysis.pt.
114	Meta-Analysis as Topic/
115	meta analy*.ti.
116	metaanaly*.ti.
117	113 or 114 or 115 or 116
118	24 and 117
119	67 and 117
120	68 and 117
121	limit 118 to humans
122	limit 118 to animals
123	122 not 121
124	118 not 123
125	limit 119 to humans
126	limit 119 to animals
127	126 not 125
128	119 not 127
129	limit 120 to humans
130	limit 120 to animals

131	130 not 129
132	120 not 131
133	103 not 124
134	107 not 128
135	111 not 132
136	133 or 134
137	remove duplicates from 133
138	remove duplicates from 134
139	remove duplicates from 135

Table S2.2 Search strategy for Embase

#1	'glucagon like peptide'/exp
#2	'glucagon like peptide 1'/exp
#3	'glp-1 receptor agonists'
#4	'glucagon like peptide 1 receptor agonists'
#5	'glucagon receptor'/exp
#6	'glucagon-like peptide-1 agonists'
#7	'glp-1 receptor agonist'
#8	'glucagon like peptide 1 receptor agonist'
#9	'glp-1 agonist'
#10	'glp-1 agonists'
#11	'glp-1 ra*'
#12	'exenatide'/exp
#13	'liraglutide'/exp
#14	'albiglutide'/exp
#15	'taspoglutide'/exp
#16	'lixisenatide'/exp
#17	'dulaglutide'/exp
#18	'semaglutide'/exp
#19	'zp10a peptide'
#20	'zp10a peptide 1'
#21	'glp1 ra'
#22	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12
#22	OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21
#23	'dipeptidyl peptidase iv inhibitor'
#24	'dipeptidyl peptidase iv inhibitors'
#25	'dipeptidyl peptidase iv inhibitor'/exp
#26	'dpp 4 inhibitor*'
#27	'dpp iv inhibitor*'
#28	'dpp4i'

#29	'dpp4 i'
#30	'dpp4 inhibitor*'
#31	'dppiv inhibitor*'
#32	'alogliptin'/exp
#33	'sitagliptin'/exp
#34	'gemigliptin'/exp
#35	'linagliptin'/exp
#36	'saxagliptin'/exp
#37	'vildagliptin'/exp
#38	'dutogliptin'/exp
#39	'teneligliptin'/exp
#40	'anagliptin'/exp
#41	'trelagliptin'/exp
#42	'pf-734200'/exp
#43	'melogliptin'/exp
#44	'evogliptin'/exp
#45	'retagliptin'
#46	'carmegliptin'/exp
#47	'lc15 0444'
#48	'tenelia'
#49	'da-1229'
#50	'omarigliptin'/exp
#51	'beskoa'
#52	'gemiglo'
#53	'trajenta'
#54	'kazano'
#55	'oseni'
#56	'nesina'
#57	'kombiglyze xr'
#58	'onglyza'
#59	'eucreas'
#60	'galvus'
#61	'juvisync'
#62	'janumet'
#63	'januvia'
#64	'liptin'
#65	'gliptin'/exp
	#23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR
	#33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR #41 OR #42 OR
#66	#43 OR #44 OR #45 OR #46 OR #47 OR #48 OR #49 OR #50 OR #51 OR #52 OR
	#53 OR #54 OR #55 OR #56 OR #57 OR #58 OR #59 OR #60 OR #61 OR #62 OR
	#63 OR #64 OR #65
#67	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12

	OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22
	OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32
	OR #33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR #41 OR #42
	OR #43 OR #44 OR #45 OR #46 OR #47 OR #48 OR #49 OR #50 OR #51 OR #52
	OR #53 OR #54 OR #55 OR #56 OR #57 OR #58 OR #59 OR #60 OR #61 OR #62
	OR #63 OR #64 OR #65 OR #66
#68	'clinical trial'/exp OR 'controlled clinical trial'/exp OR 'randomized controlled
#08	trial'/exp
#69	random*
#70	'case-control studies'/exp
#71	'retrospective studies'/exp
#72	'cohort studies'/exp
#73	'longitudinal studies'/exp
#74	'follow up studies'/exp
#75	nonrandom
#76	'prospective studies'/exp
#77	'comparison group'
#78	'control group'/exp
#79	database*
#80	'database'/exp
#81	'registries'/exp
#82	'registration'/exp
#0 <i>2</i>	#68 OR #69 OR #70 OR #71 OR #72 OR #73 OR #74 OR #75 OR #76 OR #77 OR
#83	#78 OR #79 OR #80 OR #81 OR #82
#84	#22 AND #83
#85	#22 AND #83 AND [humans]/lim
#86	#22 AND #83 AND [animals]/lim
#87	#86 NOT #85
#88	#84 NOT #87
#89	#66 AND #83
#90	#66 AND #83 AND [humans]/lim
#91	#66 AND #83 AND [animals]/lim
#92	#91 NOT #90
#93	#89 NOT #92
#94	#67 AND #83
#95	#67 AND #83 AND [humans]/lim
#96	#67 AND #83 AND [animals]/lim
#97	#96 NOT #95
#98	#94 NOT #97
#00	#88 AND ([article]/lim OR [article in press]/lim OR [conference abstract]/lim OR
#99	[conference paper]/lim)
#100	#93 AND ([article]/lim OR [article in press]/lim OR [conference abstract]/lim OR
#100	[conference paper]/lim)

#101	#98 AND ([article]/lim OR [article in press]/lim OR [conference abstract]/lim OR
#101	[conference paper]/lim)
#102	#99 AND [embase]/lim
#103	#100 AND [embase]/lim
#104	#101 AND [embase]/lim

Table S2.3 Search strategy for Cochrane Library

S45	s42	Limiters - MEDLINE Publication Type: Multicenter Study, Randomized Controlled Trial, Validation Studies, Clinical Conference, Clinical Trial, Clinical Trial, Phase I, Clinical Trial, Phase II, Clinical Trial, Phase III, Clinical Trial, Phase IV, Congresses, Consensus Development Conference, Controlled Clinical Trial, Corrected and Republished Article, Duplicate Publication, Evaluation Studies, Journal Article Search modes - Boolean/Phrase
S44	s17	Limiters - MEDLINE Publication Type: Multicenter Study, Randomized Controlled Trial, Validation Studies, Clinical Conference, Clinical Trial, Clinical Trial, Phase I, Clinical Trial, Phase II, Clinical Trial, Phase III, Clinical Trial, Phase IV, Congresses, Consensus Development Conference, Controlled Clinical Trial, Corrected and Republished Article, Duplicate Publication, Evaluation Studies, Journal Article Search modes - Boolean/Phrase
S43	S41	Limiters - MEDLINE Publication Type: Multicenter Study, Randomized Controlled Trial, Validation Studies, Clinical Conference, Clinical Trial, Clinical Trial, Phase I, Clinical Trial, Phase II, Clinical Trial, Phase III, Clinical Trial, Phase IV, Congresses, Consensus Development Conference, Controlled Clinical Trial, Corrected and Republished Article, Duplicate Publication, Evaluation Studies, Journal Article Search modes - Boolean/Phrase
S42	S17 OR S41	Search modes - Boolean/Phrase
S41	S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25 OR S26 OR S27 OR S28 OR S29 OR S30 OR S31 OR S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR S38 OR S39 OR S40	Search modes - Boolean/Phrase
S40	TX Januvia OR TX Janumet OR TX Juvisync OR TX Galvus OR TX Eucreas OR TX Onglyza OR TX Kombiglyze OR TX Nesina OR TX Oseni OR TX Kazano OR TX Trajenta OR TX	Search modes - Boolean/Phrase

	Gemiglo OR TX Beskoa OR TX Tenelia						
S39	TX Carmegliptin	Search modes - Boolean/Phrase					
S38	TX Evogliptin	Search modes - Boolean/Phrase					
S37	TX Melogliptin	Search modes - Boolean/Phrase					
S36	TX Retagliptin	Search modes - Boolean/Phrase					
S35	TX PF-734200	Search modes - Boolean/Phrase					
S34	TX Trelagliptin	Search modes - Boolean/Phrase					
S33	TX anagliptin	Search modes - Boolean/Phrase					
S32	TX gemigliptin	Search modes - Boolean/Phrase					
S31	TX LC15 0444	Search modes - Boolean/Phrase					
S 30	TX teneligliptin	Search modes - Boolean/Phrase					
S29	TX dutogliptin	Search modes - Boolean/Phrase					
S28	TX linagliptin	Search modes - Boolean/Phrase					
S27	TX saxagliptin	Search modes - Boolean/Phrase					
S26	TX vildagliptin	Search modes - Boolean/Phrase					
S25	TX sitagliptin	Search modes - Boolean/Phrase					
S24	TX alogliptin	Search modes - Boolean/Phrase					
S23	TX DPP IV inhibit* OR TX DPPIV inhibit*	Search modes - Boolean/Phrase					
S22	TX DPP4i	Search modes - Boolean/Phrase					
S21	TX DPP 4 inhibit* OR TX DPP4 inhibit*	Search modes - Boolean/Phrase					
S20	TX dipeptidyl-peptidase 4 inhibitor OR TX dipeptidyl-peptidase 4 inhibitors	Search modes - Boolean/Phrase					
S19	TX dipeptidyl-peptidase iv inhibitors OR TX dipeptidyl-peptidase iv inhibitor	Search modes - Boolean/Phrase					
S18	(ZE "dipeptidyl-peptidase iv inhibitors") or (ZE "dipeptidyl-peptidase iv inhibitors administration & dosage") or (ZE "dipeptidyl-peptidase iv inhibitors adverse effects") or (ZE "dipeptidyl-peptidase iv inhibitors pharmacokinetics") or (ZE "dipeptidyl-peptidase iv inhibitors pharmacology") or (ZE "dipeptidyl-peptidase iv inhibitors	Search modes - Boolean/Phrase					

	therapeutic use") or (ZE "dipeptidyl-peptidase iv inhibitors toxicity")	
S17	S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16	Search modes - Boolean/Phrase
S16	TX Byetta OR TX Bydureon OR TX Victoza OR TX Lyxumia OR TX Adlyxin OR TX Tanzeum OR TX Eperzan OR TX Trulicity OR TX AVE 0010	Search modes - Boolean/Phrase
S15	TX GLP 1RA*.	Search modes - Boolean/Phrase
S14	TX GLP 1 RA*.	Search modes - Boolean/Phrase
S13	TX GLP 1 Receptor Agonist*.	Search modes - Boolean/Phrase
S12	TX ZP10A peptide*	Search modes - Boolean/Phrase
S11	TX semaglutide	Search modes - Boolean/Phrase
S10	TX dulaglutide	Search modes - Boolean/Phrase
S9	TX lixisenatide	Search modes - Boolean/Phrase
S 8	TX taspoglutide	Search modes - Boolean/Phrase
S7	TX albiglutide	Search modes - Boolean/Phrase
S6	TX liraglutide	Search modes - Boolean/Phrase
S5	TX exenatide	Search modes - Boolean/Phrase
S4	S1 OR S2 OR S3	Search modes - Boolean/Phrase
S 3	TX glp-1 OR TX glp1	Search modes - Boolean/Phrase
S2	TX glucagon-like peptide 1 OR TX Glucagon-Like Peptides 1	Search modes - Boolean/Phrase
S1	(ZE "glucagon-like peptide 1") or (ZE "glucagon-like peptide 1 administration & dosage") or (ZE "glucagon-like peptide 1 agonists") or (ZE "glucagon-like peptide 1 analogs & derivatives") or (ZE "glucagon-like peptide 1 drug effects") or (ZE "glucagon-like peptide 1 therapeutic use") or (ZE "glucagon-like peptide-1 receptor agonists")or (ZE "glucagon-like peptide 1 pharmacokinetics") or (ZE	Search modes - Boolean/Phrase

"glucagon-like peptide	1
pharmacology")	

Search strategy for ClinicalTrials.gov

exenatide OR liraglutide OR albiglutide OR taspoglutide OR lixisenatide OR dulaglutide OR semaglutide OR Byetta OR Bydureon OR Victoza OR Lyxumia OR Adlyxin OR Tanzeum OR Eperzan OR Trulicity OR 'ZP10A peptide*' OR 'AVE 0010' OR sitagliptin OR Januvia OR Janumet OR Juvisync OR vildagliptin OR Galvus OR Eucreas OR 'Galvus Met' OR saxagliptin OR Onglyza OR 'Kombiglyze XR' OR alogliptin OR Nesina OR Oseni OR Kazano OR linagliptin OR Trajenta OR gemigliptin OR Gemiglo OR anagliptin OR Beskoa OR teneligliptin OR Tenelia OR Trelagliptin OR 'PF 734200' OR retagliptin OR Melogliptin OR evogliptin OR Carmegliptin OR "LC15 0444" OR 'DA-1229' OR omarigliptin OR gliptin* OR dutogliptin

Supplementary File 3

References for included trials and boxplots among trials included

Study ID	Register number	Treatments	Size	Background medicine	Trial duration (w)	outcome	Age (yrs)	HbA1c (%)	Years of T2DM
3D Trial, Oe H, 2015 ^[1]	NO	DPP4, a-Glu	80	OAD	24	Weight	67.1	7	4
ADDONIS, Gautier JF, 2016 ^[2]	NCT01871558	DPP4, SU	42	Ins	24	Weight	63.7	8.2	12
Ahmann A, 2015 ^[3]	NCT01617434	GLP1RA, placebo	431	NO	26	Weight	58.4	8.3	12.1
Ahren B, 2016 ^[4]	NCT02098395	GLP1RA, placebo	705	Ins	26	Weight	43.2	8.3	21
Apovian CM, 2010 ^[5]	NCT00375492	GLP1RA, placebo	142	Met/SU/SU+Met	24	Weight+WC	54.8	7.6	5.5
Araki E, 2015 ^[6]	NCT01584232	GLP1RA, Insulin	360	OAM	26	Weight	56.8	8	8.8
Arechavaleta R 2009 ^[7]	NCT00701090	DPP4, SU	926	Met	30	Weight	56.3	7.5	6.8
Arjona Ferreira JC 2013-1 ^[8]	NCT00509262	DPP4, SU	291	NO	54	Weight	59.5	7.9	17.5
Arjona Ferreira JC 2013-2 ^[9]	NCT00509236	DPP4, SU	129	NO	54	Weight	59.5	7.9	17.5
Arnolds S, 2010 ^[10]	NCT00971659	DPP4, GLP1RA, placebo	47	Glar+Met	4	Weight	57	8.1	5.7
Aso Y 2015 ^[11]	NO	DPP4, SU	30	NO	12	BMI	64.9	7.9	12.1
AWARD-1, Wysham C, 2014 ^[12]	NCT01064687	GLP1RA, placebo	866	Met+TZD	26	Weight+BMI	55.7	8.1	8.8
AWARD-2, Giorgino F, 2015 ^[13]	NCT01075282	GLP1RA, Insulin	801	Met+SU	78	Weight+BMI	56.7	8.1	9.1
AWARD-3, Umpierrez G, 2014 ^[14]	NCT01126580	GLP1RA, Met	803	Met	52	Weight+BMI	55.6	7.6	2.6
AWARD-4, Blonde L,	NCT01191268	GLP1RA, Insulin	869	Ins	52	Weight+BMI	59.4	8.5	12.7

Table S3.1 Characteristics of the 292 studies included in the network Meta-analysis.

AWARD-5, Nauck M,	NCT00734474	DPP4, GLP1RA	916	Diet+exercise /Met	104	Weight+WC	53.9	9.1	7.2
NCT01621179 2017	NCT01621178	GLP1RA, Insulin	466	Ins	26	Weight	64.6	8.6	18.1
AWARD-8, Dungan, 2016 ^[17]	NCT01769378	GLP1RA, placebo	265	NO	24	Weight+BMI	57.8	8.4	7.6
AWARD-9, Pozzilli P, 2017 ^[18]	NCT02152371	GLP1RA, placebo	300	Ins	28	Weight	60.4	NA	13.1
Azar ST, 2016 ^[19]	NCT01917656	GLP1RA, SU	333	Met	33	Weight	54.5	8.3	7.6
Bailey, TS, 2016 ^[20]	NCT01907854	DPP4, GLP1RA	392	Met	26	Weight	56.4	8.3	7.8
Barnett AH, 2007 ^[21]	NCT00099619	GLP1RA, Insulin	228	Met/SU	16	Weight	54.9	9	7.4
Bergenstal R, 2009 ^[22]	NCT00097877	GLP1RA, Insulin	372	Met+SU	24	Weight	52.6	10.2	9
Berndt-Zipfel C, 2013 ^[23]	NO	DPP4, SU	44	Met	24	Weight	58.5	7.4	7.3
Bolli G, 2009 ^[24]	NCT00237237	DPP4, TZD	576	Met	52	Weight	56.6	8.4	6.4
Bosi E, 2007 ^[25]	NCT00099892	DPP4, placebo	544	Met	24	Weight	54.2	8.4	6.3
Bosi E, 2009 ^[26]	NO	DPP4, placebo	879	Met	24	Weight	52.6	8.6	2
Bosi E, 2011 ^[27]	NCT00432276	DPP4, placebo	789	Met+PIG	52	Weight	55.1	NA	7.2
Bouchi R, 2017 ^[28]	NO	GLP1RA, placebo	17	Met	36	Weight	58.6	8	NA
Buse JB, 2004 ^[29]	NCT00039026	GLP1RA, placebo	377	SU	30	Weight	55.3	8.6	6.2
Buse JB, 2011 ^[30]	NCT00765817	GLP1RA, placebo	213	Glar+/-Met/TZD	30	Weight+WC	59	NA	12
CANTATA-D Trial, Lavalle-Gonzalez FJ, 2013 ^[31]	NCT01106677	DPP4, SGLT-2, placebo	1261	Met	26	Weight	55.4	7.9	6.9
Charbonnel B, 2013 ^[32]	NCT01296412	DPP4, GLP1RA	547	SU	26	Weight	57.3	8.2	7.9
Chawla S 2013 ^[33]	NO	DPP4, TZD	50	Met	16	Weight	50.8	8.2	4.3

2015^[15]

Chen WJY, 2017 ^[34]	NCT00766857	GLP1RA, Insulin	23	OGLA (Met/Met+SU)	26	BMI+WC	66	7.5	8
Chien MN 2011 ^[35]	NO	DPP4, placebo	97	OAD	24	BMI	73	9.8	13.7
CONFIDENCE, Xu W, 2015 ^[36]	NCT01147627	GLP1RA, Insulin, TZD	169	NO	48	Weight+BMI+WC	50.3	8.1	NA
Cui J 2016 ^[37]	NCT01963845	DPP4, placebo	50	NO	24	Weight+BMI	NA	NA	NA
Davies M, 2013 ^[38]	NCT01003184	GLP1RA, Insulin	194	Met/Met+SU	26	Weight+BMI+WC	58.5	8.4	7.5
Davies MJ, 2009 ^[39]	NCT00360334	GLP1RA, Insulin	204	Met+/- SU/TZD	26	Weight+BMI+WC	56.5	8.6	8.7
Davies MJ, 2016 ^[40]	NCT01620489	GLP1RA, placebo	263	NO	26	BMI	67.2	8	15.1
Davis SN, 2007 ^[41]	NCT00099333	GLP1RA, Insulin	45	SU/Met	16	Weight	53.3	NA	10.9
de Ranitz-Greven, 2014 ^[42]	NO	DPP4, placebo	15	NO	16	Weight	62.4	7.9	5.8
DeFronzo RA, 2005 ^[43]	NCT00039013	DPP4, placebo	314	NO	26	Weight	53.4	NA	NA
DeFronzo RA, 2008 ^[44]	NCT00286455	GLP1RA, placebo	336	Met	30	Weight	53	8.2	5.9
DeFronzo RA, 2010 ^[45]	NCT00135330	GLP1RA, TZD	88	Met	20	Weight+WC	56.5	7.9	4.7
Dei Cas A, 2017 ^[46]	NCT01822548	DPP4, SU	64	NO	48	BMI	62	7.7	6.5
Derosa G, 2010 ^[47]	NO	DPP4, Met	137	TZD	52	Weight+BMI	57.5	8.5	5.5
Derosa G, 2010 ^[48]	NO	DPP4, placebo	167	Met	52	Weight+BMI	53.3	8.2	6.2
Derosa G, 2011 ^[49]	NO	DPP4, placebo	197	OAD	104	Weight+BMI+WC	NA	8.1	NA
Derosa G, 2012 ^[50]	NO	DPP4, SU	153	Met	26	Weight+BMI	58.5	7.9	6.8
Derosa G, 2012 ^[51]	NO	GLP1RA, SU	116	Met	52	Weight+BMI	56.5	8.9	NA
Derosa G, 2013 ^[52]	NO	GLP1RA, SU	101	Met	52	Weight+BMI	55.5	8.8	NA
Derosa G, 2014-1 ^[53]	NO	GLP1RA, placebo	163	Met	52	Weight+BMI+WC	57	8	7.7
Derosa G, 2014-2 ^[53]	NO	DPP4, placebo	169	Met	52	Weight+BMI	53.6	8.1	5.6
Diamant M, 2014 ^[54]	NCT00960661	GLP1RA, Insulin	510	Ins/Met	30	Weight+BMI+WC	59.5	8.2	NA
DUAL-I, Holst JJ, 2016 ^[55]	NCT01336023	GLP1RA, Insulin	827	Met+TZD	26	Weight	55	8.3	7.1

DURATION-2, Bergenstal RM, 2010 ^[56]	NCT00637273	DPP4, GLP1RA, TZD	488	Met	26	Weight	52.5	8.5	5.7
DURATION-3, Diamant M, 2014 ^[57]	NCT00641056	GLP1RA, Insulin	299	Met/Met+SU	156	Weight+WC	58	8.3	7.9
DURATION-4, Russell-Jones D, 2012 ^[58]	NCT00676338	DPP4, GLP1RA, Met, TZD	707	NO	26	Weight	53.7	8.5	2.7
DURATION-8, Frias JP2-1, 2016 ^[59]	NCT02229396	GLP1RA, placebo	458	SGLT-2	28	Weight	54.2	NA	NA
DURATION-8, Frias JP2-2, 2016 ^[59]	NCT02229396	GLP1RA, SGLT-2	457	placebo	28	Weight	54.2	NA	NA
DURATION-NEO-2, Gadde KM, 2017 ^[60]	NCT01652729	DPP4, GLP1RA, placebo	364	Met/antihypertensive and lipid-lowering agents	28	Weight	53.7	NA	8.3
EAGLE D'Alessio D, 2015 ^[61]	NCT01117350	GLP1RA, Insulin	888	Met/SU/Met+SU	24	Weight	57.3	9.1	8.5
EASIE, Aschner P, 2012 ^[62]	NCT00751114	DPP4, Insulin	482	Met	26	Weight	53.6	8.5	4.5
EDIT, Sato S, 2015 ^[63]	NO	DPP4, placebo	49	Ins	24	Weight+WC	66	7.9	19.5
ELEGANT, de Wit HM, 2014 ^[64]	NCT01392898	GLP1RA, Insulin	50	Met/Met+SU/SU	52	Weight+BMI+WC	58	7.3	8
ENDURE, NCT00856284, 2013 ^[65]	NCT00856284	DPP4, SU	2606	Met	104	Weight	55.4	7.6	NA
EUREXA, Gallwitz, B, 2012 ^[66]	NCT00359762	GLP1RA, SU	386	Met	156	Weight	56.4	7.4	5.7
EXAMINE, White WB 2013 ^[67]	NCT00968708	DPP4, placebo	4764	OAD	76	Weight	61	8	7.2
Faber R, 2015 ^[68]	NCT01931982	GLP1RA, placebo	36	NO	22	Weight+WC	57	NA	4

Farngren J, 2016 ^[69]	NCT02020629	GLP1RA, placebo	18	NO	6	Weight	55	7.7	11.7
Farr OM, 2016 ^[70]	NCT01562678	GLP1RA, placebo	56	NO	2.4	Weight+BMI	52.5	NA	NA
Faurschou A, 2015 ^[71]	NCT01460069	GLP1RA, placebo	20	NO	8	Weight	51.3	5.5	NA
Feng W, 2017 ^[71]	NCT03068065	GLP1RA, Met, SU	43	NO	24	Weight+BMI+WC	47.1	9.1	NA
Ferrannini E, 2009 ^[72]	NCT00106340	DPP4, SU	2789	Met	52	Weight	57.5	7.3	5.7
Filozof C, 2010 ^[73]	NCT00396357	DPP4, Met	914	Met	24	Weight	57	7.3	4.7
Filozof C, 2010 ^[74]	NO	DPP4, SU	1007	SU	52	Weight	59.5	8.5	6.6
Fineman MS, 2004 ^[75]	NO	GLP1RA, placebo	123	NO	5	Weight	53.7	NA	NA
Foley JE, 2009 ^[76]	NCT00102388	DPP4, SU	1092	SU	104	Weight	54.8	8.7	2.2
Fonseca V, 2007 ^[77]	NCT00099931	DPP4, placebo	296	Ins	24	Weight	59.2	8.4	14.7
Forst T, 2012 ^[78]	NCT01208012	GLP1RA, placebo	40	Met	6	Weight+BMI+WC	56.4	6.3	4.3
GALIANT, Blonde L, 2009 ^[78]	NCT00396627	DPP4, TZD	2664	Met	12	Weight	55.6	8	5.1
Gallwitz B, 2011 ^[79]	NCT00434954	DPP4, SU	1524	Met	104	Weight	59.8	7.7	NA
Gallwitz B, 2012 ^[80]	NCT00622284	GLP1RA, Insulin	354	Met/SU	26	Weight+BMI	57.1	7.9	5
Gao Y, 2009 ^[81]	NCT00324363	GLP1RA, placebo	401	Met/Met+SU	16	Weight	54.5	8.3	8
Garber AJ, 2008 ^[82]	NCT00099944	DPP4, placebo	408	SU	24	Weight	58.2	8.5	7.2
GetGoal-DUO-1, Riddle MC, 2013 ^[83]	NCT00975286	GLP1RA, placebo	437	Ins	24	Weight	56.2	7.6	9.2
GetGoal-F1, Bolli G, 2013 ^[84]	NCT00763451	GLP1RA, placebo	471	Met	24	Weight	56.1	8	6
GetGoal-L, Riddle MC, 2013 ^[85]	NCT00715624	GLP1RA, placebo	472	Met+/-SU+/-TZD	24	Weight	57.2	8.4	12.5
GetGoal-L-Asia, Seino Y, 2012 ^[86]	NCT00866658	GLP1RA, placebo	307	Ins/SU	24	Weight	58.4	8.5	13.9
GetGoal-M, Ahren B,	NCT00712673	GLP1RA, placebo	665	Met	24	Weight	54.7	8.1	6.1

GetGoal-M-Asia, Yu Pan C, 2014 ^[88]	NCT01169779	GLP1RA, placebo	379	Met/SU/Met+SU	24	Weight	54.8	7.9	6.6
GetGoal-Mono, Fonseca VA, 2012 ^[89]	NCT00688701	GLP1RA, placebo	348	NO	12	Weight	53.7	8	1.1
GetGoal-O, Meneilly GS, 2017 ^[90]	NCT01798706	GLP1RA, placebo	348	NO	24	Weight	74.2	8.1	14.1
GetGoal-P, Pinget M, 2013 ^[91]	NCT00763815	GLP1RA, placebo	472	TZD+/- Met	24	Weight	55.8	8.1	8.1
GetGoal-S, Rosenstock J, 2014 ^[92]	NCT00713830	GLP1RA, placebo	848	Met+/- SU	24	Weight	57.2	8.3	9.3
Goke B, 2008 ^[93]	NCT00138567	DPP4, Met	462	TZD	104	Weight	54	8.7	2.4
Göke B, 2013 ^[94]	NCT00575588	DPP4, SU	858	Met	104	Weight	57.6	7.7	5.4
Grunberger G, 2012 ^[95]	NO	GLP1RA, placebo	164	NO	12	Weight	56.6	7.3	3.8
GUARD study, Yoon SA, 2016 ^[96]	NCT01968044	DPP4, placebo	130	Ins	12	Weight	66	8.4	16.3
Gudipaty L, 2014 ^[97]	NCT00775684	DPP4, SU	26	NO	26	BMI	55.3	NA	3.9
Gurkan E, 2014 ^[98]	NO	GLP1RA, Insulin	34	Met	26	Weight+BMI+WC	52.7	8	7.2
Harder H, 2004 ^[99]	NO	GLP1RA, placebo	33	SU	8	Weight+WC	60	7.5	4.1
HARMONY-1, Reusch J, 2014 ^[100]	NCT00849056	GLP1RA, placebo	81	Met+TZD/Met	156	Weight	55	8.1	8
HARMONY-2, Nauck, MA, 2016 ^[101]	NCT00849017	GLP1RA, placebo	75	NO	156	Weight	52.9	8.1	4
HARMONY-3, Ahren B, 2014 ^[102]	NCT00838903	DPP4, GLP1RA, placebo, SU	323	Met	156	Weight	54.5	8.1	6
HARMONY-4, Weissman	NCT00838916	GLP1RA, Insulin	211	Met/SU/Met+SU	156	Weight	55.4	8.3	8.7

HARMONY-5, Home PD,			170	Mateout	450	14/-1-1-1	FF 0	0.0	0.0
2015 ^[104]	NC100839527	GLP1RA, placebo	170	Met+SU	156	Weight	55.2	8.2	8.9
HARMONY-6,	NOTOOOZOOOA		000		<u> </u>			0.5	
Rosenstock J, 2014 ^[92]	NC100976391	GLPTRA, Insulin	263	ins	60	weight	0.66	8.S	11
Harrtori A, 2017 ^[105]	UMIN000004674	DPP4, a-Glu	74	NO	24	Weight+BMI	64.4	7.2	NA
Hartley P, 2015 ^[106]	NCT01189890	DPP4, SU	444	NO	30	Weight	70.7	7.8	8.7
Hegazy SK, 2015 ^[107]	NO	DPP4, Met	40	NO	12	BMI	NA	8.1	NA
Heine RJ, 2005 ^[108]	NCT00082381	GLP1RA, Insulin	475	Met+SU	26	Weight	58.9	8.3	9.6
Hissa MRN, 2015 ^[109]	NO	DPP4, SU	36	Met	16	Weight	57.4	8.9	4.3
Hong ES, 2012 ^[110]	NCT01100125	DPP4, Insulin	124	OAD	24	Weight+WC	59.2	9.2	NA
lacobellis G, 2017 ^[111]	NCT02014740	GLP1RA, placebo	85	Met	26	BMI	50.9	6.5	NA
Idorn T, 2016-1 ^[112]	NCT01394341	GLP1RA, placebo	20	NO	12	Weight	61.9	7.9	12.9
Idorn T, 2016-2 ^[112]	NCT01394341	GLP1RA, placebo	20	NO	12	Weight	67.1	6.7	14.1
Inagaki N, 2012 ^[113]	NCT00935532	GLP1RA, Insulin	426	Met/Met+TZD	26	Weight	57.1	8.5	8.9
INDORSE study, Lovshin JA, 2017 ^[114]	NCT02406443	DPP4, placebo	36	NO	4	BMI	59.9	7.2	7.4
INICOM, Lim S, 2017 ^[115]	NCT01787396	DPP4, Met	433	Met	24	Weight	53.9	8.7	3.9
Inoue Y, 2015 ^[116]	UMIN 000007009	GLP1RA, Insulin	82	NO	24	Weight	60.4	6.5	9
Ito M, 2011 ^[117]	NO	DPP4, placebo	51	OAD	24	Weight+BMI	67.5	6.7	NA
Iwamoto K, 2009 ^[118]	NCT00612794	GLP1RA, placebo	19	SU/Met/Met+SU/TZD	10	Weight	59.6	7.4	6.1
Iwamoto Y, 2010 ^[119]	NCT00127192	DPP4, a-Glu	380	NO	12	Weight	59.2	7.6	5.4
Iwamoto Y, 2010 ^[119]	NO	DPP4, placebo	363	NO	12	Weight	59.8	7.6	5.4
Jeon HJ, 2011 ^[120]	NO	DPP4, SU	106	Met	32	Weight	54.5	8.1	5.9
Kadowaki T, 2009 ^[121]	NCT00382239	DPP4, placebo	194	SU	12	Weight	59.4	8.4	8.8

PN, 2014^[103]

Kadowaki T, 2011 ^[122]	NCT00577824	GLP1RA, placebo	114	SU/Met/Met+SU/TZD	12	Weight	59.7	8	10.9
Kadowaki T, 2013 ^[123]	NCT01026194	GLP1RA, placebo	178	SU+/Biguanide+/TZD	24	Weight+WC	58.4	8.6	11.9
Kadowaki T, 2014 ^[124]	NCT00974090	DPP4, placebo	204	TZD	12	Weight	60.4	8	7.4
Kaku K, 2010 ^[125]	NCT00395746	GLP1RA, placebo	262	SU	52	Weight	59.7	8.4	10.3
Kato H, 2015 ^[126]	NO	DPP4, SU	20	NO	24	BMI	58.5	7.3	NA
Kawamori R, 2012 ^[127]	NCT00654381	DPP4, placebo	396	NO	12	Weight+BMI+WC	60.6	8	NA
Ke W, 2016 ^[128]	NCT01471808	GLP1RA, placebo	31	Ins	12	Weight	42.2	10.1	NA
Kendall DM, 2005 ^[129]	NCT00035984	GLP1RA, placebo	733	Met/Met+SU	30	Weight	55.3	8.5	8.9
Kikuchi M, 2009 ^[130]	NO	DPP4, placebo	148	NO	12	BMI	59.6	7.4	5.9
Kikuchi M, 2010 ^[131]	NCT00325117	DPP4, placebo	197	SU	12	Weight	59.8	7.9	8.7
Kim D, 2007 ^[132]	NCT00103935	GLP1RA, placebo	43	Met	15	Weight	55	8.5	4.4
Koren S, 2012 ^[133]	NO	DPP4, SU	80	Met	12	Weight+BMI+WC	59	8.3	7.8
Kumarathurai P, 2017 ^[134]	NCT01595789	GLP1RA, placebo	48	liraglutide Met	12	Weight+WC	62.5	6.5	NA
Kutoh E, 2012 ^[135]	UMIN 000006860	DPP4, placebo	51	NO	12	BMI	49.2	10.3	NA
LEAD-1, Marre M, 2009 ^[136]	NCT00318422	GLP1RA, TZD, placebo	1041	SU	26	Weight+BMI	56.1	8.5	NA
LEAD-2, Nauck M, 2009 ^[137]	NCT00318461	GLP1RA, SU, placebo	1077	Met	104	Weight	56.7	8.4	7.4
LEAD-3, Garber A, 2011 ^[138]	NCT00294723	GLP1RA, SU	733	Met/SU/Biguanide/Met+TZD	156	Weight	53	8.3	5.4
LEAD-4, Zinman B, 2009 ^[139]	NCT00333151	GLP1RA, placebo	533	Met+TZD	26	Weight	55	8.5	9
LEAD-5, Russell-Jones D, 2009 ^[139]	NCT00331851	GLP1RA, Insulin, placebo	347	Met+SU	26	Weight	57.5	8.3	9.4
Leiter LA, 2014 ^[140]	NCT01098539	DPP4, GLP1RA	276	OAD	52	Weight	63.3	8.2	11.2

Lewin AJ, 2012 ^[141]	NCT00819091	DPP4, placebo	245	SU	18	Weight	54.9	8.6	NA
Li CJ, 2012 ^[142]	NO	GLP1RA, Insulin	84	Ins	12	Weight+BMI+WC	52	8.7	9
Li CJ, 2014 ^[143]	NO	DPP4, GLP1RA	178	Ins	24	Weight+BMI	47.1	8.6	5.5
Li F, 2017 ^[144]	NO	DPP4, Met	27	NO	12	Weight+BMI+WC	54.1	8.5	NA
Li FF, 2017 ^[145]	NO	GLP1RA, placebo	36	Ins	5	Weight	48.7	9.3	NA
LIBRA, Retnakaran R, 2014 ^[146]	NCT01270789	GLP1RA, placebo	51	Met/SU/Met+SU	48	BMI+WC	58.2	6.3	2.3
Lind M, 2015 ^[147]	EudraCT 2012-001941-42	GLP1RA, placebo	122	NO	24	Weight	63.6	9	17.1
Liutkus J, 2010 ^[148]	NCT00603239	GLP1RA, placebo	165	TZD/TZD+Met	26	Weight+WC	54.7	8.2	6.3
LixiLan-O, Davies, MJ, 2017 ^[149]	NCT02058147	GLP1RA, Insulin	698	Met	30	Weight	58.4	8.1	9.8
L-STEP study Fujitani Y, 2016 ^[150]	UMIN00008591	DPP4, a-Glu	359	NO	12	Weight+BMI	61	7	NA
Luo N, 2015 ^[151]	NO	DPP4, placebo	30	Ins	12	BMI	37	10.1	20
Macauley M, 2015 ^[152]	NCT01356381	DPP4, placebo	44	NO	24	Weight	61.4	6.4	NA
Masanori A, 2016 ^[153]	UMIN000018445	DPP4, Insulin	82	Ins	24	Weight+BMI	66.6	6.5	NA
MASTER Mikada A, 2014 ^[154]	NO	DPP4, a-Glu	28	NO	24	Weight+BMI	59	7.2	NA
Mastushima Y, 2016 ^[155]	UMIN000003503	DPP4, a-Glu	238	a-Glu	12	Weight+BMI	63.2	7.9	NA
Mathieu C, 2014 ^[156]	NCT01388361	GLP1RA, Insulin	176	Met+Ins	26	Weight	61	7.7	12.4
Matikainen N, 2006 ^[157]	NO	DPP4, placebo	31	NO	4	Weight	55.2	6.9	5.1
Matthews DR, 2010 ^[158]	NO	DPP4, SU	3118	Met	104	Weight	57.5	7.3	5.7
Mensberg P, 2017 ^[159]	NCT01455441	GLP1RA, placebo	33	NO	16	Weight+BMI	56.1	8.1	4.9
Mita T, 2016-1 ^[160]	NO	DPP4, placebo	297	NO	104	BMI	64.6	7.3	8.6
Mita T, 2016-2 ^[160]	NO	DPP4, placebo	236	NO	104	BMI	63.7	8.1	17.3

Miya A, 2017 ^[161]	NR	GLP1RA, placebo	26	Met	12	Weight+BMI	62.3	7.2	20.2
Mohan V, 2009 ^[162]	NCT00289848	DPP4, placebo	503	NO	18	Weight	50.9	8.7	2
Moretto TJ, 2008 ^[163]	NCT00381342	GLP1RA, placebo	232	NO	24	Weight	54	7.8	1.7
Moses RG, 2016 ^[164]	NCT01076075	DPP4, placebo	339	NO	54	Weight	54.9	8.4	7.8
Nauck M, 2007 ^[165]	NCT00094770	DPP4, SU	514	Met	104	Weight	56.7	7.7	6.3
Nauck MA, 2007 ^[166]	NCT00082407	DPP4, SU	756	Met	52	WC	56.7	7.7	6.4
Nauck MA, 2007 ^[165]	NCT00094770	DPP4, placebo	507	Met	26	Weight	54.8	7.9	6
Nauck MA, 2009 ^[167]	NCT00286442	GLP1RA, Insulin	428	Met/SU	52	Weight	58.7	8.6	9.9
NCT00620282, 2011	NCT00620282	GLP1RA, SU, placebo	47	Met	12	Weight	58.5	NA	6.8
NCT00701935, 2013	NCT00701935	GLP1RA, placebo	75	NO	26	Weight	58.1	NA	NA
NCT00993187, 2014	NCT00993187	DPP4, SU	290	Met	30	Weight	53.9	8	4.2
NCT01149421, 2015	NCT01149421	GLP1RA, placebo	755	NO	26	Weight	56.5	7.9	8.3
NCT01195090, 2011	NCT01195090	DPP4, TZD	119	Met+SU	24	Weight	59.1	8.4	NA
NCT01289119, 2013	NCT01289119	DPP4, placebo	175	NO	16	Weight	52.3	NA	2
NCT01289119, 2013-1	NCT01289119	DPP4, placebo	190	Met	16	Weight	53.1	NA	5.4
NCT01289119, 2013-2	NCT01289119	DPP4, placebo	122	TZD	16	Weight	52.2	NA	5.3
NCT01438814, 2014	NCT01438814	DPP4, placebo	611	Met	14	Weight	53	8	NA
NCT01644500, 2012	NCT01644500	GLP1RA, SU	695	NO	26	Weight+BMI	52.8	NA	NA
NCT01648582, 2012	NCT01648582	GLP1RA, Insulin	768	Met/SU	52	Weight+BMI	55	NA	NA
NCT01733758, 2013	NCT01733758	GLP1RA, placebo	489	NO	24	Weight	58.4	118	NA
Nogueira KC, 2014 ^[168]	NO	DPP4, SU	35	Met+SU	24	Weight+BMI	57	8	10.9
Nomoto H, 2016 ^[169]	UMIN000004955	DPP4, SU	90	SU	26	BMI	61	7.4	NA
Nonaka K, 2008 ^[170]	NCT00371007	DPP4, placebo	151	NO	12	Weight	55.3	7.6	4.1
Ohira M, 2014 ^[171]	NO	DPP4, Met	70	NO	24	Weight+BMI	60.4	NA	NA
Oyama J, 2016 ^[172]	UMIN000004490	DPP4, placebo	442	Ins	96	BMI	69.4	7	NA

Oz Gul O, 2011 ^[173]	NO	DPP4, placebo	44	NO	12	Weight+BMI	56.5	6.8	NA
Pan C, 2008 ^[174]	NCT00110240	DPP4, a-Glu	661	NO	24	Weight	51.8	8.6	1.2
Park KS, 2017 ^[175]	NCT01812122	DPP4, SU	32	NO	24	Weight+WC	60	8.4	7.4
Pi-Sunyer FX, 2007 ^[176]	NCT00120536	DPP4, placebo	350	NO	24	Weight	51.2	8.4	2.2
Pratley R, 2011 ^[177]	NCT00700817	DPP4, GLP1RA	644	Met	78	Weight+WC	55.3	8.4	6.2
Pratley RE, 2009-1 ^[178]	NCT00286468	DPP4, SU	488	SU	24	Weight	56.5	NA	7.7
Pratley RE, 2009-2 ^[178]	NCT00286494	DPP4, placebo	488	NO	26	Weight	55.4	8	7.6
Probstfield JL, 2016 ^[179]	NCT01524705	GLP1RA, Insulin	89	Met/Ins	26	Weight	62	7.9	NA
Ratner R, 2010 ^[180]	NCT00460941	GLP1RA, placebo	129	Met	8	Weight	56.5	7.9	6.5
Ratner RE, 2010 ^[181]	NO	GLP1RA, placebo	529	Met	13	Weight	56.2	7.6	6.6
RELEASE de Boer SA, 2017 ^[182]	NCT02015299	DPP4, placebo	40	NO	26	Weight	63	6.3	NA
Ristic S, 2005 ^[183]	NO	DPP4, placebo	273	NO	12	Weight	55.9	7.7	2.7
Roden M, 2013 ^[184]	NCT01177813	DPP4, SGLT-2, placebo	899	NO	24	Weight+WC	55	NA	NA
Roden M, 2015 ^[185]	NCT01289990	DPP4, placebo	451	NO	76	Weight	55	7.9	NA
Rosenstock J, 2007-1 ^[186]	NCT00101803	DPP4, TZD	228	NO	24	Weight	51.9	8.7	2
Rosenstock J, 2007-2 ^[186]	NCT00101803	DPP4, placebo	363	TZD	24	Weight	51.3	8.8	2
Rosenstock J, 2008-1 ^[187]	NO	DPP4, placebo	270	Met	12	Weight	54	7.9	1.2
Rosenstock J, 2008-2 ^[187]	NO	DPP4, placebo	73	Met	6	Weight	52.1	7.7	0.4
Rosenstock J, 2009 ^[188]	NCT00286429	DPP4, placebo	372	Ins	26	Weight	55.4	9.6	12.6
Rosenstock J, 2009 ^[189]	NCT00518115	DPP4, TZD	391	TZD	26	Weight	52.8	8.8	3.2
Rosenstock J, 2010 ^[190]	NCT00395512	DPP4, SU	419	NO	52	Weight	69.9	7.5	6.1
Rosenstock J, 2010 ^[191]	NCT00395512	DPP4, SGLT-2	261	Met	24	Weight	54.5	9	7.8
Rosenstock J, 2013 ^[192]	NCT00707993	GLP1RA, placebo	113	Met	16	Weight+WC	53.5	8	4.9
Rosenstock J, 2015 ^[193]	NCT01606007	DPP4, TZD	240	NO	26	Weight	52.2	8.8	3.2

Rosenstock J, 2016 ^[194]	NCT01768559	GLP1RA, Insulin	885	NO	26	Weight	59.8	7.8	NA
SAIS2, Nomoto H, 2015 ^[195]	UMIN000005331	GLP1RA, Insulin	31	NO	14	BMI	60.3	8.7	NA
Saito D, 2017 ^[196]	UMIN000010849	DPP4, Insulin	24	Ins	24	BMI	60.9	7.9	12.4
Samocha-Bonet D, 2014 ^[197]	NCT00673894	DPP4, placebo	26	Met	4	Weight	65	7.1	3.3
Satoh-Asahara N, 2013 ^[198]	NO	DPP4, placebo	48	NO	12	BMI	60	8.3	NA
Savvidou S, 2016 ^[199]	NR	GLP1RA, placebo	103	Ins	26	Weight+BMI+WC	62.9	NA	12
SCALE, Davies MJ, 2015-1 ^[200]	NCT01272232	GLP1RA, placebo	826	NO	68	BMI	54.9	7.9	7.3
SCALE, Davies MJ, 2015-2 ^[200]	NCT01272232	GLP1RA, placebo	827	NO	68	Weight+WC	54.9	7.9	7.3
Scalzo RL, 2017 ^[201]	NCT01364584	GLP1RA, placebo	23	NO	13	Weight+BMI	64	7.3	6.5
Scherbaum WA, 2008-1 ^[202]	NCT00300287	DPP4, placebo	131	NO	108	Weight	63.1	6.6	2.3
Scherbaum Wa, 2008-2 ^[203]	NCT00101712	DPP4, placebo	306	NO	52	Weight	63	6.8	2.6
Schweizer A, 2009 ^[204]	NO	DPP4, Met	335	NO	24	Weight	70.9	7.8	3
Seino Y, 2008 ^[205]	NCT00154414	DPP4, placebo	230	a-Glu	12	Weight	62.1	8	7.8
Seino Y, 2010 ^[206]	NCT00393718	DPP4, placebo	288	Met	12	Weight	52.6	8	6.3
Seino Y, 2011 ^[207]	NCT01263483	GLP1RA, placebo	135	OAD	14	Weight	57.7	NA	8
Seino Y, 2012 ^[208]	NCT01318109	GLP1RA, SU	395	Diet+exercise	52	Weight	58.3	8.3	8.3
Seino Y, 2014 ^[209]	NCT01098461	GLP1RA, placebo	211	Diet+exercise	16	Weight	57.8	8.6	7.3
Seino Y, 2016 ^[210]	NCT01572740	GLP1RA, placebo	256	Ins	36	Weight	60.5	8.8	14.5
Shi L, 2017 ^[211]	NO	GLP1RA, a-Glu	31	Met	13	BMI+WC	41.5	9.6	2.3

Shi Xiulin, 2017 ^[212]	NCT01776788	GLP1RA, placebo	129	Ins	104	BMI+WC	45	10.1	NA
Shimoda S, 2014 ^[213]	UMIN000009544	DPP4, SU	50	NO	12	BMI	63.1	7.4	NA
Silva GM, 2016	NCT02607410	DPP4, Insulin	35	SU/Met	52	Weight+BMI	56.7	8.1	10.9
SMART study NCT02243176 ^[214]	NCT02243176	DPP4, a-Glu	481	NO	24	Weight	55.6	8.2	5.2
Smits, M M-1, 2016 ^[215]	NCT01744236	DPP4, GLP1RA, placebo	51	NO	12	Weight+BMI	62.7	7.3	8.2
Srivastava S, 2012 ^[216]	NO	DPP4, SU	50	Met	18	BMI	NA	8.3	NA
START Terauchi Y, 2017 ^[217]	NCT01183104	DPP4, SU	261	NO	52	Weight	70.5	7.5	NA
START-J Hibuse T, 2014 ^[218]	NO	DPP4, placebo	26	SU/Met/Met+SU	12	BMI+WC	60.3	7.6	4.4
STEADFAST Hassanein M, 2014 ^[219]	NCT01758380	DPP4, SU	557	Met	16	Weight	54.5	7	4.8
Strozik A, 2015 ^[220]	NO	DPP4, placebo	61	Met	12	Weight+BMI	51	7.9	NA
Su Y, 2014 -1 ^[221]	NO	DPP4, placebo	600	NO	24	Weight	48.1	8.6	NA
Su Y, 2014-2 ^[222]	NO	DPP4, placebo	508	AGI	12	Weight	49.2	8.8	NA
Sun X, 2017 ^[223]	NO	DPP4, placebo	206	NO	16	Weight+BMI	28.9	NA	NA
SUSTAIN-1, Sorli, C, 2017 ^[224]	NCT02054897	GLP1RA, placebo	387	NO	30	Weight+BMI+WC	53.7	8.1	4.2
SUSTAIN-2, Ahren, 2016 ^[225]	NCT01930188	DPP4, GLP1RA	1163	NO	56	Weight+BMI+WC	55.1	8.1	6.6
SUSTAIN-4, Aroda VR, 2017 ^[226]	NCT02128932	GLP1RA, Insulin	1082	NO	30	Weight+BMI+WC	56.5	8.2	8.6
Suzuki K, 2014 ^[227]	NO	DPP4, GLP1RA	40	NO	24	Weight	57.6	9.5	2.2
Tai H, 2016 ^[228]	NCT02798172	DPP4, placebo	81	Met	26	BMI+WC	53.6	8.2	6.6

Takeshita Y, 2015 ^[229]	no. 000004953	DPP4, a-Glu	60	NO	16	Weight+BMI+WC	63.5	6.8	9.7
Takeshita Y, 2015 ^[230]	UMIN 000007051	DPP4, GLP1RA	112	NO	12	Weight+BMI+WC	64.7	8.1	NA
Takihata M, 2013 ^[231]	NO	DPP4, TZD	115	Met/SU/Met+SU	24	Weight+BMI	60.5	7.4	NA
Tanaka K, 2015 ^[232]	UMIN000004243	GLP1RA, Met	46	NO	24	Weight+WC	52.9	7.9	5.1
Tanaka T, 2014 ^[233]	NO	DPP4, SU	80	Met/TZD	12	Weight	64	7.4	9.4
Tang A, 2015 ^[234]	NCT01399645	GLP1RA, Insulin	35	Met	12	Weight+BMI+WC	60.5	7.8	NA
T-emerge-1, Raz I, 2012 ^[235]	NCT00744926	GLP1RA, placebo	354	NO	24	WC	54.8	7.6	2.4
T-emerge-3, Henry RR, 2012 ^[236]	NCT00744367	GLP1RA, placebo	313	Met+TZD	24	Weight+WC	54.1	8.1	7.7
T-emerge-4, Bergenstal RM, 2012 ^[237]	NCT00754988	DPP4, GLP1RA	546	Met	156	Weight	55.9	8	5.9
T-emerge-5, Nauk M, 2013 ^[238]	NCT00755287	GLP1RA, Insulin	1028	Met/SU	24	Weight	57.7	8.3	9.3
T-emerge-6, Pratley RE, 2013 ^[239]	NCT00909597	GLP1RA, TZD	740	Met/SU/Met+SU	24	Weight+WC	56.4	8.3	8.8
T-emerge-7, Hollander P, 2013 ^[240]	NCT00823992	GLP1RA, placebo	292	Met	24	Weight+WC	53.5	7.6	5.1
Ten Kulve JS, 2016 ^[241]	NCT01363609	GLP1RA, Insulin	40	NO	24	Weight+BMI+WC	NA	7.1	NA
Terauchi Y, 2014 ^[242]	NCT01001104	GLP1RA, placebo	145	Met	12	Weight	52.2	8	4.6
Tian M, 2016 ^[243]	NO	DPP4, placebo	135	NO	12	Weight+BMI	NA	8.1	NA
Tonneijck L, 2017 ^[244]	NCT02276196	GLP1RA, Insulin	35	NO	8	Weight+WC	61.5	8.1	12.5
Treat 4 Ramadan Trial, Brady EM, 2014 ^[245]	NO	GLP1RA, SU	100	Met	12	Weight	51.9	7.7	NA
TROICA study, Ahn CH,	NCT01990469	DPP4, placebo	219	Met+SU	24	Weight+WC	60.9	8.2	12.9

Umpierrez GE, 2011 ^[247]	NCT00630825	GLP1RA, placebo	256	OAD	16	Weight+WC	56.7	8.2	7.8
Van Gaal L, 2014 ^[248]	NCT00976937	DPP4, GLP1RA	312	Met	24	Weight	43.1	8.1	4.4
van Raalte, DH, 2016 ^[249]	NCT00097500	GLP1RA, Insulin	69	NO	64	Weight	58.4	7.5	4.9
Vanderheiden, A, 2016 ^[250]	NCT01505673	GLP1RA, placebo	66	Ins	26	Weight+BMI	54.2	NA	NA
Vilsboll T, 2010 ^[251]	NCT00395343	DPP4, placebo	641	Ins	24	Weight	57.8	8.7	12.5
Violante R, 2012 ^[252]	NCT00870194	DPP4, placebo	208	Exetide,Met	20	Weight+WC	56	7.9	8
VISUAL, Hong AR, 2015 ^[253]	NCT01099137	DPP4, SU	309	Met	24	Weight	59.3	8.6	13.1
von Scholten, B J, 2017 ^[254]	NCT02545738	GLP1RA, placebo	54	standard therapy	28	Weight	66	NA	16
Wang MM, 2015 ^[255]	NO	DPP4, a-Glu	81	Met	52	Weight	64.7	8.3	13.2
Wu WJ, 2015 ^[256]	NO	DPP4, placebo	57	NO	24	Weight	52	8	NA
Wu, Jin-dan, 2011 ^[257]	NO	GLP1RA, placebo	23	NO	16	Weight+BMI	55.6	NA	6.2
Yang HK, 2015 ^[258]	NO	DPP4, placebo	106	NO	24	Weight+BMI	56.2	7.1	3.6
Yang W, 2011 ^[259]	NCT00614120	GLP1RA, SU	907	Met	16	Weight	53.3	8.6	7.5
Yokoh H, 2015 ^[260]	NO	DPP4, a-Glu	116	NO	24	Weight	58.5	7.6	6.8
Yokoyama H, 2014 ^[261]	NO	DPP4, GLP1RA	74	SU	24	Weight+BMI	61.3	7.8	11.3
Yoon KH, 2011 ^[262]	NCT00397631	DPP4, placebo	520	TZD	24	Weight	50.9	9.5	2.1
Yuan GH, 2012 ^[263]	NO	GLP1RA, Met	59	NO	26	Weight+BMI+WC	57.7	8.2	NA
Zinman B, 2007 ^[264]	NCT00099320	GLP1RA, placebo	233	TZD+- Met	16	Weight	56.1	7.9	7.7

2016^[246]

Note: DPP4: dipeptidyl-peptidase IV inhibitors, GLP1RA: glucagon-like peptide-1 receptor agonists, Ins: insulin, SU: sulfonylureas, Met: metformin, SGLT-2: Sodium-Glucose co-Transporter 2, TZD: thiazolidinediones, a-Glu: alpha-glucosidase; OAM: oral antihyperglycemic medication, included sulfonylureas (SU; glibenclamide, gliclazide, or glimepiride) and/or biguanides, OAD: oral antidiabetic drug, OGLA: oral glucose-lowering agent, Glar: glargine;PIG:piolitazone.
References

- [1] OE H, NAKAMURA K, KIHARA H, et al. Comparison of effects of sitagliptin and voglibose on left ventricular diastolic dysfunction in patients with type 2 diabetes: Results of the 3D trial[J]. Cardiovascular diabetology, June 19 2015,14 (1)(83).
- [2] GAUTIER J F, MONGUILLON P, VERIER-MINE O, et al. Which oral antidiabetic drug to combine with metformin to minimize the risk of hypoglycemia when initiating basal insulin?: A randomized controlled trial of a DPP4 inhibitor versus insulin secretagogues[J]. Diabetes Res Clin Pract, Jun 2016,116:26-28.
- [3] AHMANN A, RODBARD H W, ROSENSTOCK J, et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: a randomized, placebo-controlled trial[J]. Diabetes Obes Metab, Nov 2015,17(11):1056-1064.
- [4] AHREN B, HIRSCH I B, PIEBER T R, et al. Efficacy and Safety of Liraglutide Added to Capped Insulin Treatment in Subjects With Type 1 Diabetes: The ADJUNCT TWO Randomized Trial[J]. Diabetes Care, Oct 2016,39(10):1693-1701.
- [5] APOVIAN C M, BERGENSTAL R M, CUDDIHY R M, et al. Effects of Exenatide Combined with Lifestyle Modification in Patients with Type 2 Diabetes[J]. American Journal of Medicine, 2010,123(5):468.e469-468.e417.
- [6] ARAKI E, INAGAKI N, TANIZAWA Y, et al. Efficacy and safety of once-weekly dulaglutide in combination with sulphonylurea and/or biguanide compared with once-daily insulin glargine in Japanese patients with type 2 diabetes: A randomized, open-label, phase III, non-inferiority study[J]. Diabetes, Obesity and Metabolism, 2015,17(10):994-1002.
- [7] ARECHAVALETA R, SECK T, CHEN Y, et al. Efficacy and safety of treatment with sitagliptin or glimepiride in patients with type 2 diabetes inadequately controlled on metformin monotherapy: a randomized, double-blind, non-inferiority trial. Diabetes, obesity & metabolism. 2011;13(2):160-168.
- [8] ARJONA FERREIRA J C, MARRE M, BARZILAI N, et al. Efficacy and safety of sitagliptin versus glipizide in patients with type 2 diabetes andmoderate-to-severe chronic renal insufficiency[J]. Diabetes Care, 2013,36(5):1067-1073.
- [9] ARJONA FERREIRA J C, CORRY D, MOGENSEN C E, et al. Efficacy and safety of sitagliptin in patients with type 2 diabetes and ESRD receiving dialysis: A 54-week randomized trial[J]. American Journal of Kidney Diseases, 2013,61(4):579-587.
- [10] ARNOLDS S, DELLWEG S, CLAIR J, et al. Further improvement in postprandial glucose control with addition of exenatide or sitagliptin to

combination therapy with insulin glargine and metformin: A proof-of-concept study[J]. Diabetes Care, 2010,33(7):1509-1515.

- [11] ASO Y, JOJIMA T, IIJIMA T, et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34?CXCR4? cells in patients with type 2 diabetes[J]. Endocrine, 2015,201550(3):659-664.
- [12] WYSHAM C, BLEVINS T, ARAKAKI R, et al. Efficacy and Safety of Dulaglutide Added on to Pioglitazone and Metformin Versus Exenatide in Type 2 Diabetes in a Randomized Controlled Trial (AWARD-1)[J]. Diabetes Care, May 30 2014.
- [13] GIORGINO F, BENROUBI M, SUN J H, et al. Efficacy and safety of once- weekly dulaglutide versus insulin glargine in patients with type 2 Diabetes on metformin and glimepiride (AWARD-2)[J]. Diabetes Care, 2015,38(12):2241-2249.
- [14] UMPIERREZ G, POVEDANO S T, MANGHI F P, et al. Efficacy and Safety of Dulaglutide Monotherapy Versus Metformin in Type 2 Diabetes in a Randomized Controlled Trial (AWARD-3)[J]. Diabetes Care, May 19 2014.
- [15] BLONDE L, JENDLE J, GROSS J, et al. Once-weekly dulaglutide versus bedtime insulin glargine, both in combination with prandial insulin lispro, in patients with type 2 diabetes: A randomised, open-label, phase 3, non-inferiority study[J]. The Lancet, 2015,385(9982):2057-2066.
- [16] NAUCK M, WEINSTOCK R S, UMPIERREZ G E, et al. Efficacy and Safety of Dulaglutide Versus Sitagliptin After 52 Weeks in Type 2 Diabetes in a Randomized Controlled Trial (AWARD-5)[J]. Diabetes Care, Apr 17 2014.
- [17] DUNGAN K M, WEITGASSER R, PEREZ MANGHI F, et al. A 24-week study to evaluate the efficacy and safety of once-weekly dulaglutide added on to glimepiride in type 2 diabetes (AWARD-8)[J]. Diabetes, Obesity and Metabolism, 2016,18(5):475-482.
- [18] POZZILLI P, NORWOOD P, JODAR E, et al. Placebo-controlled, randomized trial of the addition of once-weekly glucagon-like peptide-1 receptor agonist dulaglutide to titrated daily insulin glargine in patients with type 2 diabetes (AWARD-9)[J]. Diabetes Obes Metab, Mar 14 2017.
- [19] AZAR S T, ECHTAY A, WAN BEBAKAR W M, et al. Efficacy and safety of liraglutide compared to sulphonylurea during Ramadan in patients with type 2 diabetes (LIRA-Ramadan): a randomized trial[J]. Diabetes Obes Metab, Oct 2016,18(10):1025-1033.
- [20] BAILEY T S, TAKACS R, TINAHONES F J, et al. Efficacy and safety of switching from sitagliptin to liraglutide in subjects with type 2 diabetes (LIRA-SWITCH): a randomized, double-blind, double-dummy, active-controlled 26-week trial[J]. Diabetes Obes Metab, Dec 2016,18(12):1191-1198.
- [21] BARNETT A H, BURGER J, JOHNS D, et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: A multinational, randomized, open-label, two-period, crossover noninferiority trial[J]. Clinical Therapeutics, 2007,29(11):2333-2348.
- [22] BERGENSTAL R, LEWIN A, BAILEY T, et al. Efficacy and safety of biphasic insulin aspart 70/30 versus exenatide in subjects with type 2 diabetes failing to achieve glycemic control with metformin and a sulfonylurea[J]. Current Medical Research & Opinion, Jan 2009,25(1):65-75.

- [23] BERNDT-ZIPFEL C, MICHELSON G, DWORAK M, et al. Vildagliptin in addition to metformin improves retinal blood flow and erythrocyte deformability in patients with type 2 diabetes mellitus results from an exploratory study[J]. Cardiovascular Diabetology, 2013,12(1).
- [24] BOLLI G, DOTTA F, COLIN L, et al. Comparison of vildagliptin and pioglitazone in patients with type 2 diabetes inadequately controlled with metformin[J]. Diabetes Obes Metab, Jun 2009,11(6):589-595.
- [25] BOSI E, CAMISASCA R, COLLOBER C, et al. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes care. 2007;30(4):890-895.
- [26] BOSI E, DOTTA F, JIA Y, et al. Vildagliptin plus metformin combination therapy provides superior glycaemic control to individual monotherapy in treatment-naive patients with type 2 diabetes mellitus[J]. Diabetes Obes Metab, May 2009,11(5):506-515.
- [27] BOSI E, ELLIS G C, WILSON C A, et al. Alogliptin as a third oral antidiabetic drug in patients with type 2 diabetes and inadequate glycaemic control on metformin and pioglitazone: A 52-week, randomized, double-blind, active-controlled, parallel-group study[J]. Diabetes, Obesity and Metabolism, 2011,13(12):1088-1096.
- [28] BOUCHI R, NAKANO Y, FUKUDA T, et al. Reduction of visceral fat by liraglutide is associated with ameliorations of hepatic steatosis, albuminuria, and micro-inflammation in type 2 diabetic patients with insulin treatment: a randomized control trial[J]. Endocr J, Mar 31 2017,64(3):269-281.
- [29] BUSE J B, HENRY R R, HAN J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes[J]. Diabetes Care, Nov 2004,27(11):2628-2635.
- [30] BUSE J B, BERGENSTAL R M, GLASS L C, et al. Use of twice-daily exenatide in Basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial[J]. Annals of Internal Medicine, Jan 18 2011,154(2):103-112.
- [31] LAVALLE-GONZALEZ F J, JANUSZEWICZ A, DAVIDSON J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: A randomised trial[J]. Diabetologia, 2013,56(12):2582-2592.
- [32] CHARBONNEL B, STEINBERG H, EYMARD E, et al. Efficacy and safety over 26 weeks of an oral treatment strategy including sitagliptin compared with an injectable treatment strategy with liraglutide in patients with type 2 diabetes mellitusinadequately controlled on metformin: A randomised clinical trial [J]. Diabetologia, 2013,56(7):1503-1511.
- [33] CHAWLA S, KAUSHIK N, SINGH N P, et al. Effect of addition of either sitagliptin or pioglitazone in patients with uncontrolled type 2 diabetes mellitus on metformin: A randomized controlled trial[J]. J Pharmacol Pharmacother, Jan 2013,4(1):27-32.
- [34] CHEN W J Y, DIAMANT M, DE BOER K, et al. Effects of exenatide on cardiac function, perfusion, and energetics in type 2 diabetic patients with cardiomyopathy: A randomized controlled trial against insulin glargine[J]. Cardiovascular Diabetology, 2017,16(1).

- [35] CHIEN M N, LEE C C, CHEN W C, et al. Effect of sitagliptin as add-on therapy in elderly type 2 diabetes patients with inadequate glycemic control in Taiwan[J]. International Journal of Gerontology, 2011,5(2):103-106.
- [36] XU W, BI Y, SUN Z, et al. Comparison of the effects on glycaemic control and beta-cell function in newly diagnosed type 2 diabetes patients of treatment with exenatide, insulin or pioglitazone: a multicentre randomized parallel-group trial (the CONFIDENCE study)[J]. J Intern Med, Jan 2015,277(1):137-150.
- [37] CUI J, PHILO L, NGUYEN P, et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial[J]. J Hepatol, Aug 2016,65(2):369-376.
- [38] DAVIES M, HELLER S, SREENAN S, et al. Once-weekly exenatide versus once- or twice-daily insulin detemir: randomized, open-label, clinical trial of efficacy and safety in patients with type 2 diabetes treated with metformin alone or in combination with sulfonylureas[J]. Diabetes Care, May 2013,36(5):1368-1376.
- [39] DAVIES M J, DONNELLY R, BARNETT A H, et al. Exenatide compared with long-acting insulin to achieve glycaemic control with minimal weight gain in patients with type 2 diabetes: Results of the helping evaluate exenatide in patients with diabetes compared with long-acting insulin (HEELA) study[J]. Diabetes, Obesity and Metabolism, 2009,11(12):1153-1162.
- [40] DAVIES M J, BAIN S C, ATKIN S L, et al. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients With Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial[J]. Diabetes Care, Feb 2016,39(2):222-230.
- [41] DAVIS S N, JOHNS D, MAGGS D, et al. Exploring the substitution of exenatide for insulin in patients with type 2 diabetes treated with insulin in combination with oral antidiabetes agents[J]. Diabetes Care, 2007,30(11):2767-2772.
- [42] DE RANITZ-GREVEN W L, BEULENS J W J, HOEKS L B E A, et al. Patients with type 2 diabetes mellitus failing on oral agents and starting once daily insulin regimen; a small randomized study investigating effects of adding vildagliptin[J]. BMC research notes, 2014,7:579.
- [43] DEFRONZO R A, RATNER R E, HAN J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes[J]. Diabetes Care, May 2005,28(5):1092-1100.
- [44] DEFRONZO R A, FLECK P R, WILSON C A, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study[J]. Diabetes Care, Dec 2008,31(12):2315-2317.
- [45] DEFRONZO R A, TRIPLITT C, QU Y, et al. Effects of exenatide plus rosiglitazone on (beta)-cell function and insulin sensitivity in subjects with type 2 diabetes on metformin[J]. Diabetes Care, 2010,33(5):951-957.
- [46] DEI CAS A, SPIGONI V, CITO M, et al. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month

randomized controlled trial in patients with type 2 diabetes[J]. Cardiovasc Diabetol, Feb 23 2017,16(1):27.

- [47] DEROSA G, MAFFIOLI P, SALVADEO S A T, et al. Effects of sitagliptin or metformin added to pioglitazone monotherapy in poorly controlled type 2 diabetes mellitus patients[J]. Metabolism: Clinical and Experimental, 2010,59(6):887-895.
- [48] DEROSA G, MAFFIOLI P, FERRARI I, et al. Effects of one year treatment of vildagliptin added to pioglitazone or glimepiride in poorly controlled type 2 diabetic patients[J]. Hormone and Metabolic Research, 2010,42(9):663-669.
- [49] DEROSA G, MAFFIOLI P, FERRARI I, et al. Variation of inflammatory parameters after sibutramine treatment compared to placebo in type 2 diabetic patients[J]. Journal of Clinical Pharmacy and Therapeutics, 2011,36(5):592-601.
- [50] DEROSA G, CARBONE A, FRANZETTI I, et al. Effects of a combination of sitagliptin plus metformin vs metformin monotherapy on glycemic control, (beta)-cell function and insulin resistance in type 2 diabetic patients[J]. Diabetes Research and Clinical Practice, 2012,98(1):51-60.
- [51] DEROSA G, FRANZETTI I G, QUERCI F, et al. Exenatide plus metformin compared with metformin alone on β-cell function in patients with Type 2 diabetes[J]. Diabetic Medicine, 2012,29(12):1515-1523.
- [52] DEROSA G, FRANZETTI I G, QUERCI F, et al. Variation in inflammatory markers and glycemic parameters after 12 months of exenatide plus metformin treatment compared with metformin alone: a randomized placebo-controlled trial[J]. Pharmacotherapy, Aug 2013,33(8):817-826.
- [53] DEROSA G, BONAVENTURA A, BIANCHI L, et al. Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients[J]. Metabolism: clinical and experimental, 2014 2014,63:957-967.
- [54] DIAMANT M, NAUCK M A, SHAGINIAN R, et al. Glucagon-like peptide 1 receptor agonist or bolus insulin with optimized basal insulin in type 2 diabetes[J]. Diabetes Care, 2014,37(10):2763-2773.
- [55] HOLST J J, BUSE J B, RODBARD H W, et al. IDegLira Improves Both Fasting and Postprandial Glucose Control as Demonstrated Using Continuous Glucose Monitoring and a Standardized Meal Test[J]. Journal of Diabetes Science and Technology, 2016,10(2):389-397.
- [56] BERGENSTAL R M, WYSHAM C, MACCONELL L, et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial[J]. Lancet, Aug 7 2010,376(9739):431-439.
- [57] DIAMANT M, VAN GAAL L, GUERCI B, et al. Exenatide once weekly versus insulin glargine for type 2 diabetes (DURATION-3): 3-year results of an open-label randomised trial[J]. Lancet Diabetes Endocrinol, Apr 4 2014.
- [58] RUSSELL-JONES D, CUDDIHY R M, HANEFELD M, et al. Efficacy and safety of exenatide once weekly versus metformin, pioglitazone, and sitagliptin used as monotherapy in drug-naive patients with type 2 diabetes (DURATION-4): A 26-week double-blind study[J]. Diabetes Care, 2012,35(2):252-258.

- [59] FRIAS J P, GUJA C, HARDY E, et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial[J]. Lancet Diabetes Endocrinol, Dec 2016,4(12):1004-1016.
- [60] GADDE K M, VETTER M L, IQBAL N, et al. Efficacy and safety of autoinjected exenatide once-weekly suspension versus sitagliptin or placebo with metformin in patients with type 2 diabetes: The DURATION-NEO-2 randomized clinical study[J]. Diabetes, Obesity and Metabolism, 2017,19(7):979-988.
- [61] D'ALESSIO D, HARING H U, CHARBONNEL B, et al. Comparison of insulin glargine and liraglutide added to oral agents in patients with poorly controlled type 2 diabetes[J]. Diabetes, Obesity and Metabolism, 2015,17(2):170-178.
- [62] ASCHNER P, CHAN J, OWENS D R, et al. Insulin glargine versus sitagliptin in insulin-naive patients with type 2 diabetes mellitus uncontrolled on metformin (EASIE): a multicentre, randomised open-label trial[J]. Lancet, Jun 16 2012,379(9833):2262-2269.
- [63] SATO S, SAISHO Y, KOU K, et al. Efficacy and safety of sitagliptin added to insulin in Japanese patients with type 2 Diabetes: The EDIT randomized trial[J]. PloS one, 27 Mar 2015,10 (3)(e0121988).
- [64] DE WIT H M, VERVOORT G M, JANSEN H J, et al. Liraglutide reverses pronounced insulin-associated weight gain, improves glycaemic control and decreases insulin dose in patients with type 2 diabetes: a 26 week, randomised clinical trial (ELEGANT)[J]. Diabetologia, Sep 2014,57(9):1812-1819.
- [65] TAKEDA. Efficacy and Safety of Alogliptin Plus Metformin Compared to Glipizide Plus Metformin in Patients With Type 2 Diabetes Mellitus: https://ClinicalTrials.gov/show/NCT00856284; 2009.
- [66] GALLWITZ B, GUZMAN J, DOTTA F, et al. Exenatide twice daily versus glimepiride for prevention of glycaemic deterioration in patients with type 2 diabetes with metformin failure (EUREXA): an open-label, randomised controlled trial[J]. The Lancet, Jun 16 2012,6736(12):1-9.
- [67] WHITE W B, CANNON C P, HELLER S R, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes[J]. N Engl J Med, Oct 3 2013,369(14):1327-1335.
- [68] FABER R, ZANDER M, PENA A, et al. Effect of the glucagon-like peptide-1 analogue liraglutide on coronary microvascular function in patients with type 2 diabetes a randomized, single-blinded, cross-over pilot study[J]. Cardiovascular Diabetology, 2015,14(1).
- [69] FARNGREN J, PERSSON M, AHR N B. Effect of the GLP-1 receptor agonist lixisenatide on counterregulatory responses to hypoglycemia in subjects with insulin-treated type 2 diabetes[J]. Diabetes Care, 2016,39(2):242-249.
- [70] FARR O M, SOFOPOULOS M, TSOUKAS M A, et al. GLP-1 receptors exist in the parietal cortex hypothalamus, and medulla of human brains and the GLP-1 analog liraglutide administered in the context of a crossover randomized, placebo-controlled trial alters brain activity in response to highly

desirable food cues in individuals with diabetes[J]. Endocrine Reviews, 2016,37(2).

- [71] FAURSCHOU A, GYLDENLOVE M, ROHDE U, et al. Lack of effect of the glucagon-like peptide-1 receptor agonist liraglutide on psoriasis in glucose-tolerant patients--a randomized placebo-controlled trial[J]. J Eur Acad Dermatol Venereol, Mar 2015,29(3):555-559.
- [72] FERRANNINI E, FONSECA V, ZINMAN B, et al. Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy[J]. Diabetes Obes Metab, Feb 2009,11(2):157-166.
- [73] FILOZOF C, SCHWARTZ S, FOLEY J E. Effect of vildagliptin as add-on therapy to a low-dose metformin[J]. World J Diabetes, Mar 15 2010,1(1):19-26.
- [74] FILOZOF C, GAUTIER J F. A comparison of efficacy and safety of vildagliptin and gliclazide in combination with metformin in patients with type 2 diabetes inadequately controlled with metformin alone: A 52-week, randomized study[J]. Diabetic Medicine, 2010,27(3):318-326.
- [75] FINEMAN M S, SHEN L Z, TAYLOR K, et al. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes[J]. Diabetes/Metabolism Research Reviews, Sep-Oct 2004,20(5):411-417.
- [76] FOLEY J E, SREENAN S. Efficacy and safety comparison between the DPP-4 inhibitor vildagliptin and the sulfonylurea gliclazide after two years of monotherapy in drug-na we patients with type 2 diabetes. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et m étabolisme. 2009;41(12):905-909.
- [77] FONSECA V, SCHWEIZER A, ALBRECHT D, et al. Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes[J]. Diabetologia, Jun 2007,50(6):1148-1155.
- [78] FORST T, MICHELSON G, RATTER F, et al. Addition of liraglutide in patients with Type 2 diabetes well controlled on metformin monotherapy improves several markers of vascular function[J]. Diabet Med, Sep 2012,29(9):1115-1118.
- [79] GALLWITZ B, BOHMER M, SEGIET T, et al. Exenatide twice daily versus premixed insulin aspart 70/30 in metformin-treated patients with type 2 diabetes: a randomized 26-week study on glycemic control and hypoglycemia[J]. Diabetes Care, Mar 2011,34(3):604-606.
- [80] GALLWITZ B, ROSENSTOCK J, RAUCH T, et al. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial[J]. Lancet, Aug 4 2012,380(9840):475-483.
- [81] GAO Y, YOON K H, CHUANG L-M, et al. Efficacy and safety of exenatide in patients of Asian descent with type 2 diabetes inadequately controlled with metformin or metformin and a sulphonylurea[J]. Diabetes Res Clin Pract, Jan 2009,83(1):69-76.
- [82] GARBER A J, FOLEY J E, BANERJI M A, et al. Effects of vildagliptin on glucose control in patients with type 2 diabetes inadequately controlled with a sulphonylurea[J]. Diabetes, obesity & metabolism, 2008,10(11):1047-1056.

- [83] RIDDLE M C, FORST T, ARONSON R, et al. Adding Once-Daily Lixisenatide for Type 2 Diabetes Inadequately Controlled With Newly Initiated and Continuously Titrated Basal Insulin Glargine: A 24-Week, Randomized, Placebo-Controlled Study (GetGoal-Duo 1)[J]. Diabetes Care, Apr 25 2013,36(9):2497-2503.
- [84] BOLLI G B, MUNTEANU M, DOTSENKO S, et al. Efficacy and safety of lixisenatide once daily vs. placebo in people with Type 2 diabetes insufficiently controlled on metformin (GetGoal-F1)[J]. Diabet Med, Feb 2014,31(2):176-184.
- [85] RIDDLE M C, ARONSON R, HOME P, et al. Adding Once-Daily Lixisenatide for Type 2 Diabetes Inadequately Controlled by Established Basal Insulin: A 24-week, randomized, placebo-controlled comparison (GetGoal-L)[J]. Diabetes Care, May 6 2013,36(9):2489-2496.
- [86] SEINO Y, MIN K W, NIEMOELLER E, et al. Randomized, double-blind, placebo-controlled trial of the once-daily GLP-1 receptor agonist lixisenatide in Asian patients with type 2 diabetes insufficiently controlled on basal insulin with or without a sulfonylurea (GetGoal-L-Asia)[J]. Diabetes Obes Metab, Oct 2012,14(10):910-917.
- [87] AHREN B, LEGUIZAMO DIMAS A, MIOSSEC P, et al. Efficacy and Safety of Lixisenatide Once-Daily Morning or Evening Injections in Type 2 Diabetes Inadequately Controlled on Metformin (GetGoal-M)[J]. Diabetes Care, Mar 27 2013,36(9):2543-2550.
- [88] YU PAN C, HAN P, LIU X, et al. Lixisenatide treatment improves glycaemic control in Asian patients with type 2 diabetes mellitus inadequately controlled on metformin with or without sulfonylurea: A randomized, double-blind, placebo-controlled, 24-week trial (GetGoal-M-Asia)[J]. Diabetes/Metabolism Research and Reviews, 2014,30(8):726-735.
- [89] FONSECA V A, ALVARADO-RUIZ R, RACCAH D, et al. Efficacy and Safety of the Once-Daily GLP-1 Receptor Agonist Lixisenatide in Monotherapy: A randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono)[J]. Diabetes Care, Mar 19 2012,35(6):1225-1231.
- [90] MENEILLY G S, ROY-DUVAL C, ALAWI H, et al. Lixisenatide Therapy in Older Patients With Type 2 Diabetes Inadequately Controlled on Their Current Antidiabetic Treatment: The GetGoal-O Randomized Trial[J]. Diabetes Care, Apr 2017,40(4):485-493.
- [91] PINGET M, GOLDENBERG R, NIEMOELLER E, et al. Efficacy And Safety Of Lixisenatide Once Daily Versus Placebo In Type 2 Diabetes Insufficiently Controlled On Pioglitazone (Getgoal-P)[J]. Diabetes Obes Metab, Apr 30 2013,15(11):1000-1007.
- [92] ROSENSTOCK J, HANEFELD M, SHAMANNA P, et al. Beneficial effects of once-daily lixisenatide on overall and postprandial glycemic levels without significant excess of hypoglycemia in type 2 diabetes inadequately controlled on a sulfonylurea with or without metformin (GetGoal-S)[J]. J Diabetes Complications, May-Jun 2014,28(3):386-392.
- [93] GOKE B, HERSHON K, KERR D, et al. Efficacy and safety of vildagliptin monotherapy during 2-year treatment of drug-naive patients with type 2

diabetes: comparison with metformin[J]. Horm Metab Res, Dec 2008,40(12):892-895.

- [94] G KE B, GALLWITZ B, ERIKSSON J G, et al. Saxagliptin vs. glipizide as add-on therapy in patients with type 2 diabetes mellitus inadequately controlled on metformin alone: long-term (52-week) extension of a 52-week randomised controlled trial. International journal of clinical practice. 2013;67(4):307-316.
- [95] GRUNBERGER G, CHANG A, GARCIA SORIA G, et al. Monotherapy with the once-weekly GLP-1 analogue dulaglutide for 12 weeks in patients with Type 2 diabetes: dose-dependent effects on glycaemic control in a randomized, double-blind, placebo-controlled study[J]. Diabet Med, Oct 2012,29(10):1260-1267.
- [96] YOON S A, HAN B G, KIM S G, et al. Efficacy, safety and albuminuria-reducing effect of gemigliptin in Korean type 2 diabetes patients with moderate to severe renal impairment: A 12-week, double-blind randomized study (the GUARD Study)[J]. Diabetes, Obesity and Metabolism, 2017,19(4):590-598.
- [97] GUDIPATY L, ROSENFELD N K, FULLER C S, et al. Effect of exenatide, sitagliptin, or glimepiride on β-cell secretory capacity in early type 2 diabetes[J]. Diabetes Care, 2014,37(9):2451-2458.
- [98] GURKAN E, TARKUN I, SAHIN T, et al. Evaluation of exenatide versus insulin glargine for the impact on endothelial functions and cardiovascular risk markers[J]. Diabetes Research and Clinical Practice, 2014,106(3):567-575.
- [99] HARDER H, NIELSEN L, TU D T T, et al. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes[J]. Diabetes Care, Aug 2004,27(8):1915-1921.
- [100] REUSCH J, STEWART M W, PERKINS C M, et al. Efficacy and safety of once-weekly glucagon-like peptide 1 receptor agonist albiglutide (HARMONY 1 trial): 52-week primary endpoint results from a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes mellitus not controlled on pioglitazone, with or without metformin[J]. Diabetes, obesity & metabolism, 2014,16(12):1257-1264.
- [101] REUSCH J, STEWART M W, PERKINS C M, et al. Efficacy and safety of once-weekly GLP-1 receptor agonist albiglutide (HARMONY 1): 52-week primary endpoint results from a randomized, double-blind, placebo-controlled, trial in patients with type 2 diabetes mellitus not controlled on pioglitazone +/- metformin[J]. Diabetes Obes Metab, Aug 23 2014,59(2):266-274.
- [102] AHREN B, JOHNSON S L, STEWART M, et al. HARMONY 3: 104-Week Randomized, Double-Blind, Placebo- and Active-Controlled Trial Assessing the Efficacy and Safety of Albiglutide Compared With Placebo, Sitagliptin, and Glimepiride in Patients With Type 2 Diabetes Taking Metformin[J]. Diabetes Care, Jun 4 2014.
- [103] WEISSMAN P N, CARR M C, YE J, et al. HARMONY 4: randomised clinical trial comparing once-weekly albiglutide and insulin glargine in patients

with type 2 diabetes inadequately controlled with metformin with or without sulfonylurea[J]. Diabetologia, Dec 2014,57(12):2475-2484.

- [104] HOME P D, SHAMANNA P, STEWART M, et al. Efficacy and tolerability of albiglutide versus placebo or pioglitazone over 1year in people with type 2 diabetes currently taking metformin and glimepiride: HARMONY 5[J]. Diabetes, Obesity and Metabolism, 2015,17(2):179-187.
- [105] HATTORI A, TAKEMOTO M, TOKUYAMA H, et al. Sitagliptin but not alpha glucosidase inhibitor reduced the serum soluble CD163, a marker for activated macrophage, in individuals with type 2 diabetes mellitus[J]. Diabetes Research and Clinical Practice, 2017,126:138-143.
- [106] HARTLEY P, SHENTU Y, BETZ-SCHIFF P, et al. Efficacy and Tolerability of Sitagliptin Compared with Glimepiride in Elderly Patients with Type 2 Diabetes Mellitus and Inadequate Glycemic Control: A Randomized, Double-Blind, Non-Inferiority Trial[J]. Drugs and Aging, 04 Jun 2015,32
 (6):469-476.
- [107] HEGAZY S K. Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmenopausal diabetic women[J]. Journal of bone and mineral metabolism, 2015,33(2):207-212.
- [108] HEINE R J, VAN GAAL L F, JOHNS D, et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial[J]. Annals of Internal Medicine, Oct 18 2005,143(8):559-569.
- [109] HISSA M R N, CAVALCANTE L L A, GUIMARAES S B, et al. A 16-week study to compare the effect of vildagliptin versus gliclazide on postprandial lipoprotein concentrations and oxidative stress in patients with type 2 diabetes inadequately controlled with metformin monotherapy[J]. Diabetology and Metabolic Syndrome, 11 Jul 2015,7 (1)(62).
- [110] HONG E S, KHANG A R, YOON J W, et al. Comparison between sitagliptin as add-on therapy to insulin and insulin dose-increase therapy in uncontrolled Korean type 2 diabetes: CSI study[J]. Diabetes Obes Metab, Sep 2012,14(9):795-802.
- [111] IACOBELLIS G, MOHSENI M, BIANCO S D, et al. Liraglutide causes large and rapid epicardial fat reduction[J]. Obesity, 2017,25(2):311-316.
- [112] IDORN T, KNOP F K, JORGENSEN M B, et al. Safety and Efficacy of Liraglutide in Patients With Type 2 Diabetes and End-Stage Renal Disease: An Investigator-Initiated, Placebo-Controlled, Double-Blind, Parallel-Group, Randomized Trial[J]. Diabetes Care, Feb 2016,39(2):206-213.
- [113] INAGAKI N, ATSUMI Y, OURA T, et al. Efficacy and safety profile of exenatide once weekly compared with insulin once daily in Japanese patients with type 2 diabetes treated with oral antidiabetes drug(s): results from a 26-week, randomized, open-label, parallel-group, multicenter, noninferiority study[J]. Clin Ther, Sep 2012,34(9):1892-1908 e1891.
- [114] LOVSHIN J A. Glucagon-like Peptide-1 Receptor Agonists: A Class Update for Treating Type 2 Diabetes[J]. Canadian Journal of Diabetes, 2017.
- [115] LIM S, HAN K A, YU J, et al. Efficacy and safety of initial combination therapy with gemigliptin and metformin compared with monotherapy with either drug in patients with type 2 diabetes: A double-blind randomized controlled trial (INICOM study)[J]. Diabetes Obes Metab, Jan

2017,19(1):87-97.

- [116] INOUE Y, NAKAMURA A, KONDO Y, et al. A randomized controlled trial of liraglutide versus insulin detemir plus sitagliptin: Effective switch from intensive insulin therapy to the once-daily injection in patients with well-controlled type 2 diabetes[J]. Journal of clinical pharmacology, 01 Jul 2015,55 (7):831-838.
- [117] ITO M, ABE M, OKADA K, et al. The dipeptidyl peptidase-4 (DPP-4) inhibitor vildagliptin improves glycemic control in type 2 diabetic patients undergoing hemodialysis[J]. Endocr J, 2011,58(11):979-987.
- [118] IWAMOTO K, NASU R, YAMAMURA A, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of exenatide once weekly in Japanese patients with type 2 diabetes[J]. Endocrine Journal, 2009,56(8):951-962.
- [119] IWAMOTO Y, TANIGUCHI T, NONAKA K, et al. Dose-ranging efficacy of sitagliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus[J]. Endocrine Journal, 2010,57(5):383-394.
- [120] JEON H J, OH T K. Comparison of vildagliptin-metformin and glimepiride-metformin treatments in type 2 diabetic patients[J]. Diabetes Metab J, Oct 2011,35(5):529-535.
- [121] KADOWAKI T, NAMBA M, YAMAMURA A, et al. Exenatide exhibits dose-dependent effects on glycemic control over 12 weeks in Japanese patients with suboptimally controlled type 2 diabetes[J]. Endocrine Journal, 2009,56(3):415-424.
- [122] KADOWAKI T, NAMBA M, IMAOKA T, et al. Improved glycemic control and reduced bodyweight with exenatide: A double-blind, randomized, phase 3 study in Japanese patients with suboptimally controlled type 2 diabetes over 24 weeks[J]. Journal of Diabetes Investigation, 2011,2(3):210-217.
- [123] KADOWAKI T, KONDO K. Efficacy and safety of teneligliptin in combination with pioglitazone in Japanese patients with type 2 diabetes mellitus[J]. J Diabetes Investig, Nov 27 2013,4(6):576-584.
- [124] KADOWAKI T, KONDO K. Efficacy and safety of teneligliptin added to glimepiride in Japanese patients with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study with an open-label, long-term extension[J]. Diabetes, obesity & metabolism, 2014 2014,16:418-425.
- [125] KAKU K, RASMUSSEN M F, CLAUSON P, et al. Improved glycaemic control with minimal hypoglycaemia and no weight change with the once-daily human glucagon-like peptide-1 analogue liraglutide as add-on to sulphonylurea in Japanese patients with type 2 diabetes[J]. Diabetes, Obesity and Metabolism, 2010,12(4):341-347.
- [126] KATO H, NAGAI Y, OHTA A, et al. Effect of sitagliptin on intrahepatic lipid content and body fat in patients with type 2 diabetes[J]. Diabetes Research and Clinical Practice, 2015,109(1):199-205.
- [127] KAWAMORI R, INAGAKI N, ARAKI E, et al. Linagliptin monotherapy provides superior glycaemic control versus placebo or voglibose with

comparable safety in Japanese patients with type 2 diabetes: A randomized, placebo and active comparator-controlled, double-blind study[J]. Diabetes, Obesity and Metabolism, 2012,14(4):348-357.

- [128] KE W, LIU L, LIU J, et al. Effects of Liraglutide Combined with Short-Term Continuous Subcutaneous Insulin Infusion on Glycemic Control and Beta Cell Function in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Pilot Study[J]. Journal of Diabetes Research, 2016,2016.
- [129] KENDALL D M, RIDDLE M C, ROSENSTOCK J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea[J]. Diabetes Care, May 2005,28(5):1083-1091.
- [130] KIKUCHI M, ABE N, KATO M, et al. Vildagliptin dose-dependently improves glycemic control in Japanese patients with type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, Feb 2009,83(2):233-240.
- [131] KIKUCHI M, HANEDA M, KOYA D, et al. Efficacy and tolerability of vildagliptin as an add-on to glimepiride in Japanese patients with Type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, Sep 2010,89(3):216-223.
- [132] KIM D, MACCONELL L, ZHUANG D, et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes[J]. Diabetes Care, 2007,30(6):1487-1493.
- [133] KOREN S, SHEMESH-BAR L, TIROSH A, et al. The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients[J]. Diabetes Technology and Therapeutics, 2012,14(7):561-567.
- [134] KUMARATHURAI P, ANHOLM C, FABRICIUS-BJERRE A, et al. Effects of the glucagon-like peptide-1receptor agonist liraglutide on 24-h ambulatory blood pressure in patients with type 2 diabetes and stable coronary artery disease: A randomized, double-blind, placebo-controlled, crossover study[J]. Journal of Hypertension, 2017,35(5):1070-1078.
- [135] KUTOH E, UKAI Y. Alogliptin as an initial therapy in patients with newly diagnosed, drug na we type 2 diabetes: A randomized, control trial[J]. Endocrine, 2012,41(3):435-441.
- [136] MARRE M, SHAW J, BR, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU)[J]. Diabetic Medicine, Mar 2009,26(3):268-278.
- [137] NAUCK M, FRID A, HERMANSEN K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes[J]. Diabetes care, 2009,32(1):84-90.
- [138] GARBER A, HENRY R R, RATNER R, et al. Liraglutide, a once-daily human glucagon-like peptide 1 analogue, provides sustained improvements in glycaemic control and weight for 2 years as monotherapy compared with glimepiride in patients with type 2 diabetes[J]. Diabetes, Obesity &

Metabolism, Apr 2011,13(4):348-356.

- [139] ZINMAN B, GERICH J, BUSE J B, et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD)[J]. Diabetes Care, 2009,32(7):1224-1230.
- [140] LEITER L A, CARR M C, STEWART M, et al. Efficacy and Safety of the Once-Weekly GLP-1 Receptor Agonist Albiglutide Versus Sitagliptin in Patients With Type 2 Diabetes and Renal Impairment: A Randomized Phase III Study[J]. Diabetes Care, Jul 21 2014.
- [141] LEWIN A J, ARVAY L, LIU D, et al. Efficacy and tolerability of linagliptin added to a sulfonylurea regimen in patients with inadequately controlled type 2 diabetes mellitus: an 18-week, multicenter, randomized, double-blind, placebo-controlled trial[J]. Clin Ther, Sep 2012,34(9):1909-1919.e1915.
- [142] LI C J, LI J, ZHANG Q M, et al. Efficacy and safety comparison between liraglutide as add-on therapy to insulin and insulin dose-increase in Chinese subjects with poorly controlled type 2 diabetes and abdominal obesity[J]. Cardiovascular Diabetology, 2012,11.
- [143] LI C J, YU Q, YU P, et al. Efficacy and Safety Comparison of Add-on Therapy with Liraglutide, Saxagliptin and Vildagliptin, All in Combination with Current Conventional Oral Hypoglycemic Agents Therapy in Poorly Controlled Chinese Type 2 Diabetes[J]. Experimental and Clinical Endocrinology & Diabetes (Barth), 2014.
- [144] LI F, CHEN J, LENG F, et al. Effect of Saxagliptin on Circulating Endothelial Progenitor Cells and Endothelial Function in Newly Diagnosed Type 2 Diabetic Patients[J]. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association, 2017,125(6):400-407.
- [145] LI F F, JIANG L, FU L, et al. Exenatide Add-on to Continuous Subcutaneous Insulin Infusion Therapy Reduces Bolus Insulin Doses in Patients with Type 2 Diabetes: A Randomized, Controlled, Open-Label Trial[J]. Diabetes Ther, Feb 2017,8(1):177-187.
- [146] RETNAKARAN R, KRAMER C K, CHOI H, et al. Liraglutide and the preservation of pancreatic β-cell function in early type 2 diabetes: The LIBRA Trial[J]. Diabetes Care, 2014,37(12):3270-3278.
- [147] LIND M, HIRSCH I B, TUOMILEHTO J, et al. Liraglutide in people treated for type 2 diabetes with multiple daily insulin injections: Randomised clinical trial (MDI Liraglutide trial)[J]. BMJ (Online), 2015,351.
- [148] LIUTKUS J, ROSAS GUZMAN J, NORWOOD P, et al. A placebo-controlled trial of exenatide twice-daily added to thiazolidinediones alone or in combination with metformin[J]. Diabetes, Obesity and Metabolism, 2010,12(12):1058-1065.
- [149] DAVIES M J, LEITER L A, GUERCI B, et al. Impact of baseline HbA1c, diabetes duration and BMI on clinical outcomes in the LixiLan-O trial testing iGlarLixi (insulin glargine/lixisenatide titratable fixed-ratio combination) versus insulin glargine and lixisenatide monocomponents[J]. Diabetes Obes Metab, Apr 22 2017.

- [150] FUJITANI Y, FUJIMOTO S, TAKAHASHI K, et al. Effects of linagliptin monotherapy compared with voglibose on postprandial blood glucose responses in Japanese patients with type 2 diabetes: Linagliptin Study of Effects on Postprandial blood glucose (L-STEP)[J]. Diabetes Research and Clinical Practice, 2016,121:146-156.
- [151] LUO N, ZHU Y, ZHANG Z, et al. [Clinical observation on the combined therapy of sitagliptin with insulin for patients with brittle diabetes][J]. Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences, 2015,40(10):1089-1095.
- [152] MACAULEY M, HOLLINGSWORTH K G, SMITH F E, et al. Effect of vildagliptin on hepatic steatosis[J]. Journal of clinical endocrinology and metabolism, 01 Apr 2015,100 (4):1578-1585.
- [153] ABE M, HIGUCHI T, MORIUCHI M, et al. Efficacy and safety of saxagliptin, a dipeptidyl peptidase-4 inhibitor, in hemodialysis patients with diabetic nephropathy: A randomized open-label prospective trial[J]. Diabetes Res Clin Pract, Jun 2016,116:244-252.
- [154] MIKADA A, NARITA T, YOKOYAMA H, et al. Effects of miglitol, sitagliptin, and initial combination therapy with both on plasma incretin responses to a mixed meal and visceral fat in over-weight Japanese patients with type 2 diabetes. "The MASTER randomized, controlled trial"[J]. Diabetes research and clinical practice, 01 Dec 2014,106 (3):538-547.
- [155] MATSUSHIMA Y, TAKESHITA Y, KITA Y, et al. Pleiotropic effects of sitagliptin versus voglibose in patients with type 2 diabetes inadequately controlled via diet and/or a single oral antihyperglycemic agent: a multicenter, randomized trial[J]. BMJ Open Diabetes Res Care, 2016,4(1):e000190.
- [156] MATHIEU C, RODBARD H W, CARIOU B, et al. A comparison of adding liraglutide versus a single daily dose of insulin aspart to insulin degludec in subjects with type 2 diabetes (BEGIN: VICTOZA ADD-ON)[J]. Diabetes Obes Metab, Jan 20 2014.
- [157] MATIKAINEN N, M NTT RI S, SCHWEIZER A, et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006;49(9):2049-2057.
- [158] MATTHEWS D R, DEJAGER S, AHREN B, et al. Vildagliptin add-on to metformin produces similar efficacy and reduced hypoglycaemic risk compared with glimepiride, with no weight gain: results from a 2-year study[J]. Diabetes Obes Metab, Sep 2010,12(9):780-789.
- [159] MENSBERG P, NYBY S, J RGENSEN P G, et al. Near-normalization of glycaemic control with glucagon-like peptide-1 receptor agonist treatment combined with exercise in patients with type 2 diabetes[J]. Diabetes, Obesity and Metabolism, 2017,19(2):172-180.
- [160] MITA T, KATAKAMI N, SHIMOMURA I, et al. Response to Comment on Mita et al. Sitagliptin Attenuates the Progression of Carotid Intima-Media Thickening in Insulin-Treated Patients With Type 2 Diabetes: The Sitagliptin Preventive Study of Intima-Media Thickness Evaluation (SPIKE): A Randomized Controlled Trial. Diabetes Care 2016;39:455-464[J]. Diabetes Care, Jul 2016,39(7):e104-105.
- [161] MIYA A, NAKAMURA A, MIYOSHI H, et al. Satisfaction of switching to combination therapy with lixisenatide and basal insulin in patients with

type 2 diabetes receiving multiple daily insulin injection therapy: a randomized controlled trial[J]. J Diabetes Investig, Mar 10 2017.

- [162] MOHAN V, YANG W, SON H Y, et al. Efficacy and safety of sitagliptin in the treatment of patients with type 2 diabetes in China, India, and Korea[J]. Diabetes Research and Clinical Practice, 2009,83(1):106-116.
- [163] MORETTO T J, MILTON D, X00E, et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study[J]. Clinical Therapeutics, Aug 2008,30(8):1448-1460.
- [164] RG. MOSES E R, YUE SHENTU, GREGORY T. GOLM, EDWARD A. O'NEILL,, IRA GANTZ S S E, KEITH D. KAUFMAN2 AND BARRY J.
 GOLDSTEIN. A randomized clinical trial evaluating the safety and efficacy of sitagliptin added to the combination of sulfonylurea and metformin in patients with type 2 diabetes mellitus and inadequate glycemic control2011.
- [165] NAUCK M A, MEININGER G, SHENG D, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: A randomized, double-blind, non-inferiority trial[J]. Diabetes, Obesity and Metabolism, 2007,9(2):194-205.
- [166] NAUCK M A, DURAN S, KIM D, et al. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study[J]. Diabetologia, Feb 2007,50(2):259-267.
- [167] NAUCK M A, ELLIS G C, FLECK P R, et al. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study[J]. Int J Clin Pract, Jan 2009,63(1):46-55.
- [168] NOGUEIRA K C, FURTADO M, FUKUI R T, et al. Left ventricular diastolic function in patients with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor- a pilot study[J]. Diabetology and Metabolic Syndrome, 24 Nov 2014,6 (1)(103).
- [169] NOMOTO H, MIYOSHI H, FURUMOTO T, et al. A Randomized Controlled Trial Comparing the Effects of Sitagliptin and Glimepiride on Endothelial Function and Metabolic Parameters: Sapporo Athero-Incretin Study 1 (SAIS1)[J]. PLoS One, 2016,11(10):e0164255.
- [170] NONAKA K, KAKIKAWA T, SATO A, et al. Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes[J]. Diabetes Res Clin Pract, Feb 2008,79(2):291-298.
- [171] OHIRA M, YAMAGUCHI T, SAIKI A, et al. Metformin reduces circulating malondialdehyde-modified low-density lipoprotein in type 2 diabetes mellitus[J]. Clinical and investigative medicine. Medecine clinique et experimentale, 2014,37(4):E243-251.
- [172] OYAMA J, MUROHARA T, KITAKAZE M, et al. The Effect of Sitagliptin on Carotid Artery Atherosclerosis in Type 2 Diabetes: The PROLOGUE Randomized Controlled Trial[J]. PLoS Med, Jun 2016,13(6):e1002051.

- [173] OZ GUL O, KIYICI S, ERSOY C, et al. Effect of sitagliptin monotherapy on serum total ghrelin levels in people with type 2 diabetes[J]. Diabetes Research and Clinical Practice, 2011,94(2):212-216.
- [174] PAN C, YANG W, BARONA J P, et al. Comparison of vildagliptin and acarbose monotherapy in patients with Type 2 diabetes: a 24-week, double-blind, randomized trial[J]. Diabet Med, Apr 2008,25(4):435-441.
- [175] PARK K S, KWAK S, CHO Y M, et al. Vildagliptin reduces plasma stromal cell-derived factor-1α in patients with type 2 diabetes compared with glimepiride[J]. Journal of Diabetes Investigation, 2017,8(2):218-226.
- [176] PI-SUNYER F X, SCHWEIZER A, MILLS D, et al. Efficacy and tolerability of vildagliptin monotherapy in drug-naive patients with type 2 diabetes[J]. Diabetes Res Clin Pract, Apr 2007,76(1):132-138.
- [177] PRATLEY R E, NAUCK M, BAILEY T, et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet. 2010;375(9724):1447-1456.
- [178] PRATLEY R E, KIPNES M S, FLECK P R, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes inadequately controlled by glyburide monotherapy[J]. Diabetes, Obesity and Metabolism, 2009,11(2):167-176.
- [179] PROBSTFIELD J L, HIRSCH I B, DAVIS B R, et al. Glucose in a 26-week randomized comparison of mealtime treatment with rapid-acting insulin versus glp-1 agonist in participants with type 2 diabetes at high cardiovascular risk[J]. Diabetes Care, 2016,39(6):973-981.
- [180] RATNER R, NAUCK M, KAPITZA C, et al. Safety and tolerability of high doses of taspoglutide, a once-weekly human GLP-1 analogue, in diabetic patients treated with metformin: A randomized double-blind placebo-controlled study[J]. Diabetic Medicine, 2010,27(5):556-562.
- [181] RATNER R E, ROSENSTOCK J, BOKA G. Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with Type 2 diabetes inadequately controlled with metformin: A randomized, double-blind, placebo-controlled trial[J]. Diabetic Medicine, 2010,27(9):1024-1032.
- [182] DE BOER S A, HEERSPINK H J, JUAREZ OROZCO L E, et al. Effect of linagliptin on pulse wave velocity in early type 2 diabetes: A randomized, double-blind, controlled 26-week trial (RELEASE)[J]. Diabetes Obes Metab, Feb 28 2017.
- [183] RISTIC S, BYIERS S, FOLEY J, et al. Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes: Vildagliptin (LAF237) dose response[J]. Diabetes, Obesity and Metabolism, 2005,7(6):692-698.
- [184] RODEN M, WENG J, EILBRACHT J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: A randomised, double-blind, placebo-controlled, phase 3 trial[J]. The Lancet Diabetes and Endocrinology, 2013,1(3):208-219.
- [185] RODEN M, MERKER L, CHRISTIANSEN A V, et al. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-na we patients with type 2 diabetes: A double-blind extension of a Phase III randomized controlled trial[J]. Cardiovascular Diabetology,

2015,14(1).

- [186] ROSENSTOCK J, KIM S W, BARON M A, et al. Efficacy and tolerability of initial combination therapy with vildagliptin and pioglitazone compared with component monotherapy in patients with type 2 diabetes[J]. Diabetes Obes Metab, Mar 2007,9(2):175-185.
- [187] ROSENSTOCK J, SANKOH S, LIST J. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-ndiabetesaive patients with type 2 Diabetes, obesity & metabolism. 2008;10(5):376-386.
- [188] ROSENSTOCK J, RENDELL M S, GROSS J L, et al. Alogliptin added to insulin therapy in patients with type 2 diabetes reduces HbA1c without causing weight gain or increased hypoglycaemia[J]. Diabetes, Obesity and Metabolism, 2009,11(12):1145-1152.
- [189] ROSENSTOCK J, REUSCH J, BUSH M, et al. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing[J]. Diabetes Care, Oct 2009,32(10):1880-1886.
- [190] ROSENSTOCK J, INZUCCHI S E, SEUFERT J, et al. Initial combination therapy with alogliptin and pioglitazone in drug-naive patients with type 2 diabetes[J]. Diabetes Care, 2010,33(11):2406-2408.
- [191] ROSENSTOCK J, INZUCCHI S E, SEUFERT J, et al. Initial combination therapy with alogliptin and pioglitazone in drug-na we patients with type 2 diabetes[J]. Diabetes Care, 2010,33(11):2406-2408.
- [192] ROSENSTOCK J, WILSON C, FLECK P. Alogliptin versus glipizide monotherapy in elderly type 2 diabetes mellitus patients with mild hyperglycaemia: A prospective, double-blind, randomized, 1-year study[J]. Diabetes, Obesity and Metabolism, 2013,15(10):906-914.
- [193] ROSENSTOCK J, BAILEY C J, MATHIEU C, et al. Composite endpoint analysis of dapagliflozin versus saxagliptin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin[J]. Endocrine Practice, 2017,23(1):38A-39A.
- [194] ROSENSTOCK J, GUERCI B, HANEFELD M, et al. Prandial Options to Advance Basal Insulin Glargine Therapy: Testing Lixisenatide Plus Basal Insulin Versus Insulin Glulisine Either as Basal-Plus or Basal-Bolus in Type 2 Diabetes: The GetGoal Duo-2 Trial[J]. Diabetes Care, Aug 2016,39(8):1318-1328.
- [195] NOMOTO H, MIYOSHI H, FURUMOTO T, et al. A Comparison of the Effects of the GLP-1 Analogue Liraglutide and Insulin Glargine on Endothelial Function and Metabolic Parameters: A Randomized, Controlled Trial Sapporo Athero-Incretin Study 2 (SAIS2)[J]. PLoS One, 2015,10(8):e0135854.
- [196] SAITO D, KANAZAWA A, SHIGIHARA N, et al. Efficacy and Safety of Vildagliptin as an Add-On Therapy in Inadequately Controlled Type 2 Diabetes Patients Treated With Basal Insulin[J]. Journal of clinical medicine research, 2017,9(3):193-199.
- [197] SAMOCHA-BONET D, CHISHOLM D J, GRIBBLE F M, et al. Glycemic effects and safety of L-glutamine supplementation with or without

sitagliptin in type 2 diabetes patients-a randomized study[J]. PloS one, 20 Nov 2014,9 (11)(e113366).

- [198] SATOH-ASAHARA N, SASAKI Y, WADA H, et al. A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients[J]. Metabolism, Mar 2013,62(3):347-351.
- [199] SAVVIDOU S, KARATZIDOU K, TSAKIRI K, et al. Circulating adiponectin levels in type 2 diabetes mellitus patients with or without non-alcoholic fatty liver disease: Results of a small, open-label, randomized controlled intervention trial in a subgroup receiving short-term exenatide[J]. Diabetes Res Clin Pract, Mar 2016,113:125-134.
- [200] DAVIES M J, BERGENSTAL R, BODE B, et al. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial[J]. JAMA, Aug 18 2015,314(7):687-699.
- [201] SCALZO R L, MOREAU K L, OZEMEK C, et al. Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes[J]. Journal of Diabetes and its Complications, 2017,31(2):449-455.
- [202] SCHERBAUM W A, SCHWEIZER A, MARI A, et al. Evidence that vildagliptin attenuates deterioration of glycaemic control during 2-year treatment of patients with type 2 diabetes and mild hyperglycaemia[J]. Diabetes Obes Metab, Nov 2008,10(11):1114-1124.
- [203] SCHERBAUM W, SCHWEIZER A, MARI A, et al. Efficacy and tolerability of vildagliptin in drug-naive patients with type 2 diabetes and mild hyperglycaemia. Diabetes, Obesity and Metabolism. 2008;10(8):675-682TN: NCT00101712/ClinicalTrials.gov.
- [204] SCHWEIZER A, DEJAGER S, BOSI E. Comparison of vildagliptin and metformin monotherapy in elderly patients with type 2 diabetes: a 24-week, double-blind, randomized trial[J]. Diabetes Obes Metab, Aug 2009,11(8):804-812.
- [205] SEINO Y, RASMUSSEN M F, ZDRAVKOVIC M, et al. Dose-dependent improvement in glycemia with once-daily liraglutide without hypoglycemia or weight gain: A double-blind, randomized, controlled trial in Japanese patients with type 2 diabetes[J]. Diabetes Research and Clinical Practice, 2008,81(2):161-168.
- [206] SEINO Y, RASMUSSEN M F, NISHIDA T, et al. Efficacy and safety of the once-daily human GLP-1 analogue, liraglutide, vs glibenclamide monotherapy in Japanese patients with type 2 diabetes[J]. Current Medical Research and Opinion, 2010,26(5):1013-1022.
- [207] SEINO Y, FUJITA T, HIROI S, et al. Alogliptin plus voglibose in Japanese patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial with an open-label, long-term extension[J]. Current Medical Research and Opinion, 2011,27(SUPPL. 3):21-29.
- [208] SEINO Y, MIYATA Y, HIROI S, et al. Efficacy and safety of alogliptin added to metformin in Japanese patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial with an open-label, long-term extension study[J]. Diabetes, Obesity and Metabolism, 2012,14(10):927-936.
- [209] SEINO Y, INAGAKI N, MIYAHARA H, et al. A randomized dose-finding study demonstrating the efficacy and tolerability of albiglutide in Japanese

patients with type 2 diabetes mellitus[J]. Curr Med Res Opin, Jun 2014,30(6):1095-1106.

- [210] SEINO Y, KANEKO S, FUKUDA S, et al. Combination therapy with liraglutide and insulin in Japanese patients with type 2 diabetes: A 36-week, randomized, double-blind, parallel-group trial[J]. J Diabetes Investig, Jul 2016,7(4):565-573.
- [211] SHI L, ZHU J, YANG P, et al. Comparison of exenatide and acarbose on intra-abdominal fat content in patients with obesity and type-2 diabetes: A randomized controlled trial[J]. Obes Res Clin Pract, Feb 01 2017.
- [212] SHI X, SHI Y, CHEN N, et al. Effect of exenatide after short-time intensive insulin therapy on glycaemic remission maintenance in type 2 diabetes patients: a randomized controlled trial[J]. Scientific reports, 2017,7(1):2383.
- [213] SHIMODA S, IWASHITA S, SEKIGAMI T, et al. Comparison of the efficacy of sitagliptin and glimepiride dose-up in Japanese patients with type 2 diabetes poorly controlled by sitagliptin and glimepiride in combination[J]. Journal of Diabetes Investigation, 2014,5(3):320-326.
- [214] DU J, LIANG L, FANG H, et al. Efficacy and Safety of Saxagliptin Compared with Acarbose in Chinese Patients with Type 2 Diabetes Mellitus Uncontrolled on Metformin Monotherapy: Results of a Phase IV Open-Label Randomized Controlled Study (The SMART Study)[J]. Diabetes, obesity & metabolism, 2017.
- [215] SMITS M M, TONNEIJCK L, MUSKIET M H, et al. Twelve week liraglutide or sitagliptin does not affect hepatic fat in type 2 diabetes: a randomised placebo-controlled trial[J]. Diabetologia, Dec 2016,59(12):2588-2593.
- [216] SRIVASTAVA S, SAXENA G N, KESHWANI P, et al. Comparing the efficacy and safety profile of sitagliptin versus glimepiride in patients of type 2 diabetes mellitus inadequately controlled with metformin alone[J]. J. Assoc.Phys. India, 2012,60(3):27-30.
- [217] TERAUCHI Y, YAMADA Y, ISHIDA H, et al. Efficacy and safety of sitagliptin as compared with glimepiride in Japanese patients with type 2 diabetes mellitus aged >/= 60 years (START-J trial)[J]. Diabetes Obes Metab, Mar 09 2017.
- [218] HIBUSE T, MAEDA N, KISHIDA K, et al. A pilot three-month sitagliptin treatment increases serum adiponectin level in Japanese patients with type 2 diabetes mellitus--a randomized controlled trial START-J study[J]. Cardiovascular diabetology, 2014,13:96.
- [219] HASSANEIN M, ABDALLAH K, SCHWEIZER A. A double-blind, randomized trial, including frequent patient-physician contacts and Ramadan-focused advice, assessing vildagliptin and gliclazide in patients with type 2 diabetes fasting during Ramadan: The STEADFAST study[J]. Vascular health and risk management, 2014 2014,10:319-326.
- [220] STROZIK A, STEPOSZ A, BASIAK M, et al. Multifactorial effects of vildagliptin added to ongoing metformin therapy in patients with type 2 diabetes mellitus[J]. Pharmacological Reports, February 2015,67 (1):24-31.
- [221] SUY, SUYL, LVLF, et al. A randomized controlled clinical trial of vildagliptin plus metformin combination therapy in patients with type II diabetes

mellitus[J]. Experimental and Therapeutic Medicine, 2014,7(4):799-803.

- [222] SU Y, SU Y L, LV L F, et al. Randomized controlled clinical trial of a combination therapy of vildagliptin plus an alpha-glucosidase inhibitor for patients with type ii diabetes mellitus[J]. Experimental and therapeutic medicine, 2014 2014,7:1752-1756.
- [223] SUN X, ZHANG Z, NING H, et al. Sitagliptin down-regulates retinol-binding protein 4 and reduces insulin resistance in gestational diabetes mellitus: a randomized and double-blind trial[J]. Metab Brain Dis, Feb 17 2017.
- [224] SORLI C, HARASHIMA S I, TSOUKAS G M, et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial[J]. Lancet Diabetes Endocrinol, Apr 2017,5(4):251-260.
- [225] AHREN B, MASMIQUEL L, KUMAR H, et al. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): a 56-week, double-blind, phase 3a, randomised trial[J]. Lancet Diabetes Endocrinol, May 2017,5(5):341-354.
- [226] ARODA V R, BAIN S C, CARIOU B, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial[J]. Lancet Diabetes Endocrinol, May 2017,5(5):355-366.
- [227] SUZUKI K, TANAKA S, AOKI C, et al. Greater efficacy and improved endothelial dysfunction in untreated type 2 diabetes with liraglutide versus sitagliptin[J]. Dokkyo Journal of Medical Sciences, 2014,41(3):211-220.
- [228] TAI H, WANG M Y, ZHAO Y P, et al. The effect of alogliptin on pulmonary function in obese patients with type 2 diabetes inadequately controlled by metformin monotherapy[J]. Medicine (United States), 2016,95(33).
- [229] TAKESHITA Y, TAKAMURA T, KITA Y, et al. Vildagliptin vs liraglutide as a second-line therapy switched from sitagliptin-based regimens in patients with type 2 diabetes: A randomized, parallel-group study[J]. Journal of Diabetes Investigation, 01 Mar 2015,6 (2):192-200.
- [230] TAKESHITA Y, TAKAMURA T, KITA Y, et al. Sitagliptin versus mitiglinide switched from mealtime dosing of a rapid-acting insulin analog in patients with type 2 diabetes: A randomized, parallel-group study[J]. BMJ Open Diabetes Research and Care, 2015,3(1).
- [231] TAKIHATA M, NAKAMURA A, TAJIMA K, et al. Comparative study of sitagliptin with pioglitazone in Japanese type 2 diabetic patients: The COMPASS randomized controlled trial[J]. Diabetes, Obesity and Metabolism, 2013,15(5):455-462.
- [232] TANAKA K, SAISHO Y, MANESSO E, et al. Effects of Liraglutide Monotherapy on Beta Cell Function and Pancreatic Enzymes Compared with Metformin in Japanese Overweight/Obese Patients with Type 2 Diabetes Mellitus: A Subpopulation Analysis of the KIND-LM Randomized Trial[J].

Clin Drug Investig, Oct 2015,35(10):675-684.

- [233] TANAKA T, GOTO H, ARAKI R, et al. Efficacy and safety of sitagliptin in Japanese patients with type 2 diabetes switched from glinides[J]. Journal of Diabetes Investigation, 2014 2014,5:199-205.
- [234] TANG A, RABASA-LHORET R, CASTEL H, et al. Effects of Insulin Glargine and Liraglutide Therapy on Liver Fat As Measured by Magnetic Resonance in Patients With Type 2 Diabetes: A Randomized Trial[J]. Diabetes Care, Mar 26 2015.
- [235] RAZ I, FONSECA V, KIPNES M, et al. Efficacy and safety of taspoglutide monotherapy in drug-naive type 2 diabetic patients after 24 weeks of treatment: results of a randomized, double-blind, placebo-controlled phase 3 study (T-emerge 1)[J]. Diabetes Care, Mar 2012,35(3):485-487.
- [236] HENRY R R, MUDALIAR S, KANITRA L, et al. Efficacy and safety of taspoglutide in patients with type 2 diabetes inadequately controlled with metformin plus pioglitazone over 24 weeks: T-emerge 3 trial[J]. Journal of Clinical Endocrinology and Metabolism, 2012,97(7):2370-2379.
- [237] BERGENSTAL R, FORTI A, CHIASSON J L, et al. Taspoglutide, a once-weekly human GLP-1 analog, reduces appetite and promotes weight loss in patients with type 2 diabetes (T2D): Phase 3 trial versus sitagliptin and placebo (T-Emerge 4)[J]. Obesity, 2010,18:S156.
- [238] NAUCK M, HORTON E, ANDJELKOVIC M, et al. Taspoglutide, a once-weekly glucagon-like peptide 1 analogue, vs. insulin glargine titrated to target in patients with Type 2 diabetes: an open-label randomized trial[J]. Diabet Med, Jan 2013,30(1):109-113.
- [239] PRATLEY R E, UROSEVIC D, BOLDRIN M, et al. Efficacy and tolerability of taspoglutide versus pioglitazone in subjects with type 2 diabetes uncontrolled with sulphonylurea or sulphonylurea-metformin therapy: A randomized, double-blind study (T-emerge 6)[J]. Diabetes, Obesity and Metabolism, 2013,15(3):234-240.
- [240] HOLLANDER P, BENGUS M, BARNETT A H, et al. Taspoglutide, a once-weekly human GLP-1 analog, reduces body weight, waist and hip circumferences, and decreases appetite in obese patients with type 2 diabetes (T2D): Results from the phase 3 t-emerge 7 trial[J]. Obesity, 2010,18:S155.
- [241] TEN KULVE J S, VELTMAN D J, VAN BLOEMENDAAL L, et al. Liraglutide reduces CNS activation in response to visual food cues only after short-term treatment in patients with type 2 diabetes[J]. Diabetes Care, 2016,39(2):214-221.
- [242] TERAUCHI Y, SATOI Y, TAKEUCHI M, et al. Monotherapy with the once weekly GLP-1 receptor agonist dulaglutide for 12 weeks in Japanese patients with type 2 diabetes: Dose-dependent effects on glycaemic control in a randomised, Double-blind, Placebo-controlled study[J]. Endocrine Journal, 2014,61(10):949-959.
- [243] TIAN M, LIANG Z, LIU R, et al. Effects of sitagliptin on circulating zinc-alpha2-glycoprotein levels in newly diagnosed type 2 diabetes patients: a randomized trial[J]. Eur J Endocrinol, Feb 2016,174(2):147-155.

- [244] TONNEIJCK L, MUSKIET M H A, SMITS M M, et al. Postprandial renal haemodynamic effect of lixisenatide versus once-daily insulin glulisine in type 2 diabetes patients on insulin-glargine: an 8-week, randomised, open-label trial[J]. Diabetes Obes Metab, Apr 27 2017.
- [245] BRADY E M, DAVIES M J, GRAY L J, et al. A randomized controlled trial comparing the GLP-1 receptor agonist liraglutide to a sulphonylurea as add on to metformin in patients with established type 2 diabetes during Ramadan: the Treat 4 Ramadan Trial[J]. Diabetes Obes Metab, Jun 2014,16(6):527-536.
- [246] AHN C H, HAN K A, YU J M, et al. Efficacy and safety of gemigliptin, a dipeptidyl peptidase-4 inhibitor, in patients with type 2 diabetes mellitus inadequately controlled with combination treatment of metformin and sulphonylurea: a 24-week, multicentre, randomized, double-blind, placebo-controlled study (TROICA study)[J]. Diabetes, Obesity and Metabolism, 2017,19(5):635-643.
- [247] UMPIERREZ G E, BLEVINS T, ROSENSTOCK J, et al. The effects of LY2189265, a long-acting glucagon-like peptide-1 analogue, in a randomized, placebo-controlled, double-blind study of overweight/obese patients with type 2 diabetes: the EGO study[J]. Diabetes, Obesity & Metabolism, May 2011,13(5):418-425.
- [248] VAN G, SOUHAMI E, ZHOU T, et al. Efficacy and safety of the glucagon-like peptide-1 receptor agonist lixisenatide versus the dipeptidyl peptidase-4 inhibitor sitagliptin in young (<50 years) obese patients with type 2 diabetes mellitus[J]. Journal of Clinical and Translational Endocrinology, 2014 2014,1:31-37.
- [249] VAN RAALTE D H, BUNCK M C, SMITS M M, et al. Exenatide improves β-cell function up to 3 years of treatment in patients with type 2 diabetes: A randomised controlled trial[J]. European Journal of Endocrinology, 2016,175(4):345-352.
- [250] VANDERHEIDEN A, HARRISON L, WARSHAUER J, et al. Effect of Adding Liraglutide vs Placebo to a High-Dose Insulin Regimen in Patients With Type 2 Diabetes: A Randomized Clinical Trial[J]. JAMA Intern Med, Jul 01 2016,176(7):939-947.
- [251] VILSBOLL T, ROSENSTOCK J, YKI-JARVINEN H, et al. Efficacy and safety of sitagliptin when added to insulin therapy in patients with type 2 diabetes[J]. Diabetes, Obesity and Metabolism, 2010,12(2):167-177.
- [252] VIOLANTE R, OLIVEIRA J H A, YOON K H, et al. A randomized non-inferiority study comparing the addition of exenatide twice daily to sitagliptin or switching from sitagliptin to exenatide twice daily in patients with Type2 diabetes experiencing inadequate glycaemic control on metformin and sitagliptin[J]. Diabetic Medicine, 2012,29(11):e417-e424.
- [253] HONG A R, LEE J, KU E J, et al. Comparison of vildagliptin as an add-on therapy and sulfonylurea dose-increasing therapy in patients with inadequately controlled type 2 diabetes using metformin and sulfonylurea (VISUAL study): A randomized trial[J]. Diabetes research and clinical practice, 01 Jul 2015,109 (1):141-148.

- [254] VON SCHOLTEN B J, PERSSON F, ROSENLUND S, et al. The effect of liraglutide on renal function: A randomized clinical trial[J]. Diabetes Obes Metab, Feb 2017,19(2):239-247.
- [255] WANG M M, LIN S, CHEN Y M, et al. Saxagliptin is similar in glycaemic variability more effective in metabolic control than acarbose in aged type 2 diabetes inadequately controlled with metformin[J]. Diabetes research and clinical practice, 01 Jun 2015,108 (3):e67-e70.
- [256] WU W, LI Y, CHEN X, et al. Effect of Linagliptin on Glycemic Control in Chinese Patients with Newly-Diagnosed, Drug-Naive Type 2 Diabetes Mellitus: A Randomized Controlled Trial[J]. Med Sci Monit, Sep 09 2015,21:2678-2684.
- [257] WU J-D, XU X-H, ZHU J, et al. Effect of exenatide on inflammatory and oxidative stress markers in patients with type 2 diabetes mellitus[J]. Diabetes Technology & Therapeutics, Feb 2011,13(2):143-148.
- [258] YANG H K, MIN K W, PARK S W, et al. A randomized, placebo-controlled, double-blind, phase 3 trial to evaluate the efficacy and safety of anagliptin in drug-naïve patients with type 2 diabetes[J]. Endocrine Journal, 2015,62(5):449-462.
- [259] YANG W, CHEN L, JI Q, et al. Liraglutide provides similar glycaemic control as glimepiride (both in combination with metformin) and reduces body weight and systolic blood pressure in Asian population with type 2 diabetes from China, South Korea and India: A 16-week, randomized, double-blind, active control trial[J]. Diabetes, Obesity and Metabolism, 2011,13(1):81-88.
- [260] YOKOH H, KOBAYASHI K, SATO Y, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin compared with alpha-glucosidase inhibitor in Japanese patients with type 2 diabetes inadequately controlled on metformin or pioglitazone alone (Study for an Ultimate Combination Therapy to Control Diabetes with Sitagliptin-1): A multicenter, randomized, open-label, non-inferiority trial[J]. Journal of Diabetes Investigation, 01 Mar 2015,6 (2):182-191.
- [261] YOKOYAMA H, HIRAO K, YAMAGUCHI K, et al. Liraglutide Versus Sitagliptin in a 24-week, Multicenter, Open-label, Randomized,
 Parallel-group Study in Japanese Type 2 Diabetes Mellitus Patients Responding Inadequately to a Sulfonylurea and/or One or Two Other Oral Antidiabetic Drugs (JDDM 33)[J]. Jpn Clin Med, 2014 2014,5:33-41.
- [262] YOON K H, STEINBERG H, TENG R, et al. Efficacy and safety of initial combination therapy with sitagliptin and pioglitazone in patients with type 2 diabetes: a 54-week study[J]. Diabetes Obes Metab, Aug 2012,14(8):745-752.
- [263] YUAN G H, SONG W L, HUANG Y Y, et al. Efficacy and tolerability of exenatide monotherapy in obese patients with newly diagnosed type 2 diabetes: A randomized, 26 weeks metformin-controlled, parallel-group study[J]. Chinese Medical Journal, 2012,125(15):2677-2681.
- [264] ZINMAN B, HOOGWERF B J, DURAN GARCIA S, et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial[J]. Ann Intern Med, Apr 3 2007,146(7):477-485.

Figure S1.1 Boxplots among trials included: weight.

Note: A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SGLT2, F=SU, G=TZD, H=a-Glu, I=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT2: sodium-dependent glucose transporters 2, SU: sulphanylureas; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Figure S1.2 Boxplots among trials included: body mass index.

Note: A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SGLT2, F=SU, G=TZD, H=a-Glu, I=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT2: sodium-dependent glucose transporters 2, SU: sulphanylureas; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Figure S1.3 Boxplots among trials included: waist circumference.

Note: A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SGLT2, F=SU, G=TZD, H=a-Glu, I=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT2: sodium-dependent glucose transporters 2, SU: sulphanylureas; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Supplementary File 4

Risk of bias assessment

Risk of bias summary: it is a summary table of review authors' judgments for each risk of bias entry for each study

Figure S2.1 Summary of risk of bias: weight

Figure S2.2 Summary of risk of bias: body mass index

Figure S2.3 Summary of risk of bias: waist circumference

Study ID	Register number	Outcome	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	complete outcome data	Selective reporting	Company funding
3D Trial, Oe H, 2015	NO	Weight	Low	High	High	High	Low	Low	Low
ADDONIS, Gautier JF, 2016	NCT01871558	Weight	Low	High	High	High	Low	Low	High
Ahmann A, 2015	NCT01617434	Weight	Low	Unclear	Low	Low	Low	High	High
Ahren B, 2016	NCT02098395	Weight	Low	Low	Low	Low	Low	Low	High
Apovian CM, 2010	NCT00375492	Weight+WC	Low	Unclear	Low	Low	Low	Low	High
Araki E, 2015	NCT01584232	Weight	Low	High	High	High	Low	Low	High
Arechavaleta R 2009	NCT00701090	Weight	Low	Low	Low	Low	Low	Low	High
Arjona Ferreira JC 2013-1	NCT00509262	Weight	Low	Low	Low	Low	Low	Low	High
Arjona Ferreira JC 2013-2	NCT00509236	Weight	Low	Low	Low	Low	Low	Low	High
Arnolds S, 2010	NCT00971659	Weight	Low	High	High	High	Low	Low	Low
Aso Y 2015	NO	BMI	Unclear	High	High	High	Low	Unclear	Low
AWARD-1, Wysham C, 2014	NCT01064687	Weight+BMI	Low	Low	Low	Low	Low	Low	High
AWARD-2, Giorgino F, 2015	NCT01075282	Weight+BMI	Low	High	High	High	Low	Low	High
AWARD-3, Umpierrez G, 2014	NCT01126580	Weight+BMI	Low	Low	Low	Low	Low	Low	High
AWARD-4, Blonde L, 2015	NCT01191268	Weight+BMI	Low	High	High	High	Low	Low	High
AWARD-5, Nauck M, 2014	NCT00734474	Weight+WC	Low	Low	Low	Low	Low	Low	High
AWARD-7, NCT01621178 ,									
2017	NCT01621178	Weight	Low	High	High	High	Low	Low	High
AWARD-8, Dungan, 2016	NCT01769378	Weight+BMI	Low	Low	Low	Low	Low	Low	High
AWARD-9, Pozzilli P, 2017	NCT02152371	Weight	Low	Low	Low	Low	Low	Low	High
Azar ST, 2016	NCT01917656	Weight	Low	High	High	High	Low	Low	High
Bailey, TS, 2016	NCT01907854	Weight	Low	Low	Low	Low	Low	Low	High
Barnett AH, 2007	NCT00099619	Weight	Low	High	High	High	Low	Low	High
Bergenstal R, 2009	NCT00097877	Weight	Low	High	High	High	Low	Low	High
Berndt-Zipfel C, 2013	NO	Weight	Low	High	High	High	Low	Low	High

Table S4.1 Summary table of review authors' judgments for each risk of bias entry for each study

Bolli G, 2009	NCT00237237	Weight	Low	Low	Low	Low	Low	Low	High
Bosi E, 2007	NCT00099892	Weight	Low	Unclear	Low	Low	Low	Low	High
Bosi E, 2009	NO	Weight	Unclear	Unclear	Low	Low	Unclear	Low	High
Bosi E, 2011	NCT00432276	Weight	Low	Low	Low	Low	Low	Low	High
Bouchi R, 2017	NO	Weight	Unclear	High	High	High	Low	Low	Low
Buse JB, 2004	NCT00039026	Weight	Low	Unclear	Low	Low	Low	Unclear	High
Buse JB, 2011	NCT00765817	Weight+WC	Low	Unclear	Low	Low	Low	Low	High
CANTATA-D Trial,									
Lavalle-Gonzalez FJ, 2013	NCT01106677	Weight	Low						
Charbonnel B, 2013	NCT01296412	Weight	Low	High	High	High	Low	Low	High
Chawla S 2013	NO	Weight	Low	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
Chen WJY, 2017	NCT00766857	BMI+WC	Low	High	High	High	High	Low	Low
Chien MN 2011	NO	BMI	Low	High	High	High	Low	Low	Unclear
CONFIDENCE, Xu W, 2015	NCT01147627	Weight+BMI+WC	Low	High	High	High	Unclear	Low	Low
Cui J 2016	NCT01963845	Weight+BMI	Low						
Davies M, 2013	NCT01003184	Weight+BMI+WC	Low	High	High	High	Low	Low	High
Davies MJ, 2009	NCT00360334	Weight+BMI+WC	Low	High	High	High	Low	Low	High
Davies MJ, 2016	NCT01620489	BMI	Low	Low	Low	Low	High	Low	High
Davis SN, 2007	NCT00099333	Weight	Low	High	High	High	Unclear	Unclear	Unclear
de Ranitz-Greven, 2014	NO	Weight	Low	Low	Low	Unclear	Low	Unclear	Low
DeFronzo RA, 2005	NCT00039013	Weight	Low	Low	Low	Low	Low	Low	High
DeFronzo RA, 2008	NCT00286455	Weight	Low	Unclear	Low	Low	Low	Low	High
DeFronzo RA, 2010	NCT00135330	Weight+WC	Low	High	High	High	Low	Low	High
Dei Cas A, 2017	NCT01822548	BMI	Low	High	High	High	Low	Low	Low
Derosa G, 2010	NO	Weight+BMI	Low	Low	Low	Low	Unclear	Unclear	High
Derosa G, 2010	NO	Weight+BMI	Low						
Derosa G, 2011	NO	Weight+BMI	Low	Low	Low	Low	Low	Unclear	High
Derosa G, 2012	NO	Weight+BMI	Low						
Derosa G, 2012	NO	Weight+BMI	Low						
Derosa G, 2013	NO	Weight+BMI+WC	Low						
Derosa G, 2014-1	NO	Weight+BMI+WC	Low						

Derosa G, 2014-2	NO	Weight+BMI	Low	Low	Low	Low	Low	Low	Low
Diamant M, 2014	NCT00960661	Weight+BMI+WC	Low	High	High	High	Low	Low	High
DUAL-I, Holst JJ, 2016	NCT01336023	Weight	Low	High	High	High	Low	Low	High
DURATION-2, Bergenstal RM,									
2010	NCT00637273	Weight	Low	Low	Low	Low	Low	Low	High
DURATION-3, Diamant M, 2014	NCT00641056	Weight+WC	Low	High	High	High	Low	Low	High
DURATION-4, Russell-Jones D,									
2012	NCT00676338	Weight	Low	Low	Low	Low	Low	Low	High
DURATION-8, Frias JP2-1, 2016	NCT02229396	Weight	Low	Unclear	Low	Low	Low	Low	High
DURATION-8, Frias JP2-2, 2016	NCT02229396	Weight	Low	Unclear	Low	Low	Low	Low	High
DURATION-NEO-2, Gadde KM,									
2017	NCT01652729	Weight	Low	High	High	High	Low	Low	High
EAGLE D'Alessio D, 2015	NCT01117350	Weight	Low	High	High	High	Low	Low	High
EASIE, Aschner P, 2012	NCT00751114	Weight	Low	High	High	High	Low	Low	High
EDIT, Sato S, 2015	NO	Weight+WC	Low	Low	Low	Low	Low	Low	Low
ELEGANT, de Wit HM, 2014	NCT01392898	Weight+BMI+WC	Low	High	High	High	Low	Low	High
ENDURE, NCT00856284, 2013	NCT00856284	Weight	Low	Unclear	Low	Low	Low	Low	High
EUREXA, Gallwitz, B, 2012	NCT00359762	Weight	Low	High	High	High	Low	Low	High
EXAMINE, White WB 2013	NCT00968708	Weight	Low	Unclear	Low	Low	Low	Low	High
Faber R, 2015	NCT01931982	Weight+WC	Low	Low	Low	Low	Low	Low	Low
Farngren J, 2016	NCT02020629	Weight	Low	High	High	High	Low	Low	Low
Farr OM, 2016	NCT01562678	Weight+BMI	Low	Low	Low	Low	Low	Low	Low
Faurschou A, 2015	NCT01460069	Weight	Low	Low	Low	Low	Low	Low	Low
Feng W, 2017	NCT03068065	Weight+BMI+WC	Low	High	High	High	Low	Low	Low
Ferrannini E, 2009	NCT00106340	Weight	Low	Unclear	Low	Low	Low	Low	High
Filozof C, 2010	NCT00396357	Weight	Low	Unclear	Low	Low	Low	Low	High
Filozof C, 2010	NO	Weight	Unclear	Unclear	Low	Low	Unclear	Unclear	High
Fineman MS, 2004	NO	Weight	Unclear	Unclear	Low	Low	Unclear	Unclear	High
Foley JE, 2009	NCT00102388	Weight	Low	Unclear	Low	Low	Low	Low	High
Fonseca V, 2007	NCT00099931	Weight	Low	Unclear	Low	Low	Low	Low	High
Forst T, 2012	NCT01208012	Weight+BMI+WC	Low	High	High	High	Low	Low	Low

GALIANT, Blonde L, 2009	NCT00396627	Weight	Low	High	High	High	Low	Low	High
Gallwitz B, 2011	NCT00434954	Weight+BMI	Low	High	High	High	Low	Low	High
Gallwitz B, 2012	NCT00622284	Weight	Low	Low	Low	Low	Low	Low	High
Gao Y, 2009	NCT00324363	Weight	Low	Low	Low	Low	Low	Low	High
Garber AJ, 2008	NCT00099944	Weight	Low	Low	Low	Low	Low	Low	High
GetGoal-DUO-1, Riddle MC,									
2013	NCT00975286	Weight	Low	Low	Low	Low	Low	Low	High
GetGoal-F1, Bolli G, 2013	NCT00763451	Weight	Low	Unclear	Low	Low	Low	Low	High
GetGoal-L, Riddle MC, 2013	NCT00715624	Weight	Low	Low	Low	Low	Low	Low	High
GetGoal-L-Asia, Seino Y, 2012	NCT00866658	Weight	Low	Low	Low	Low	Low	Low	High
GetGoal-M, Ahren B, 2013	NCT00712673	Weight	Low	Unclear	Low	Low	Low	Low	High
GetGoal-M-Asia, Yu Pan C,									
2014	NCT01169779	Weight	Low	Low	Low	Low	Low	Low	High
GetGoal-Mono, Fonseca VA,									
2012	NCT00688701	Weight	Low	Low	Low	Low	Low	Low	High
GetGoal-O, Meneilly GS, 2017	NCT01798706	Weight	Low	Low	Low	Low	Low	Low	High
GetGoal-P, Pinget M, 2013	NCT00763815	Weight	Low	Low	Low	Low	Low	Low	High
GetGoal-S, Rosenstock J, 2014	NCT00713830	Weight	Low	Unclear	Low	Low	Low	Low	High
Goke B, 2008	NCT00138567	Weight	Low	Low	Low	Low	Low	Low	High
Göke B, 2013	NCT00575588	Weight	Low	Low	Low	Low	Low	Low	High
Grunberger G, 2012	NO	Weight	Low	Low	Low	Low	Low	Unclear	High
GUARD study, Yoon SA, 2016	NCT01968044	Weight	Low	Low	Low	Low	Low	Low	High
Gudipaty L, 2014	NCT00775684	BMI	Low	High	High	High	Low	Low	Low
Gurkan E, 2014	NO	Weight+BMI+WC	Low	High	High	High	Low	Low	Low
Harder H, 2004	NO	Weight+WC	Unclear	Unclear	Low	Low	Low	Unclear	Unclear
HARMONY-1, Reusch J, 2014	NCT00849056	Weight	Low	Unclear	Low	Low	Low	Low	High
HARMONY-2, Nauck, MA, 2016	NCT00849017	Weight	Low	Low	Low	Low	Low	Low	High
HARMONY-3, Ahren B, 2014	NCT00838903	Weight	Low	Unclear	Low	Low	Low	Low	High
HARMONY-4, Weissman PN,									
2014	NCT00838916	Weight	Low	High	High	High	Low	Low	High
HARMONY-5, Home PD, 2015	NCT00839527	Weight	Low	Low	Low	Low	Low	Low	High
HARMONY-6, Rosenstock J,									
----------------------------	----------------	---------------	---------	---------	------	------	---------	---------	---------
2014	NCT00976391	Weight	Low	High	High	High	Low	Low	High
Harrtori A, 2017	UMIN000004674	Weight+BMI	Low	High	High	High	Low	Low	Low
Hartley P, 2015	NCT01189890	Weight	Low	Low	Low	Low	Low	Low	High
Hegazy SK, 2014	NO	BMI	Unclear	Unclear	Low	Low	Low	Low	Low
Heine RJ, 2005	NCT00082381	Weight	Low	High	High	High	Low	Low	High
Hissa MRN, 2015	NO	Weight	Unclear	High	High	High	Low	Low	High
Hong ES, 2012	NCT01100125	Weight+WC	Low	High	High	High	Unclear	Unclear	Low
lacobellis G, 2017	NCT02014740	BMI	Low	High	High	High	Low	Low	Low
Idorn T, 2016-1	NCT01394341	Weight	Low	Low	Low	Low	Unclear	Low	High
Idorn T, 2016-2	NCT01394341	Weight	Low	Low	Low	Low	Unclear	Low	High
Inagaki N, 2012	NCT00935532	Weight	Low	High	High	High	Low	Low	High
INDORSE study, Lovshin JA,									
2017	NCT02406443	BMI	Low	Low	Low	Low	Low	Low	High
INICOM, Lim S, 2017	NCT01787396	Weight	Low	Low	Low	Low	Low	Low	High
Inoue Y, 2015	UMIN 000007009	Weight	Low	High	High	High	Low	Low	Low
Ito M, 2011	NO	Weight+BMI	Unclear	High	High	High	Low	Unclear	Low
Iwamoto K, 2009	NCT00612794	Weight	Low	Low	Low	Low	Low	Low	High
Iwamoto Y, 2010	NCT00127192	Weight	Low	Low	Low	Low	Low	Low	High
Iwamoto Y, 2010	NO	Weight	Unclear	Unclear	Low	Low	Low	Low	High
Jeon HJ, 2011	NO	Weight	Unclear	High	High	High	Low	Low	Low
Kadowaki T, 2009	NCT00382239	Weight	Low	Low	Low	Low	Low	Low	High
Kadowaki T, 2011	NCT00577824	Weight+WC	Low	Low	Low	Low	Low	Low	High
Kadowaki T, 2013	NCT01026194	Weight	Low	Unclear	Low	Low	Low	Low	High
Kadowaki T, 2014	NCT00974090	Weight	Low	Low	Low	Low	Low	Low	High
Kaku K, 2010	NCT00395746	Weight	Low	Unclear	Low	Low	Low	Low	High
Kato H, 2015	NO	BMI	Low	High	High	High	Low	Low	Unclear
Kawamori R, 2012	NCT00654381	Weight+BMI+WC	Low	Low	Low	Low	Low	Low	High
Ke W, 2016	NCT01471808	Weight	Low	High	High	High	Low	Low	Low
Kendall DM, 2005	NCT00035984	Weight	Low	Unclear	Low	Low	Low	Low	High
Kikuchi M, 2009	NO	BMI	Unclear	Unclear	Low	Low	Low	Low	High

Kikuchi M, 2010	NCT00325117	Weight	Low	Low	Low	Low	Low	Low	High
Kim D, 2007	NCT00103935	Weight	Low	Low	Low	Low	Low	Low	High
Koren S, 2012	NO	Weight+BMI+WC	Low	High	High	High	Unclear	Unclear	Low
Kumarathurai P, 2017	NCT01595789	Weight+WC	Low	Low	Low	Unclear	Low	Low	High
Kutoh E, 2012	UMIN 000006860	BMI	Low	High	High	High	Low	Low	Low
LEAD-1, Marre M, 2009	NCT00318422	Weight+BMI	Low	Unclear	Low	Low	Low	Low	High
LEAD-2, Nauck M, 2009	NCT00318461	Weight	Low	Low	Low	Low	Low	Low	High
LEAD-3, Garber A, 2011	NCT00294723	Weight	Low	Unclear	Low	Low	Low	Low	High
LEAD-4, Zinman B, 2009	NCT00333151	Weight	Low	Low	Low	Low	Low	Low	High
LEAD-5, Russell-Jones D, 2009	NCT00331851	Weight	Low	Low	Low	Low	Low	Low	High
Leiter LA, 2014	NCT01098539	Weight	Low	Low	Low	Low	Low	Low	High
Lewin AJ, 2012	NCT00819091	Weight	Low	Low	Low	Low	Low	Low	High
Li CJ, 2012	NO	Weight+BMI+WC	Low	High	High	High	Low	Low	Low
Li CJ, 2014	NO	Weight+BMI	Low	Low	Low	Low	Low	Unclear	Low
Li F, 2017	NO	Weight+BMI+WC	Low	High	High	High	Low	Low	Unclear
Li FF, 2017	NO	Weight	Unclear	High	High	High	Low	Low	Low
LIBRA, Retnakaran R, 2014	NCT01270789	BMI+WC	Low	Unclear	Low	Low	Unclear	Unclear	High
	EudraCT								
Lind M, 2015	2012-001941-42	Weight	Low	Low	Low	Low	Low	Low	High
Liutkus J, 2010	NCT00603239	Weight+WC	Low	Low	Low	Low	Low	Low	High
LixiLan-O, Davies, MJ, 2017	NCT02058147	Weight	Low	High	High	High	Low	Low	High
L-STEP study Fujitani Y, 2016	UMIN000008591	Weight+BMI	Low	Unclear	Unclear	Unclear	Unclear	Unclear	High
Luo N, 2015	NO	BMI	Unclear	Unclear	Low	Low	Low	Low	Low
Macauley M, 2015	NCT01356381	Weight	Low	Low	Low	Low	Low	Low	High
Masanori A, 2016	UMIN000018445	Weight+BMI	Low	High	High	High	Low	Low	Low
MASTER Mikada A, 2014	NO	Weight+BMI	Low	High	High	High	Low	Low	Low
Mastushima Y, 2016	UMIN000003503	Weight+BMI	Low	High	High	High	Low	Low	Low
Mathieu C, 2014	NCT01388361	Weight	Low	High	High	High	Low	Low	High
Matikainen N, 2006	NO	Weight	Low	Low	Low	Low	Low	Low	High
Matthews DR, 2010	NO	Weight	Unclear	Unclear	Low	Low	Unclear	Unclear	High
Mensberg P, 2017	NCT01455441	Weight+BMI	Low						

Mita T, 2016-1	NO	BMI	Low	High	High	High	Low	Low	Low
Mita T, 2016-2	NO	BMI	Low	High	High	High	Low	Low	High
Miya A, 2017	NR	Weight+BMI	Low	High	High	High	Low	Unclear	Low
Mohan V, 2009	NCT00289848	Weight	Low	Low	Low	Low	Low	Low	High
Moretto TJ, 2008	NCT00381342	Weight	Low	Low	Low	Low	Low	Low	High
Moses RG, 2016	NCT01076075	Weight	Low	Low	Low	Low	Low	Low	High
Nauck M, 2007	NCT00094770	Weight	Low	Unclear	Low	Low	Low	Low	High
Nauck MA, 2007	NCT00082407	Weight	Low	High	High	High	Low	Low	High
Nauck MA, 2007	NCT00094770	WC	Low	Low	Low	Low	Low	Low	High
Nauck MA, 2009	NCT00286442	Weight	Low	Low	Low	Low	Low	Low	High
NCT00620282, 2011	NCT00620282	Weight	Low	Low	Low	Low	Low	Low	High
NCT00701935, 2013	NCT00701935	Weight	Low	Unclear	Low	Low	Low	Low	High
NCT00993187, 2014	NCT00993187	Weight	Low	Low	Low	Low	Low	Low	High
NCT01149421, 2015	NCT01149421	Weight	Low	Unclear	Low	Low	Low	Low	High
NCT01195090, 2011	NCT01195090	Weight	Low	High	High	High	Low	Low	Low
NCT01289119, 2013	NCT01289119	Weight	Low	Low	Low	Low	Low	Low	High
NCT01289119, 2013-1	NCT01289119	Weight	Low	Low	Low	Low	Low	Low	High
NCT01289119, 2013-2	NCT01289119	Weight	Low	Low	Low	Low	Low	Low	High
NCT01438814, 2014	NCT01438814	Weight	Low	Low	Low	Low	Low	Low	High
NCT01644500, 2012	NCT01644500	Weight+BMI	Low	Unclear	Low	Low	Low	Low	High
NCT01648582, 2012	NCT01648582	Weight+BMI	Low	High	High	High	Low	Low	High
NCT01733758, 2013	NCT01733758	Weight	Low	Unclear	Low	Low	Low	Low	High
Nogueira KC, 2014	NO	Weight+BMI	Low	High	High	High	Low	Low	Low
Nomoto H, 2016	UMIN000004955	BMI	Low	High	High	High	Low	Low	Low
Nonaka K, 2008	NCT00371007	Weight	Low	Low	Low	Low	Low	Low	High
Ohira M, 2014	NO	Weight+BMI	Low	High	High	High	Low	Low	Unclear
Oyama J, 2016	UMIN000004490	BMI	Low	High	High	High	Low	Low	Low
Oz Gul O, 2011	NO	Weight+BMI	Unclear	Unclear	Unclear	Low	Low	Low	Low
Pan C, 2008	NCT00110240	Weight	Low	Low	Low	Low	Low	Low	High
Park KS, 2017	NCT01812122	Weight+WC	Low	High	High	High	Low	Low	Low
Pi-Sunyer FX, 2007	NCT00120536	Weight	Low	Unclear	Low	Low	Low	Low	High

Pratley R, 2011	NCT00700817	Weight+WC	Low	High	High	High	Low	Low	High
Pratley RE, 2009-1	NCT00286468	Weight	Low	Unclear	Low	Low	Low	Low	High
Pratley RE, 2009-2	NCT00286494	Weight	Low	Low	Low	Low	Low	Low	High
Probstfield JL, 2016	NCT01524705	Weight	Low	High	High	High	Low	Low	Low
Ratner R, 2010	NCT00460941	Weight	Low	Low	Low	Low	Low	Low	High
Ratner RE, 2010	NO	Weight	Low	Low	Low	Low	Unclear	Unclear	Low
RELEASE de Boer SA, 2017	NCT02015299	Weight	Low	Low	Low	Low	Low	Low	Low
Ristic S, 2005	NO	Weight	Unclear	Unclear	Low	Low	Unclear	Unclear	Unclear
Roden M, 2013	NCT01177813	Weight+WC	Low	Low	Low	Low	Low	Low	High
Roden M, 2015	NCT01289990	Weight	Low	Low	Low	Low	Low	Low	High
Rosenstock J, 2007-1	NCT00101803	Weight	Low	Unclear	Low	Low	Low	Low	High
Rosenstock J, 2007-2	NCT00101803	Weight	Low	Unclear	Low	Low	Low	Low	High
Rosenstock J, 2008-1	NO	Weight	Unclear	Unclear	Low	Low	Unclear	Unclear	High
Rosenstock J, 2008-2	NO	Weight	Unclear	Unclear	Low	Low	Unclear	Unclear	High
Rosenstock J, 2009	NCT00286429	Weight	Low	Low	Low	Low	Low	Low	High
Rosenstock J, 2009	NCT00518115	Weight+WC	Low	Unclear	Low	Low	Low	Low	High
Rosenstock J, 2010	NCT00395512	Weight	Low	Unclear	Low	Low	Low	Low	High
Rosenstock J, 2010	NCT00395512	Weight	Low	Unclear	Low	Low	Low	Low	High
Rosenstock J, 2013	NCT00707993	Weight	Low	Unclear	Low	Low	Low	Low	High
Rosenstock J, 2015	NCT01606007	Weight	Low	Low	Low	Low	Low	Low	High
Rosenstock J, 2016,	NCT01768559	Weight	Low	High	High	High	Low	Low	High
SAIS2, Nomoto H, 2015	UMIN000005331	BMI	Low	High	High	High	Low	Unclear	Low
Saito D, 2017	UMIN000010849	BMI	Low	High	High	High	Low	Low	Low
Samocha-Bonet D, 2014	NCT00673894	Weight	Low	High	High	High	Low	Low	Low
Satoh-Asahara N, 2013	NO	BMI	Unclear	High	High	High	Low	Low	Low
Savvidou S, 2016	NR	Weight+BMI+WC	Low	High	High	High	Low	Low	Low
SCALE, Davies MJ, 2015-1	NCT01272232	BMI	Low	Low	Low	Low	Low	Low	High
SCALE, Davies MJ, 2015-2	NCT01272232	Weight+WC	Low	Low	Low	Low	Low	Low	High
Scalzo RL, 2017	NCT01364584	Weight+BMI	Low	Low	Low	Low	Low	Low	Low
Scherbaum WA, 2008-1	NCT00300287	Weight	Low	Unclear	Low	Low	Low	Low	High
Scherbaum Wa, 2008-2	NCT00101712	Weight	Low	Unclear	Low	Low	Low	Low	High

Schweizer A, 2009	NO	Weight	Low	Low	Low	Low	Low	Low	High
Seino Y, 2008	NCT00154414	Weight	Low	Low	Low	Low	Low	Low	High
Seino Y, 2010	NCT00393718	Weight	Low	Unclear	Low	Low	Low	Low	High
Seino Y, 2011	NCT01263483	Weight	Low	Low	Low	Low	Low	Low	High
Seino Y, 2012	NCT01318109	Weight	Low	Low	Low	Low	Low	Low	High
Seino Y, 2014	NCT01098461	Weight	Low	Unclear	Low	Low	Low	Low	High
Seino Y, 2016	NCT01572740	Weight	Low	Low	Low	Low	Low	Low	High
Shi L, 2017	NO	BMI+WC	Unclear	High	High	High	Low	Unclear	Low
Shi Xiulin, 2017	NCT01776788	BMI+WC	Low	High	High	High	Low	Low	Low
Shimoda S, 2014	UMIN000009544	BMI	Low	High	High	High	Low	Low	Low
Silva GM, 2016	NCT02607410	Weight+BMI	Low	High	High	High		Low	Low
SMART study NCT02243176	NCT02243176	Weight	Low	High	High	High	Low	Low	High
Smits, M M-1, 2016	NCT01744236	Weight+BMI	Low	Low	Low	Low	Low	Low	Low
Srivastava S, 2012	NO	BMI	Low	High	High	High	Low	Low	High
START Terauchi Y, 2017	NCT01183104	Weight	Low	High	High	High	Low	Low	High
START-J Hibuse T, 2014	NO	BMI+WC	Unclear	Unclear	Unclear	Low	Low	Low	High
STEADFAST Hassanein M,									
2014	NCT01758380	Weight	Low	Low	Low	Low	Low	Low	High
Strozik A, 2015	NO	Weight+BMI	Low	Low	Low	Low	Low	Low	Low
Su Y, 2014 -1	NO	Weight	Unclear	Unclear	Unclear	Unclear	Low	Low	Low
Su Y, 2014-2	NO	Weight	Unclear	Unclear	Low	Low	Low	Low	Unclear
Sun X, 2017	NO	Weight+BMI	Unclear	Unclear	Low	Low	Low	Low	Low
SUSTAIN-1, Sorli, C, 2017	NCT02054897	Weight+BMI+WC	Low	Low	Low	Low	Low	Low	High
SUSTAIN-2, Ahren, 2016	NCT01930188	Weight+BMI+WC	Low	Low	Low	Low	Low	Low	High
SUSTAIN-4, Aroda VR, 2017	NCT02128932	Weight+BMI+WC	Low	High	High	High	Low	Low	High
Suzuki K, 2014	NO	Weight	Unclear	High	High	High	Low	Low	Low
Tai H, 2016	NCT02798172	BMI+WC	Low	High	High	High	Low	Low	Low
Takeshita Y, 2015	no. 000004953	Weight+BMI+WC	Low	High	High	High	Low	High	High
Takeshita Y, 2015	UMIN 000007051	Weight+BMI+WC	Low	High	High	High	Low	Low	Low
Takihata M, 2013	NO	Weight+BMI	Low	High	High	High	Low	Low	Low
Tanaka K, 2015	UMIN000004243	Weight+WC	Low	High	High	High	Low	Low	High

Tanaka T, 2014	NO	Weight	Low	High	High	High	Low	Low	Unclear
Tang A, 2015	NCT01399645	Weight+BMI+WC	Low	Low	Low	Unclear	Unclear	Unclear	Low
T-emerge-1, Raz I, 2012	NCT00744926	WC	Low	Unclear	Low	Low	Low	Low	High
T-emerge-3, Henry RR, 2012	NCT00744367	Weight+WC	Low	Low	Low	Low	Low	Low	High
T-emerge-4, Bergenstal RM,									
2012	NCT00754988	Weight	Low	Low	Low	Low	Low	Low	High
T-emerge-5, Nauk M, 2013	NCT00755287	Weight	Low	High	High	High	Low	Low	High
T-emerge-6, Pratley RE, 2013	NCT00909597	Weight+WC	Low	Low	Low	Low	Low	Low	High
T-emerge-7, Hollander P, 2013	NCT00823992	Weight+WC	Low	Low	Low	Low	Low	Low	High
Ten Kulve JS, 2016	NCT01363609	Weight+BMI+WC	Low	High	High	High	Low	Low	Low
Terauchi Y, 2014	NCT01001104	Weight	Low	Unclear	Low	Low	Low	Low	High
Tian M, 2016	NO	Weight+BMI	Unclear	Unclear	Low	Low	Low	Low	Low
Tonneijck L, 2017	NCT02276196	Weight+WC	Low	High	High	High	Low	Low	Low
Treat 4 Ramadan Trial, Brady									
EM, 2014	NO	Weight	Low	High	High	High	Low	Low	High
TROICA study, Ahn CH, 2016	NCT01990469	Weight+WC	Low	Low	Low	Low	Low	Low	High
Umpierrez GE, 2011	NCT00630825	Weight+WC	Low	Low	Low	Low	Low	Low	High
Van Gaal L, 2014	NCT00976937	Weight	Low	Unclear	Low	Low	Low	Low	High
van Raalte, DH, 2016	NCT00097500	Weight	Low	High	High	High	Low	Low	High
Vanderheiden, A, 2016	NCT01505673	Weight+BMI	Low	Low	Low	Low	Low	Low	Low
Vilsboll T, 2010	NCT00395343	Weight	Low	Low	Low	Low	Low	Low	High
Violante R, 2012	NCT00870194	Weight+WC	Low	Unclear	Low	Low	Low	Low	High
VISUAL, Hong AR, 2015	NCT01099137	Weight	Low	Low	Low	Low	Low	Low	Low
von Scholten, B J, 2017	NCT02545738	Weight	Low	Low	Low	Low	Low	High	High
Wang MM, 2015	NO	Weight	Unclear	High	High	High	Low	Low	High
Wu WJ, 2015	NO	Weight	Low	Low	Low	Low	Low	Low	Low
Wu, Jin-dan, 2011	NO	Weight+BMI	Unclear	Unclear	Low	Low	Low	Unclear	High
Yang HK, 2015	NO	Weight+BMI	Unclear	Unclear	Low	Low	Unclear	Unclear	High
Yang W, 2011	NCT00614120	Weight	Low	Unclear	Low	Low	Low	Low	High
Yokoh H, 2015	NO	Weight	Low	High	High	High	Low	Low	Low
Yokoyama H, 2014	NO	Weight+BMI	Low	High	High	High	Low	Low	Low

Yoon KH, 2011	NCT00397631	Weight	Low	Unclear	Low	Low	Low	Low	High
Yuan GH, 2012	NO	Weight+BMI+WC	Unclear	Unclear	Unclear	Low	Low	Low	Low
Zinman B, 2007	NCT00099320	Weight	Low	Low	Low	Low	Low	Low	High

Effects of incretin-based regimens on weight, body mass index and waist circumference

by standard pairwise meta-analysis

Figure S3.1 Results of standard pairwise comparisons: weight.

Figure S3.2 Results of standard pairwise comparisons: body mass index.

Figure S3.3 Results of standard pairwise comparisons: waist circumference.

Note: DPP4: dipeptidyl-peptidase IV inhibitors; GLP1RA: Glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT2: Sodium-Glucose co-Transporter 2; SU: sulphanylureas; TZD: thiazolidinediones; aGlu: alpha-glucosidase.

Sensitivity network meta-analyses

	1.72	-1.61	2.68	2.61	<u>-1.51</u>	-1.44	0.91	0.01
DFF4	<u>(1.53,1.92)</u>	<u>(-2.18,-1.04)</u>	<u>(2.59,2.76)</u>	<u>(2.30,2.91)</u>	<u>(-1.61,-1.40)</u>	<u>(-1.69,-1.19)</u>	<u>(0.71,1.12)</u>	(-0.06,0.07)
1.63	CLD1DA	-3.35	-0.23	0.66	-3.88	-3.35	NIA	-1.04
(1.30,1.97)	GLPIKA	<u>(-3.47,-3.24)</u>	(-0.60,0.14)	(-0.14,1.46)	<u>(-3.93,-3.84)</u>	<u>(-3.63,-3.06)</u>	INA	<u>(-1.14,-0.95)</u>
-1.70	-3.34	La sulla	NIA	NIA	NIA	1.00	NIA	2.02
(-3.67,0.27)	<u>(-5.29,-1.38)</u>	Insulin	NA	NA	NA	(0.03,1.97)	INA	(1.02,3.02)
1.07	-0.57	2.77	N.		-3.22	-3.52		
(0.29,1.84)	(-1.37,0.23)	(0.67,4.87)	iviet	NA	(-10.54,4.10)	(-4.18,-2.87)	NA	NA
2.55	0.91	4.25	1.48	00170				-2.23
(1.52,3.57)	(-0.13,1.95)	(2.04,6.45)	(0.21,2.75)	SGLIZ	NA	NA	NA	(-2.56,1.89)
-1.46	-3.09	0.24	-2.52	-4.00				2.44
<u>(-1.91,-1.01)</u>	<u>(-3.60,-2.59)</u>	(-1.77,2.25)	<u>(-3.41,-1.64)</u>	<u>(-5.11,-2.90)</u>	50	NA	NA	(1.81,3.08)
-1.93	-3.56	-0.23	-3.00	-4.47	-0.47	770	NIA	2.46
(-2.65,-1.20)	<u>(-4.30,-2.83)</u>	(-2.31,1.85)	<u>(-4.01,-1.98)</u>	<u>(-5.72,-3.23)</u>	(-1.31,0.37)	120	INA	<u>(1.81,3.11)</u>
1.07	-0.57	2.77	0.00	-1.48	2.53	3.00	- Chu	
(-0.18,2.31)	(-1.86,0.72)	(0.44,5.10)	(-1.46,1.47)	(-3.09,0.13)	<u>(1.20,3.85)</u>	(1.56,4.44)	aGiu	NA
0.33	-1.30	2.04	-0.73	-2.21	1.79	2.26	-0.73	wheeler
(0.06,0.61)	(-1.57,-1.03)	(0.08,3.99)	(-1.53,0.06)	(-3.24,-1.18)	(1.30,2.28)	(1.52,3.00)	(-2.01,0.54)	ріасеро

Figure S4.1a Results of sensitivity analysis (by excluding studies with no allocation concealment) for weight

	<u>1.74</u>	<u>-1.61</u>	2.68	2.61	<u>-1.51</u>	-1.44	0.97	0.08
DFF4	<u>(1.54,1.94)</u>	<u>(-2.18,-1.04)</u>	<u>(2.59,2.76)</u>	<u>(2.30,2.91)</u>	<u>(-1.61,-1.40)</u>	<u>(-1.69,-1.19)</u>	<u>(0.76,1.18)</u>	<u>(0.01,0.15)</u>
1.68	CLD1DA	-3.35	-0.31	0.66	-3.88	-3.35	NIA	-1.01
(1.36,2.00)	GLPIKA	<u>(-3.46,-3.23)</u>	(-0.69,0.08)	(-0.14,1.46)	<u>(-3.93,-3.84)</u>	<u>(-3.63,-3.06)</u>	NA	<u>(-1.11,-0.91)</u>
-2.07	-3.75	Inculin	NIA	NIA	NIA	1.00	NIA	2.02
<u>(-2.58,-1.57)</u>	<u>(-4.16,-3.34)</u>	Insulin	NA	NA	NA	<u>(0.03,1.97)</u>	NA	<u>(1.02,3.02)</u>
1.02	-0.65	3.10	Mat	NIA	-3.22	-3.52	NIA	NIA
(0.28,1.76)	(-1.42,0.11)	<u>(2.23,3.96)</u>	iviet	NA	(-10.54,4.10)	<u>(-4.18,-2.87)</u>	NA	NA
2.57	0.89	4.64	1.55	60170	NIA	NIA	NIA	-2.23
<u>(1.52,3.61)</u>	(-0.17,1.95)	<u>(3.51,5.77)</u>	<u>(0.27,2.82)</u>	SGLIZ	NA	NA	NA	<u>(-2.56,-1.89)</u>
-1.53	-3.21	0.54	-2.55	-4.10	CLI	NIA	NIA	2.80
<u>(-1.94,-1.12)</u>	<u>(-3.67,-2.74)</u>	(-0.06,1.15)	<u>(-3.39,-1.72)</u>	<u>(-5.21,-2.98)</u>	50	NA	NA	<u>(2.07,3.53)</u>
-1.83	-3.50	0.25	-2.85	-4.40	-0.30	TZD	NIA	2.46
<u>(-2.43,-1.22)</u>	<u>(-4.12,-2.88)</u>	(-0.48,0.97)	<u>(-3.77,-1.93)</u>	<u>(-5.59,-3.20)</u>	(-1.01,0.42)	120	I NA	<u>(1.81,3.11)</u>
0.80	-0.88	2.87	-0.22	<u>-1.77</u>	2.33	2.63	a Chu	NIA
(-0.05,1.65)	(-1.79,0.03)	<u>(1.89,3.86)</u>	(-1.35,0.90)	<u>(-3.12,-0.42)</u>	<u>(1.38,3.27)</u>	<u>(1.58,3.67)</u>	aGiu	NA
0.38	-1.30	2.46	-0.64	-2.19	1.91	2.21	-0.42	nlaasha
(0.10,0.66)	<u>(-1.57,-1.02)</u>	(1.97,2.94)	(-1.41,0.13)	(-3.24,-1.14)	(1.45,2.38)	(1.58,2.84)	(-1.31,0.48)	placebo

Figure S4.1b Results of sensitivity analysis (by excluding studies with sample size less than 50) for weight

DPP4	<u>1.29</u>	0.03	0.28	<u>-0.42</u>	<u>-0.76</u>	0.34	-0.02
	(1.12,1.45)	(-0.18,0.78)	(0.02,0.55)	(-0.60,-0.24)	(-0.99,-0.53)	(0.22,0.47)	(-0.12,0.08)
0.86	CLD1DA	-1.40	-0.24	-1.03	-0.10	-1.07	-0.85
<u>(0.30,1.43)</u>	OLFIKA	<u>(-1.47,-1.32)</u>	<u>(-0.46,-0.02)</u>	<u>(-1.18,-0.88)</u>	<u>(-1.15,-0.85)</u>	(-3.02,0.88)	<u>(-0.98,-0.73)</u>
-0.07	-0.93	Inculin	NIA	NIA	0.40	NIA	NIA
(-1.58,1.44)	(-2.34,0.47)	insuin	INA	INA	(0.12,0.68)	INA	INA
0.33	-0.53	0.40	Mat	-1.11	NIA	NIA	NIA
(-0.64,1.30)	(-1.45,0.38)	(-1.28,2.08)	wet	(-2.91,0.69)	INA	INA	INA
-0.99	<u>-1.86</u>	-0.92	<u>-1.32</u>	<u>eu</u>	NIA	NIA	NIA
<u>(-1.89,-0.09)</u>	<u>(-2.66,-1.05)</u>	(-2.54,0.70)	<u>(-2.52,-0.12)</u>	50	INA	INA	INA
-0.01	-0.88	0.06	-0.34	0.98	TZD	NIA	NIA
(-1.65,1.62)	(-2.42,0.66)	(-2.02,2.14)	(-2.13,1.45)	(-0.76,2.71)	120	INA	INA
0.30	-0.56	0.37	-0.03	1.29	0.31	a Chu	NIA
(-1.24,1.84)	(-2.20,1.07)	(-1.78,2.52)	(-1.85,1.79)	(-0.49,3.07)	(-1.93,2.56)	aolu	INA
-0.12	-0.99	-0.05	-0.45	0.87	-0.11	-0.42	placebo
(-0.59,0.34)	(-1.47,-0.51)	(-1.54,1.43)	(-1.44,0.53)	(-0.03,1.76)	(-1.72,1.50)	(-2.03,1.18)	placebo

Figure S4.2a Results of sensitivity analysis (by excluding studies with no allocation concealment) for body mass index

	<u>1.29</u>	0.00	0.29	-0.43	-0.76	0.33	-0.01
DFF4	<u>(1.13,1.45)</u>	(-1.60,1.60)	<u>(0.02,0.55)</u>	<u>(-0.61,-0.25)</u>	<u>(-0.98,-0.53)</u>	<u>(0.20,0.46)</u>	(-0.10,0.10)
0.89	CLD1DA	-1.44	-0.24	-1.03	-1.00	NIA	-0.85
(0.54,1.24)	GLPIKA	<u>(-1.52,-1.36)</u>	<u>(-0.46,-0.02)</u>	<u>(-1.18,-0.88)</u>	<u>(-1.15,-0.85)</u>	INA	<u>(-0.97,-0.72)</u>
-0.63	<u>-1.51</u>	Inculin	NIA	NIA	0.40	NIA	NIA
<u>(-1.13,-0.13)</u>	<u>(-1.89,-1.14)</u>	insuin	INA	INA	(0.12,0.68)	NA	INA
0.32	-0.57	0.94	Mot	-1.11	NIA	NIA	NIA
(-0.29,0.92)	(-1.17,0.03)	<u>(0.24,1.65)</u>	wet	(-2.91,0.69)	INA	NA	NA
-0.80	-1.69	-0.18	<u>-1.12</u>	<u>eu</u>	NIA	NIA	NIA
<u>(-1.29,-0.32)</u>	<u>(-2.19,-1.20)</u>	(-0.79,0.44)	<u>(-1.85,-0.40)</u>	50	INA	INA	INA
-0.35	-1.24	0.28	-0.67	0.45	TZD	NIA	NIA
(-1.05,0.34)	<u>(-1.90,-0.58)</u>	(-0.44,0.99)	(-1.54,0.20)	(-0.35,1.25)	120	NA	INA
0.29	-0.60	0.92	-0.03	<u>1.10</u>	0.64	aChu	NIA
(-0.42,1.00)	(-1.39,0.19)	<u>(0.05,1.78)</u>	(-0.96,0.90)	<u>(0.24,1.95)</u>	(-0.35,1.63)	aolu	INA
-0.14	-1.03	0.48	-0.46	0.66	0.21	-0.43	placebo
(-0.44,0.16)	(-1.38, -0.69)	(-0.02,0.99)	(-1.10,0.18)	(0.13,1.19)	(-0.51,0.92)	(-1.20,0.33)	placebo

Figure S4.2b Results of sensitivity analysis (by excluding studies with sample size less than 50) for body mass index

DPP4	<u>1.75</u> (1.29,2.21)	-2.20 (-5.38,0.98)	3.30 (-4.49,11.09)	<u>1.90</u> (1.24,2.56)	<u>-1.88</u> (-2.62,-1.14)	NA	<u>0.36</u> (0.01,0.72)
1.61	CLD1D4	-3.69	-4.16	NIA	-3.11	-2.33	-1.30
(0.95,2.26)	GLPIRA	<u>(-4.14,-3.23)</u>	<u>(-5.14,-3.19)</u>	INA	(-7.55,1.33)	<u>(-3.11,-1.56)</u>	<u>(-1.64,-0.97)</u>
0.61	-1.00	Inculin	NIA	NIA	NIA	1 10 (0 15 0 05)	NIA
(-7.13,8.35)	(-8.72,6.72)	Insulin	INA	INA	INA	1.10(-0.15,2.35)	NA
-3.49	-5.10	-4.10	Mot	NIA	-1.37	NIA	NIA
<u>(-5.22,-1.76)</u>	<u>(-6.71,-3.49)</u>	(-11.98,3.78)	wet	INA	(-6.56,3.82)	INA	NA
1.94	0.34	1.34	5.44	SCI T2	NIA	NIA	-1.60
<u>(0.75,3.14)</u>	(-0.91,1.58)	(-6.48,9.15)	<u>(3.40,7.47)</u>	30L12	INA	INA	<u>(-2.22,-0.98)</u>
-2.10	-3.71	-2.71	1.39	-4.04	CI I	NIA	NIA
<u>(-3.56,-0.64)</u>	<u>(-5.31,-2.11)</u>	(-10.59,5.17)	(-0.87,3.66)	<u>(-5.93,-2.16)</u>	50	INA	NA
-0.49	-2.10	-1.10	3.00	-2.44	1.61	770	NIA
(-2.16,1.17)	<u>(-3.63,-0.57)</u>	(-8.97,6.77)	<u>(0.78,5.22)</u>	<u>(-4.41,-0.46)</u>	(-0.60,3.82)	120	NA
0.39	-1.22	-0.22	3.88	-1.56	2.49	0.88	plaasha
(-0.21,0.98)	(-1.67,-0.78)	(-7.95,7.51)	(2.21,5.54)	(-2.75,-0.36)	(0.91,4.06)	(-0.71,2.47)	placebo

Figure S4.3a Results of sensitivity analysis (by excluding studies with no allocation concealment) for waist circumference

DPP4	<u>1.75</u> (1.29,2.21)	-2.20 (-5.38,0.98)	NA	<u>1.90</u> (1.24,2.56)	<u>-1.90</u> (-2.64,-1.15)	NA	<u>0.37</u> (0.01,0.73)	NA	
<u>1.67</u>	GLP1RA	-3.72	-4.93	NA	-3.11	-2.33	NA	-1.37	
<u>(1.19,2.15)</u>		<u>(-4.18,-3.27)</u>	<u>(-5.98,-3.88)</u>		(-7.55,1.33)	<u>(-3.11,-1.56)</u>		<u>(-1.72,-1.02)</u>	
<u>-2.02</u> (-2.77,-1.26)	<u>-3.69</u> (-4.28,-3.10)	Insulin	NA	NA	NA	1.10 (-0.15,2.35)	NA	NA	
-3.14	-4.82	-1.13	Mart	NIA	-1.37	NIA	NIA	NIA	
<u>(-4.56,-1.73)</u>	<u>(-6.15,-3.48)</u>	(-2.59,0.33)	Iviet	NA	(-6.56,3.82)	NA	NA	NA	
<u>1.92</u>	0.25	<u>3.94</u>	5.06	SCI T2	NA	NA	NIA	-1.60	
(0.96,2.88)	(-0.75,1.25)	(2.78,5.10)	<u>(3.40,6.73)</u>	30112	INA	INA	INA	<u>(-2.22,-0.98)</u>	
-1.85	-3.52	0.17	1.29	<u>-3.77</u>	C11		NIA	NIA	
(-2.84,-0.86)	<u>(-4.61,-2.43)</u>	(-1.07,1.40)	(-0.40,2.99)	(-5.14,-2.40)	50	I NA	INA	NA	
-0.73	-2.40	<u>1.29</u>	2.42	-2.65	1.12	TZD	NIA	NIA	
(-1.77,0.31)	(-3.32,-1.48)	(0.28,2.29)	<u>(0.79,4.04)</u>	(-4.01,-1.29)	(-0.31,2.55)	120	INA	INA	
-0.10	-1.77	1.92	3.04	-2.02	1.75	0.63	a Chu	NIA	
(-6.31,6.11)	(-8.00,4.46)	(-4.34,8.18)	(-3.33,9.42)	(-8.31,4.27)	(-4.54,8.04)	(-5.67,6.93)	aGlu	NA	
0.34	-1.33	2.35	3.48	-1.58	2.19	1.07	0.44	plaasho	
(-0.11,0.79)	<u>(-1.73,-0.94)</u>	(1.65,3.06)	(2.09,4.87)	(-2.53,-0.63)	(1.11,3.27)	(0.06,2.07)	(-5.79,6.67)	placebo	

Figure S4.3b Results of sensitivity analysis (by excluding studies with sample size less than 50) for waist circumference

Note: Treatments were reported in alphabetical order. Results of direct comparisons were listed in the upper triangle, and the estimation was calculated as the row-defining treatment compared with the column-defining treatment. Results of network meta-analysis were listed in the lower triangle, and the estimation was calculated as the column-defining treatment compared with the row-defining treatment. NA: not available. DPP4: dipeptidyl-peptidase IV inhibitors; GLP1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinedione; aGlu: alpha-glucosidase.

Contribution plots for the incretin-based regimens network on weight, body mass

index and waist circumference.

Direct comparisons in the network

	Avs	AvsC	AvsE	AvsE	Avs	AvsC	Avsl	Avsl	BvsO	BvsD	BvsE	BvsR	BvsC	Bvsk	CvsC	Cvsl	DvsF	DvsC	Evsl	Fvsl	Gvsl
Mixed estimates AvsB AvsC AvsD AvsE AvsF AvsG	9.1 5.1 2.1 2.4 3.8	0.3 0.9 0.3 0.1 0.1 0.4	0.9 1.2 7.8 0.2 0.3 4.2	6.1 3.8 2.5 59.5 1.8 2.7	5.5 3.2 2.4 1.4 61.0 2.4	2.2 3.9 9.5 0.5 15.4	100	28.3 20.5 12.2 13.1 9.4 13.3	2.6 23.0 3.5 0.4 0.6 6.6	1.2 0.4 11.0 0.3 0.3 5.4	4.6 2.6 1.8 7.2 1.2 1.9	5.1 2.9 2.0 1.2 11.1 2.1	1.0 0.8 3.9 0.2 0.2 6.9	28.7 13.6 11.0 3.0 6.4 11.1	0.9 6.4 5.8 0.3 0.2 9.9	1.4 8.4 2.0 0.1 0.3 3.0	0.3 0.1 0.2	0.2 1.7 19.3 0.1 9.8	1.5 1.2 0.7 10.2 0.6 0.8	0.3 0.3 0.1 0.2 3.2 0.2	0.1 0.2
Heta-analysis estimates Para analysis estima	4.9 2.7 3.2 6.0 3.7 7.6 3.2 2.0 1.9 2.0 1.9 1.5 1.0	0.2 1.3 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2	0.5 0.9 7.7 0.6 3.6 0.7 3.0 1.1 6.3 7.2 0.2 0.2 7.2	6.5 1.3 27.6 4.0 2.4 2.2 1.5 0.6 1.3 0.2 35.7 3.0 0.9	3.7 1.4 1.7 3.6 29.6 2.1 3.9 1.1 1.6 23.3 0.4 1.6 36.5 0.4	1.3 3.9 8.5 1.4 14.2 1.7 11.7 3.9 7.5 8.5 0.4 14.0		59.3 0.7 9.2 15.6 17.5 9.8 16.3 9.5 11.4 6.1 0.2 31.5 31.3 18.6	0.1 41.9 5.9 1.7 9.0 3.3 19.4 27.5 3.2 0.3 0.3 0.3 0.3 0.3	0.6 2.2 12.7 0.8 6.6 1.0 5.2 9.1 11.3 0.2 5.5	2.0 1.4 1.7 3.0 1.9 4.0 9 1.0 0.2 0.5 0.0	2.6 1.5 3.5 10.3 2.1 4.4 1.9 6.3 0.2 1.0 8.7 0.6	$\begin{array}{c} 0.5\\ 2.6\\ 5.0\\ 0.7\\ 0.7\\ 8.9\\ 6.3\\ 1.2\\ 3.3\\ 4.3\\ 0.1\\ 6.\\ \end{array}$	10.6 12.9 10.9 21.5 19.5 12.5 47.5 3.9 22.6 6.3 1.6 9.2 10.8 10.8	0.8 9.6 0.6 11.1 0.5 7.1 4.8 0.3 9.9	0.9 12.4 1.0 1.1 1.9 2.6 5 10.5 1.5 1.5 1.3 0.6 0.7 3	0.3 0.1 0.1 0.3 0.3 0.3 0.1	3.1 20.6 0.2 0.1 10.3 8.3 2.0 15.7 52.7 0.1 9.3	4.5 0.5 6.9 0.5 0.5 0.5 0.5 0.5 0.6 1.3 9.4 1.6	1.1 0.1 0.1 2.1 0.6 0.1 0.3 1.5 0.6 2.8 0.4	0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2
Holirect estimates BvsH CvsD CvsD CvsF CvsF DvsH DvsH EvsG EvsH FvsH Hvsl	6.0 1.4 3.4 3.7 2.1 2.6 1.1 0.2 1.2 1.9 1.4 2.7 2.8	0.2 0.7 0.8 0.7 0.2 0.2 0.2 0.3 0.3 0.3 0.3	0.6 6.5 0.9 0.9 6.3 5.6 7.3 0.1 3.2 0.2 3.0 0.3	4.0 1.2 21.7 22.1 1.8 0.7 35.6 23.9 33.6 1.3 1.0 1.9 3.7	3.6 0.7 2.3 2.3 1.4 0.6 37.5 1.3 0.8 25.2 34.7 1.7 2.1	1.4 5.5 3.0 2.8 7.5 8.5 0.1 12.0 0.3 10.8 0.7	34.3 27.9 27.8 43.5 43.0 29.6 43.3	18.6 8.0 11.6 13.0 14.8 4.6 8.8 16.9 2.1 4.9 5.4 5.4 5.4 5.3 33.6	1.7 18.9 19.3 19.6 3.6 3.6 5.1 5.4 2.5 5.3 6 0.1 5.3 6 0.1	0.8 10.3 0.5 0.5 0.3 9.0 7.9 10.8 4.4 0.2 4.4 0.2 3.8 0.3	3.0 5.16 4.4 1.8 4.5 4.6 1.07 1.3 1.1	3.4 0.9 7.1 1.2 0.7 7.2 1.5 0.7 1.2 0.7 6.4 1.5	0.7 3.1 0.7 0.6 3.3 2.8 4.0 5.6 0.1 5.6 0.1 4.8 0.3	18.9 2.5 10.1 8.5 9.8 7.7 7.9 15.7 2.2 7.5 1.7 6.0 3.7 8.0	0.6 11.9 5.2 4.8 4.0 8.0 8.0 0.1 8.0 7.0 0.4	$\begin{array}{c} 0.9\\ 6.9\\ 6.0\\ 6.0\\ 1.4\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0$	0.3 0.1 0.2 0.3 0.1 0.1 0.2 0.1 0.2	0.2 20.6 1.4 1.2 15.7 14.0 18.6 0.1 7.8 7.8 0.1 6.9	$\begin{array}{c} 1.0\\ 5.38\\ 0.97\\ 0.55\\ 1.57\\ 5.84\\ 0.55\\ 0.05\\ 2.5\end{array}$	0.2 0.1 1.6 0.2 0.1 0.4 2.2 0.1 1.6 1.8 0.1 0.6	0.1 0.1 0.1 0.1 0.1 0.1 0.1
Entire network	3.0	0.3	2:8	8.5	8.6	5.7	9.3	13.3	7.6	3.9	2.4	3.1	2.6	10.8	5.0	2.9	0.1	7.2	2.2	0.6	0.1
Included studie	1 8	4	8	3	28	10	11	63	36	5	1	13	7	80	1	1	1	1	2	3	2

Figure S5.1 Contribution plot for the incretin-based regimens network: weight

Note: The size of the squares is proportional to the percentage contribution of the column-defining direct comparison to the row-defining network estimate. A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SGLT-2, F=SU, G=TZD, H=a-Glu, I=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; a-Glu: alpha-glucosidase inhibitor; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Direct comparisons in the network

		AvsB	AvsC	AvsD	AvsE	AvsF	AvsG	AvsH	BvsC	BvsD	BvsE	BvsF	BvsG	BvsH	CvsF	DvsE
	Mixed estimates															
	AvsB	6.1	6.0	1.3	0.8	16.4	0.7	18.4	12.8	1.3	0.9	9.6	0.7	18.4	6.8	
	AvsC	3.4	12.2	0.7	0.5	22.4	0.4	10.1	16.3	0.7	0.5	1.3	0.4	10.1	21.2	
	AvsD	0.4	0.4	87.1	1.8	1.1		1.2	0.8	3.1		0.6		1.2	0.4	1.8
	AvsE	0.4	0.4	3.0	83.7	1.2		1.3	0.9		3.4	0.7		1.3	0.5	3.0
	AvsF	2.8	6.8	0.6	0.4	47.3	0.3	8.4	4.8	0.6	0.4	7.7	0.3	8.4	11.5	
	AvsG	0.1	0.1			0.1	98.7	0.2	0.1			0.1	0.4	0.2	0.1	
	AvsH	2.8	2.7	0.6	0.4	7.5	0.3	56.8	5.8	0.6	0.4	4.4	0.3	14.3	3.1	
es	BvsC	3.2	7.2	0.7	0.4	7.0	0.3	9.6	33.9	0.7	0.4	9.8	0.3	9.6	16.8	
lai	BvsD	4.1	4.0	32.0	0.1	11.1	0.4	12.4	8.6	2:1	0.6	6.5	0.4	12.4	4.6	0.7
÷	BvsE	4.1	4.0	0.3	31.6	11.0	0.4	12.3	8.6	0.9	1.9	6.5	0.4	12.3	4.6	1.1
es	BvsF	4.1	0.9	0.8	0.6	19.1	0.4	12.2	16.5	0.8	0.6	15.6	0.4	12.2	15.6	
<u>.</u>	BvsG	4.1	4.0	0.9	0.6	11.1	33.0	12.4	8.6	0.9	0.6	6.5	0.6	12.4	4.6	
ž	BvsH	4.5	4.4	0.9	0.6	12.1	0.5	23.0	9.4	0.9	0.6	7.1	0.5	30.5	5.0	
a-ana	CvsF	1.6	8.9	0.3	0.2	16.2	0.2	4.9	16.0	0.3	0.2	8.8	0.2	4.9	37.4	
	DvsE			46.7	46.5	0.1		0.1	0.1	1.7	1.9			0.1		2.7
netä	Indirect estimates															
ž	CvsD	2.2	8.2	31.8	0.3	15.0	0.2	6.5	11.5	1.6	0.3	0.6	0.2	6.5	14.4	0.7
Б	CvsE	2.1	8.2	0.6	31.2	14.9	0.2	6.4	11.5	0.5	1.6	0.6	0.2	6.4	14.3	1.1
₹.	CvsG	2.3	8.2	0.5	0.3	15.1	33.0	6.8	11.0	0.5	0.3	0.8	0.4	6.8	14.2	
Ř	CvsH	1.2	8.5	0.2	0.2	14.2	0.1	24.4	16.8	0.2	0.2	1.5	0.1	16.6	15.7	
	DvsF	1.5	3.9	38.0	0.5	28.3	0.2	4.6	3.3	1.7	0.2	5.0	0.2	4.6	7.2	0.8
	DvsG	0.2	0.2	45.6	0.9	0.5	47.9	0.6	0.4	1.6		0.3	0.2	0.6	0.2	0.9
	DvsH	1.5	1.4	39.8	0.6	4.0	0.2	33.3	3.1	1.8	0.2	2.3	0.2	9.1	1.6	0.8
	EvsF	1.5	3.9	1.0	37.2	28.2	0.2	4.5	3.3	0.4	1.8	5.0	0.2	4.5	7.2	1.3
	EvsG	0.2	0.2	1.6	44.2	0.6	47.4	0.6	0.4		1.8	0.3	0.2	0.6	0.2	1.6
	EvsH	1.5	1.4	1.0	39.1	3.9	0.2	33.2	3.0	0.4	1.8	2.3	0.2	9.1	1.6	1.4
	FvsG	1.7	4.1	0.3	0.2	28.5	39.8	5.0	2.9	0.3	0.2	4.7	0.4	5.0	7.0	
	FvsH	0.1	2.8			27.3		30.3	6.9			8.0		14.7	9.8	
	GvsH	1.6	1.6	0.3	0.2	4.4	41.4	33.3	3.4	0.3	0.2	2.6	0.4	8.5	1.8	
Е	ntire network	2.2	4.4	11.4	11.0	13.7	11.7	13.5	8.1	0.9	0.8	4.2	0.3	8.9	8.3	0.6
In	cluded studies	5	3	4	10	1	5	23	16	3	4	2	1	18	1	1

Figure S5.2 Contribution plot for the incretin-based regimens network: body mass index Note: The size of the squares is proportional to the percentage contribution of the column-defining direct comparison to the row-defining network estimate. A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SU, F=TZD, G=a-Glu, H=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SU: sulphanylureas; a-Glu: alpha-glucosidase inhibitor; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Direct comparisons in the network

	AvsE	AvsC	AvsD	AvsE	AvsF	AvsH	Avsl	BvsC	BvsD	BvsF	BvsG	BvsH	Bvsl	CvsG	DvsF	Evsl
Mixed estimates AvsB AvsC AvsD AvsF AvsF AvsF BvsC BvsC BvsD BvsC BvsC BvsC BvsC BvsC S S	5.9 3.9 2.6 1.4 3.0 4.0 2.5 3.9 3.0 6.2 0.1 2.2 0.1	1.1 0.5 0.1 0.8 0.7 0.7 0.7 0.2 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.1 0.1 6.6 0.3 0.1 0.1 6.7 0.1 5.9	5.7 3.7 2.5 35.4 0.4 2.9 10.4 0.2 2.4 3.7 2.8 1.1 0.1 2.1 2.2	0.8 0.5 14.4 0.2 88.6 0.4 0.5 14.1 32.5 0.4 0.8 24.1 0.2	0.2 0.1 0.1 24.8 0.1 0.1 0.1 24.8 0.2 0.1	36.3 23.7 15.9 28.5 2.4 18.3 60.8 15.4 24.1 0.3 18.1 7.3 0.6 13.5 26.1	1.0 29.2 0.4 0.5 0.7 8011 0.4 0.7 19.8 0.5 1.1 38.4 0.4 0.5	0.3 0.2 21.4 0.1 0.9 0.1 0.2 22.2 0.5 0.2 0.3 19.1 0.1	0.6 0.4 0.2 2.4 0.3 0.4 0.6 1.3 0.6 0.9 0.1	0.1 2.8 0.1 7.6 0.1 58.8 0.1 0.1 39.1	0.2 0.1 0.1 25.0 0.1 0.1 0.1 25.4 0.2 0.1	41.9 27.4 18.4 2.3 2.8 21.1 5.4 17.8 27.8 0.3 21.0 79.5 0.7 15.5 2.1	0.1 2.8 0.1 7.6 0.1 20.2 0.1 20.2	0.2 0.1 14.5 0.1 1.2 0.1 0.1 14.8 0.6 0.1 0.2 13.7 0.1	5.7 3.7 30.8 0.4 2.8 10.4 0.2 2.4 3.7 2.8 1.1 0.1 2.1 40.8
Indirect estimates AvsG BvsE CvsE CvsE CvsE CvsF CvsE DvsG DvsG DvsF EvsC EvsC FvsB FvsC FvsB FvsB FvsB FvsB FvsB FvsB FvsB FvsB	3.7 4.7 2.9 3.1 2.5 8.6 2.8 9 2.8 9 2.8 9 0.8 9 0.8 9 0.6	0.98 0.1 1.0 1.4 2.5 0.2 0.3 0.4 0.5 0.0 0.6 4 4.5 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.1 4.6 0.1 5.3 4.4 6.3 0.1 0.1 0.1	$\begin{array}{c} 3.5\\ 18.1\\ 1.2.7\\ 2.7\\ 1.8\\ 0.7.4\\ 1.5\\ 2.9.1\\ 1.5\\ 2.9.1\\ 1.9\\ 2.6\\ 1.8\\ 5.6\\ 1.6\\ 3.3\\ 1.6\\ 3.3\\ 1.6\\ 3.3\\ 1.6\\ 3.3\\ 1.6\\ 3.5\\ 1.6\\ 3.3\\ 1.6\\ 3.5\\ 1.6\\ 3.3\\ 1.6\\ 3.5\\ 1.6\\ 3.5\\ 1.6\\ 3.5\\ 1.6\\ 3.5\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6$	$\begin{array}{c} 0.5\\ 0.5\\ 9.8\\ 0.4\\ 24.2\\ 0.2\\ 0.4\\ 11.5\\ 9.2\\ 14.0\\ 13.7\\ 38.1\\ 0.3\\ 0.2\\ 23.0\\ 32.6\\ 43.4\\ 0.2\\ 0.4\\ 0.1\end{array}$	0.1 0.1 16.4 0.1 21.0 0.1 19.2 0.1 15.4 0.1 23.7	$\begin{array}{c} 22.6\\ 12.2\\ 8.4\\ 17.5\\ 4.4\\ 9.0\\ 35.6\\ 16.2\\ 16.6\\ 35.6\\ 13.6\\ 21.2\\ \end{array}$	7.2 0.7 26.8 222.4 29.5 40.4 0.2 6.8 0.1 6.2 0.3 7.5 10.1 0.1	$\begin{array}{c} 0.2\\ 0.2\\ 15.4\\ 0.1\\ 0.4\\ 0.1\\ 217.3\\ 21.4\\ 20.8\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.5\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1$	$\begin{array}{c} 0.3\\ 0.4\\ 0.0\\ 0.2\\ 0.2\\ 0.4\\ 0.2\\ 0.4\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	23.2 0.1 2.5 2.5 2.1 2.8 3.8 21.2 20.9 18.1 23.2 31.4	0.1 0.1 16.8 0.1 21.3 0.1 19.5 0.1 17.1 0.1 15.7 0.1 24.1	$\begin{array}{c} 26.1\\ 37.4\\ 11.86\\ 20.3\\ 13.6\\ 16.5\\ 2.65\\ 24.5\\ 19.6\\ 13.4\\ 4.8\\ 38.0\\ 23.4 \end{array}$	8.0 0.1 2.5 2.1 2.8 3.8 7.3 7.3 6.3 8.0 10.9	$\begin{array}{c} 0.1 \\ 0.1 \\ 10.2 \\ 0.4 \\ 0.1 \\ 11.7 \\ 9.4 \\ 14.0 \\ 0.5 \\ 0.1 \\ 0.4 \\ 0.5 \\ 0.1 \\ 0.4 \\ 0.5 \\ 0.1 \\ 0.$	3.5 24.8 1.7.2 2.7 1.8 0.7 1.5 1.5 1.5 1.5 2.6 1.5 2.6 1.5 2.6 1.5 5 1.7 6 3.3
Entire network	2.3	0.6	1.4	6.1	11.1	4.6	14.6	9.9	4.8	0.5	7.4	4.6	18.9	3.1	3.3	6.8
Included studies	4	1	1	1	3	1	8	13	3	1	3	1	19	1	1	1

Figure S5.3 Contribution plot for the incretin-based regimens network: waist circumference Note: The size of the squares is proportional to the percentage contribution of the column-defining direct comparison to the row-defining network estimate. A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SGLT-2, F=SU, G=TZD, H=a-Glu, I=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; a-Glu: alpha-glucosidase inhibitor; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Assessment of inconsistency: results of the loop-specific approach and the

node-splitting model

a. Evaluation of the local inconsistency: forest plots of inconsistence check for all closed loops in network

					95%CI	Loop-specific
Loop				IF	(truncated)	Heterogeneity(τ^2)
Met-SU-TZD-Placebo				2.36	(0.00, 18.13)	4.675
DPP-4I-TZD-Placebo				1.98	(0.09,3.86)	0.596
GLP-1RA-Ins-TZD				1.55	(0.00,5.06)	2.479
Ins-TZD-Placebo	•			1.44	(0.00,2.98)	0.000
DPP-4I-Met-TZD				1.42	(0.00,5.45)	3.234
DPP-4I-GLP-1RA-TZD				1.37	(0.00,3.03)	1.918
GLP-1RA-TZD-Placebo				1.09	(0.00,3.39)	1.218
DPP-4I-SU-Placebo				1.04	(0.00,2.22)	0.515
DPP-4I-Met-SU	•	_		0.90	(0.00,8.67)	1.468
GLP-1RA-Met-TZD				0.64	(0.00,4.57)	2.718
GLP-1RA-Ins-Placebo	•			0.55	(0.00,3.29)	1.602
GLP-1RA-SGLT-2-Placebo	•			0.53	(0.00,3.15)	1.042
DPP-4I-GLP-1RA-SU	-			0.52	(0.00,1.58)	0.928
DPP-4I-GLP-1RA-Ins	· · · · · · · · · · · · · · · · · · ·			0.44	(0.00,2.86)	2.151
DPP-4I-GLP-1RA-Met	•			0.39	(0.00,2.60)	2.652
GLP-1RA-SU-Placebo	·			0.38	(0.00,2.10)	1.158
DPP-4I-GLP-1RA-SGLT-2				0.31	(0.00,2.87)	1.063
DPP-4I-Ins-TZD	· · · · ·			0.26	(0.00,4.57)	1.899
DPP-4I-GLP-1RA-Placebo	-			0.26	(0.00,0.88)	0.744
DPP-4I-Ins-Placebo				0.12	(0.00,2.31)	0.490
DPP-4I-SGLT-2-Placebo	←			0.05	(0.00,1.40)	0.474
GLP-1RA-Met-SU	1			0.00	(0.00,10.88)	1.333
			1 1			
	0 5	10	15 19			

Figure S6.1 Forest plots of inconsistency: weight

			95%CI	Loop-specific
Loop		IF	(truncated)	$\text{Heterogeneity}(\tau^2)$
DPP-41-Ins-TZD	-	1.46	(0.86,2.06)	0.000
DPP-4I-GLP-1RA-TZD	•	0.78	(0.00,2.07)	0.223
DPP-4I-GLP-1RA-Ins	•	0.49	(0.00,1.56)	0.240
DPP-4I-GLP-1RA-Placebo	+	0.39	(0.00,1.01)	0.158
DPP-4I-Met-SU	•	0.35	(0.00,2.23)	0.023
DPP-4I-GLP-1RA-a-Glu	-	0.29	(0.00,2.45)	0.129
DPP-4I-GLP-1RA-SU	—	0.29	(0.00,1.94)	0.855
GLP-1RA-Met-SU	•	0.26	(0.00,4.57)	2.218
DPP-4I-GLP-1RA-Met	—	0.22	(0.00,1.71)	0.473
GLP-1RA-Ins-TZD	•	0.10	(0.00,1.32)	0.223
	<u> </u>			
	0 2345			

Figure S6.2 Forest plots of inconsistency: body mass index

Figure S6.3 Forest plots of inconsistency: waist circumference

Note: DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Ins: insulin; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulfonylurea TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Table S5.1 Summary of node splitting model results: weight												
Comparisons	Dir	ect	Ind	irect		Differen	ce					
	Coef.	SE	Coef.	SE	Coef.	SE	P-value					
DPP4-placebo	-0.12	0.20	-0.68	0.30	0.56	0.36	0.119					
DPP4-GLP1RA	-1.59	0.34	-1.72	0.22	0.13	0.41	0.752					
DPP4-Insulin	3.80	0.71	1.96	0.30	1.84	0.77	0.016					
DPP4-Met	-0.84	0.50	-1.30	0.67	0.46	0.84	0.583					
DPP4-SGLT2	-2.56	0.84	-2.47	1.16	-0.09	1.43	0.951					
DPP4-SU	1.41	0.27	2.47	0.43	-1.06	0.51	0.038					
DPP4-TZD	1.30	0.45	3.03	0.59	-1.73	0.74	0.019					
DPP4-aGlu	-0.20	0.43	-0.32	5.82	0.12	5.83	0.984					
GLP1RA-placebo	1.24	0.19	1.80	0.32	-0.56	0.37	0.127					
GLP1RA-Insulin	3.75	0.24	5.36	0.68	-1.61	0.72	0.025					
GLP1RA-Met	0.55	0.64	0.77	0.55	-0.22	0.84	0.796					
GLP1RA-SGLT2	-0.66	1.43	-0.91	0.78	0.25	1.62	0.880					
GLP1RA-SU	4.06	0.40	2.92	0.33	1.15	0.52	0.026					
GLP1RA-TZD	4.38	0.54	2.97	0.50	1.41	0.73	0.055					
Insulin-placebo	-1.99	1.60	-2.55	0.27	0.56	1.63	0.731					
Insulin-TZD	-1.00	1.43	-0.24	0.44	-0.76	1.49	0.610					
Met-SU	3.22	1.43	2.66	0.47	0.56	1.51	0.709					
Met-TZD	3.52	1.43	2.85	0.56	0.67	1.53	0.663					
SGLT2-placebo	2.39	1.07	2.12	0.90	0.27	1.41	0.850					
SU-placebo	-2.62	0.95	-1.95	0.27	-0.66	1.00	0.504					
TZD-placebo	-5.67	1.19	-1.82	0.40	-3.85	1.26	0.002					

b. Evaluation of the inconsistency by node-splitting model

Table S5.	2 Summary of no	de splitting model re	sults: body mass index	
parisons	Direct	Indirect	Difference	

Comparisons	Dire	ect	Ind	irect		Differen	ce
	Coef.	SE	Coef.	SE	Coef.	SE	P-value
DPP4-placebo	0.16	0.23	-0.14	0.35	0.30	0.41	0.468
DPP4-GLP1RA	-0.97	0.39	-1.02	0.22	0.05	0.45	0.910
DPP4-Insulin	-0.03	0.48	0.45	0.29	-0.48	0.56	0.388
DPP4-Met	-0.18	0.41	-0.43	0.48	0.25	0.64	0.695
DPP4-SU	0.68	0.26	0.95	0.44	-0.28	0.51	0.590
DPP4-TZD	0.76	0.82	-0.01	0.57	0.77	1.00	0.441
DPP4-aGlu	-0.28	0.37	0.10	0.84	-0.38	0.92	0.681
GLP1RA-placebo	0.98	0.27	1.21	0.32	-0.24	0.42	0.571
GLP1RA-Insulin	1.39	0.21	1.01	0.50	0.38	0.54	0.483
GLP1RA-Met	0.60	0.48	0.84	0.45	-0.25	0.66	0.709
GLP1RA-SU	1.92	0.41	1.65	0.33	0.27	0.53	0.615
GLP1RA-TZD	1.09	0.58	1.50	0.74	-0.41	0.94	0.660
GLP1RA-aGlu	1.07	0.83	0.72	0.42	0.35	0.93	0.705
Insulin-TZD	-0.40	0.82	0.07	0.58	-0.47	1.01	0.639
Met-SU	1.11	0.83	1.01	0.41	0.10	0.92	0.915

Comparisons	Dire	ect	Ind	irect		Difference						
	Coef.	SE	Coef.	SE	Coef.	SE	P-value					
DPP4-placebo	-0.30	0.70	-0.88	0.79	0.58	1.06	0.584					
DPP4-GLP1RA	-1.39	0.86	-2.27	0.64	0.88	1.07	0.414					
DPP4-Insulin	2.20	1.73	1.02	0.72	1.18	1.87	0.528					
DPP4-Met	-3.30	1.68	0.23	1.03	-3.53	1.97	0.073					
DPP4-SGLT2	-1.90	1.78	-2.46	3.38	0.56	3.83	0.884					
DPP4-SU	1.16	1.00	0.88	1.62	0.28	1.91	0.883					
DPP4-aGlu	0.10	1.65	5.30	1.72	-5.20	2.39	0.029					
GLP1RA-placebo	1.29	0.46	1.84	0.92	-0.55	1.03	0.590					
GLP1RA-Insulin	3.07	0.48	4.06	1.61	-0.99	1.68	0.557					
GLP1RA-Met	2.05	0.97	-1.12	1.64	3.17	1.90	0.096					
GLP1RA-SU	3.11	1.73	3.01	1.09	0.10	2.05	0.959					
GLP1RA-TZD	2.54	1.00	1.28	3.09	1.26	3.25	0.697					
GLP1RA-aGlu	7.05	1.65	1.81	1.72	5.24	2.39	0.028					
Insulin-TZD	-1.10	1.73	-0.53	1.26	-0.57	2.14	0.789					
Met-SU	1.37	1.73	2.13	1.45	-0.76	2.26	0.738					
SGLT2-placebo	1.60	1.82	1.04	3.31	0.56	3.83	0.884					

Table S5.3 Summary of node splitting model results: waist circumference

Note: DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP1RA: glucagon-like peptide-1 receptor agonists; Ins: insulin; Met: metformin; SGLT2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinediones; aGlu: alpha-glucosidase.

Predictive intervals plots for the incretin-based regimens network on weight, body

mass index and waist circumference.

Figure S7.1 Predictive intervals plot: weight

Figure S7.2 Predictive intervals plot: body mass index

Note: The graph presents the network estimates for all pairwise comparisons. Black horizontal lines represent the confidence intervals, and red horizontal lines represent the predictive intervals. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Ins: insulin; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Comparison-adjusted funnel plots for weight, body mass index and waist

circumference

Figure S8.1 Comparison-adjusted funnel plot: weight

A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SGLT-2, F=SU, G=TZD, H=a-Glu, I=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; a-Glu: alpha-glucosidase inhibitor; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Figure S8.2 Comparison-adjusted funnel plot: body mass index

A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SU, F=TZD, G=a-Glu, H=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SU: sulphanylureas; a-Glu: alpha-glucosidase inhibitor; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Figure S8.3 Comparison-adjusted funnel plot: waist circumference

A=DPP-4I, B=GLP-1RA, C=Insulin, D=Met, E=SGLT-2, F=SU, G=TZD, H=a-Glu, I=Placebo. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; a-Glu: alpha-glucosidase inhibitor; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

Plots of cumulative ranking probability (SUCRA)

Figure S9.1 Plots of cumulative ranking probability: weight

Figure S9.2 Plots of cumulative ranking probability: body mass index

Figure S9.3 Plots of cumulative ranking probability: waist circumference

Note: DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Ins: insulin; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinediones; a-Glu: alpha-glucosidase. Ranking: probability of being the best safety, of being the second safety, the third safety and so on, among the 8 (body mass index) or 9 treatments (weight and waist circumference).
Supplementary File 12

Contribution summary of risk of bias assessments

a. Contribution summary of risk of bias assessments for any direct comparisons included in the network meta-analysis

Direct comparison	Risk of bias assessment					
Direct comparison	Weight	Body mass index	Waist circumference			
DPP4-GLP1RA	Low	High	High			
DPP4-Insulin	High	High	High			
DPP4-Met	Low	High	High			
DPP4-SGLT2	Low	NA	Low			
DPP4-SU	Low	High	High			
DPP4-TZD	Unclear	High	NA			
DPP4-aGlu	High	High	High			
DPP4-placebo	Low	High	Low			
GLP1RA-Insulin	High	High	High			
GLP1RA-Met	High	High	High			
GLP1RA-SGLT2	Unclear	NA	NA			
GLP1RA-SU	Unclear	Unclear	High			
GLP1RA-TZD	Low	High	High			
GLP1RA-aGlu	NA	High	High			
GLP1RA-placebo	Low	Low	Low			
Insulin-TZD	High	High	High			
Insulin-placebo	Low	NA	NA			
Met-SU	High	High	High			
Met-TZD	Low	NA	NA			
SGLT2-placebo	Low	NA	Low			
SU-placebo	Low	NA	NA			
TZD-placebo	Unclear	NA	NA			

Table S6.1 Contribution summary of risk of bias assessments

Note: DPP4: dipeptidyl-peptidase IV inhibitors; GLP1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinediones; aGlu: alpha-glucosidase. NA: No direct comparison. b. The contribution of direct comparisons to mixed or indirect comparisons by risk of bias classification

Comparisons	Risk of bias assessment				
	Low (%)	Unclear (%)	High (%)		
DPP4-GLP1RA	83.0	11.9	5.1		
DPP4-Insulin	59.8	9.4	30.8		
DPP4-Met	65.5	13.4	21.1		
DPP4-SGLT2	90.0	8.9	1.1		
DPP4-SU	85.7	12.9	1.4		
DPP4-TZD	58.2	19.6	22.2		
DPP4-aGlu	0.0	0.0	100.0		
DPP4-placebo	92.5	5.9	1.6		
GLP1RA-Insulin	38.3	6.8	54.9		
GLP1RA-Met	62.0	12.2	25.8		
GLP1RA-SGLT2	83.9	12.5	3.6		
GLP1RA-SU	82.0	14.7	3.3		
GLP1RA-TZD	54.9	18.4	26.7		
GLP1RA-aGlu	54.7	7.8	37.5		
GLP1RA-placebo	84.6	10.3	5.1		
Insulin-Met	50.8	7.1	42.1		
Insulin-SGLT2	64.2	10.0	25.8		
Insulin-SU	62.5	11.7	25.8		
Insulin-TZD	42.7	13.8	43.5		
Insulin-aGlu	43.1	6.7	50.2		
Insulin-placebo	55.7	7.7	36.6		
Met-SGLT2	69.5	13.2	17.3		
Met-SU	67.6	14.9	17.5		
Met-TZD	68.5	9.0	22.5		
Met-aGlu	47.3	9.8	42.9		
Met-placebo	69.1	10.1	20.8		
SGLT2-SU	86.7	13.0	0.3		
SGLT2-TZD	63.8	17.9	18.3		
SGLT2-aGlu	50.9	5.1	44.0		
SGLT2-placebo	91.4	7.7	0.9		
SU-TZD	61.6	19.8	18.6		
SU-aGlu	48.9	7.4	43.7		
SU-placebo	89.4	9.6	1.0		
TZD-aGlu	40.8	13.7	45.5		
TZD-placebo	62.2	15.6	22.2		
aGlu-placebo	52.4	3.4	44.2		
entire	62.5	11.3	26.2		

Table S6.2 Summary of the contribution of direct comparisons: weight

Comparisons		Risk of bias assess	ment
	Low (%)	Unclear (%)	High (%)
DPP4-GLP1RA	18.4	0.9	80.7
DPP4-Insulin	10.1	0.5	89.4
DPP4-Met	1.2	0.0	98.8
DPP4-SU	1.3	3.4	95.3
DPP4-TZD	8.4	0.4	91.2
DPP4-aGlu	0.2	0.0	99.8
DPP4-placebo	14.3	0.4	85.3
GLP1RA-Insulin	9.6	0.4	90.0
GLP1RA-Met	12.4	0.6	87.0
GLP1RA-SU	12.3	1.9	85.8
GLP1RA-TZD	12.2	0.6	87.2
GLP1RA-aGlu	12.4	0.6	87.0
GLP1RA-placebo	30.5	0.6	68.9
Insulin-Met	6.5	0.3	93.2
Insulin-SU	6.4	1.6	92.0
Insulin-TZD	4.9	0.2	94.9
Insulin-aGlu	6.8	0.3	92.9
Insulin-placebo	16.6	0.2	83.2
Met-SU	0.1	1.9	98.0
Met-TZD	4.6	0.2	95.2
Met-aGlu	0.6	0.0	99.4
Met-placebo	9.1	0.2	90.7
SU-TZD	4.5	1.8	93.7
SU-aGlu	0.6	1.8	97.6
SU-placebo	9.1	1.8	89.1
TZD-aGlu	5.0	0.2	94.8
TZD-placebo	14.7	0.0	85.3
aGlu-placebo	8.5	0.2	91.3
enrite	8.9	0.8	90.3

Table S6.3 Summary of the contribution of direct comparisons: body mass index	

Table S6.4 Summary	of the contribution	1 of direct comparisons	: waist circumference

Comparisons	Risk of bias assessment				
	Low (%)	Unclear (%)	High (%)		
DPP4-GLP1RA	89.6	0.0	10.4		
DPP4-Insulin	58.5	0.0	41.5		
DPP4-Met	39.3	0.0	60.7		
DPP4-SGLT2	97.0	0.0	3.0		
DPP4-SU	6.0	0.0	94.0		
DPP4-TZD	55.7	0.0	44.3		
DPP4-aGlu	45.1	0.0	54.9		
DPP4-placebo	93.0	0.0	7.0		

GLP1RA-Insulin	3.0	0.0	97.0
GLP1RA-Met	38.0	0.0	62.0
GLP1RA-SGLT2	93.0	0.0	7.0
GLP1RA-SU	59.3	0.0	40.7
GLP1RA-TZD	0.6	0.0	99.4
GLP1RA-aGlu	44.7	0.0	55.3
GLP1RA-placebo	89.0	0.0	11.0
Insulin-Met	25.2	0.0	74.8
Insulin-SGLT2	63.9	0.0	36.1
Insulin-SU	43.2	0.0	56.8
Insulin-TZD	1.5	0.0	98.5
Insulin-aGlu	28.4	0.0	71.6
Insulin-placebo	46.4	0.0	53.6
Met-SGLT2	52.3	0.0	47.7
Met-SU	32.8	0.0	67.2
Met-TZD	24.4	0.0	75.6
Met-aGlu	0.8	0.0	99.2
Met-placebo	44.0	0.0	56.0
SGLT2-SU	58.5	0.0	41.5
SGLT2-TZD	60.9	0.0	39.1
SGLT2-aGlu	59.1	0.0	40.9
SGLT2-placebo	97.2	0.0	2.8
SU-TZD	41.7	0.0	58.3
SU-aGlu	28.6	0.0	71.4
SU-placebo	51.0	0.0	49.0
TZD-aGlu	27.3	0.0	72.7
TZD-placebo	42.8	0.0	57.2
aGlu-placebo	51.2	0.0	48.8
entire	46.4	0.0	53.6

Note: DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Ins: insulin; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinediones; a-Glu: alpha-glucosidase.

c. The contribution summary of direct comparisons to mixed or indirect comparisons by risk of bias classification

Figure S10.1 The contribution summary of direct comparisons: weight

Figure S10.2 The contribution summary of direct comparisons: body mass index

Note: DPP4: dipeptidyl-peptidase IV inhibitors; GLP1RA: glucagon-like peptide-1 receptor agonists; Ins: insulin; Met: metformin; SGLT2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinediones; aGlu: alpha-glucosidase. Supplementary File 13

Evaluation of the quality of evidence using GRADE framework

Comparison	Study limitation	Imprecision	Heterogeneity and	Indirectness	Publication bias	Confidence in
		WMD (95% CI)	inconsistency			OR for risk of
						dizziness
DPP4-GLP1RA	5.1% of the estimate	1.66 (1.35,1.96)	Severe heterogeneity	The treatment effects	The funnel plot for the	Moderate
	from studies at high	No concerns	according to $I^2(88.2\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	risk, 11.9% at		P-value (0.000) in direct	influenced by clinical	suggestive of any	one level due to
	moderate risk, and		comparisons.	modifiers in the	dominant publication	heterogeneity and
	83.0% at low risk.		No inconsistency between	subgroup analyses.	bias.	inconsistency)
			direct and indirect estimate			
			(Node-split p=0.752).			
DPP4-Insulin	30.8% of the	-2.11 (-2.59,-1.62)	Moderate heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to $I^2(63.1\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.043) in direct	influenced by clinical	suggestive of any	two levels due to
	9.4% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 59.8% at		There is inconsistency	subgroup analyses.	bias.	and heterogeneity
	low risk.		between direct and indirect			and
			estimate (Node-split			inconsistency)
			p=0.016).			
DPP4-Met	21.1% of the	1.11 (0.41,1.81)	Severe heterogeneity	The treatment effects	The funnel plot for the	Very low
	estimate from	Some concerns	according to I2 (98.4%) and	were not significantly	direct comparison is	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	three levels due to
	13.4% at moderate		comparisons.	modifiers in the	dominant publication	study limitation,
	risk, and 65.5% at		No inconsistency between	subgroup analyses.	bias.	heterogeneity and

Table S7.1 Evaluation of the quality of evidence using GRADE framework: weight

	low risk.		direct and indirect estimate			inconsistency,
			(Node-split p=0.583).			publication bias)
DPP4-SGLT2	1.1% of the estimate	2.54 (1.51,3.58)	Mild heterogeneity	The treatment effects	The funnel plot for the	High
	from studies at high	No concerns	according to I2 (0.0%) and	were not significantly	direct comparison is not	
	risk, 8.9% at		P-value (0.722) in direct	influenced by clinical	suggestive of any	
	moderate risk, and		comparisons.	modifiers in the	dominant publication	
	90.0% at low risk.		No inconsistency between	subgroup analyses.	bias.	
			direct and indirect estimate			
			(Node-split p=0.951).			
DPP4-SU	1.4% of the estimate	-1.52 (-1.92,-1.13)	Severe heterogeneity	The treatment effects	The funnel plot for the	Moderate
	from studies at high	No concerns	according to I^2 (0.000%) and	were not significantly	direct comparison is not	(Downgrade by
	risk, 12.9% at		P-value (0.440) in direct	influenced by clinical	suggestive of any	one level due to
	moderate risk, and		comparisons.	modifiers in the	dominant publication	heterogeneity and
	85.7% at low risk.		There is inconsistency	subgroup analyses.	bias.	inconsistency)
			between direct and indirect			
			estimate (Node-split			
			p=0.038).			
DPP4-TZD	22.2% of the	-1.83 (-2.43,-1.24)	Severe heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to I^2 (91.6%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	two levels due to
	19.6% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 58.2% at		No inconsistency between	subgroup analyses.	bias.	and heterogeneity
	low risk.		direct and indirect estimate			and
			(Node-split p=0.019).			inconsistency)

DPP4-aGlu	100.0% of the	0.57 (-0.23.1.37)	Mild heterogeneity	The treatment effects	The funnel plot for the	Very low
	estimate from	Some concerns	according to I^2 (46.6%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk	Some concerns	\mathbf{P} value (0.044) in direct	influenced by clinical	suggestive of any	three levels due to
	studies at high fisk,		r-value (0.044) in direct	influenced by chilical	suggestive of any	unee levels due to
	0.0% at moderate		comparisons.	modifiers in the	dominant publication	heterogeneity and
	risk, and 0.0% at		No inconsistency between	subgroup analyses.	bias.	inconsistency and
	low risk.		direct and indirect estimate			study limitation
			(Node-split p=0.984).			(for two levels))
DPP4-placebo	1.6% of the estimate	0.31 (0.05,0.58)	Severe heterogeneity	The treatment effects	The funnel plot for the	Moderate
	from studies at high	No concerns	according to I^2 (85.5%) and	were not significantly	direct comparison is not	(Downgrade by
	risk, 5.9% at		P-value (0.000) in direct	influenced by clinical	suggestive of any	one level due to
	moderate risk, and		comparisons.	modifiers in the	dominant publication	heterogeneity and
	92.5% at low risk.		No inconsistency between	subgroup analyses.	bias.	inconsistency)
			direct and indirect estimate			
			(Node-split p=0.119).			
GLP1RA-Insulin	54.9% of the	-3.76 (-4.16,-3.37)	Severe heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to I2(94.8%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value(0.859) in direct	influenced by clinical	suggestive of any	two levels due to
	6.8% at moderate		comparisons.	modifiers in the	dominant publication	study limitation,
	risk, and 38.3% at		There is inconsistency	subgroup analyses.	bias.	heterogeneity and
	low risk.		between direct and indirect			inconsistency)
			estimate (Node-split			57
			p=0.025).			
GLP1RA-Met	25.8% of the	-0.55 (-1.27,0.17)	Severe heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	Some concerns	according to $I^2(86.1\%)$ and	were not significantly	direct comparison is not	(Downgrade by

	studios at high might		\mathbf{P} value (0,000) in direct	influenced by alinical	suggestive of one	truo lovala duo to
	studies at high risk,		P-value(0.000) in direct	influenced by clinical	suggestive of any	two levels due to
	12.2% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 62% at low		There is inconsistency	subgroup analyses.	bias.	and heterogeneity
	risk.		between direct and indirect			and
			estimate (Node-split			inconsistency)
			p=0.796).			
GLP1RA-SGLT2	3.6% of the estimate	0.89 (-0.16,1.93)	Only one head-to-head study	The treatment effects	Only one head-to-head	High
	from studies at high	Some concerns	and no heterogeneity.	were not significantly	study.	
	risk, 12.5% at		No inconsistency between	influenced by clinical		
	moderate risk, and		direct and indirect estimate	modifiers in the		
	83.9% at low risk.		(Node-split p=0.880).	subgroup analyses.		
GLP1RA-SU	3.3% of the estimate	-3.18 (-3.62,-2.74)	Severe heterogeneity	The treatment effects	The funnel plot for the	Moderate
	from studies at high	No concerns	according to I^2 (94.6%) and	were not significantly	direct comparison is not	(Downgrade by
	risk, 14.7% at		P-value (0.000) in direct	influenced by clinical	suggestive of any	one level due to
	moderate risk, and		comparisons.	modifiers in the	dominant publication	heterogeneity and
	82% at low risk.		There is inconsistency	subgroup analyses.	bias.	inconsistency)
			between direct and indirect			
			estimate (Node-split			
			p=0.026).			
GLP1RA-TZD	26.7% of the	-3.49 (-4.10,-2.88)	Severe heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to I^2 (94.2%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	two levels due to
	18.4% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 54.9% at		No inconsistency between	subgroup analyses.	bias.	and

	low risk.		direct and indirect estimate			heterogeneity and
			(Node-split p=0.055).			inconsistency)
GLP1RA-aGlu	37.5% of the	-1.09 (-1.94,-0.23)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	7.8% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 54.7% at		inconsistency.	subgroup analyses.		
	low risk.					
GLP1RA-placebo	5.1% of the estimate	-1.34 (-1.60,-1.09)	Severe heterogeneity	The treatment effects	The funnel plot for the	Moderate
	from studies at high	No concerns	according to I^2 (84.9%) and	were not significantly	direct comparison is not	(Downgrade by
	risk, 10.3% at		P-value (0.000) in direct	influenced by clinical	suggestive of any	one level due to
	moderate risk, and		comparisons.	modifiers in the	dominant publication	heterogeneity and
	84.6% at low risk.		No inconsistency between	subgroup analyses.	bias.	inconsistency)
			direct and indirect estimate			
			(Node-split p=0.127).			
Insulin-Met	42.1% of the	3.22 (2.40,4.04)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	7.1% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 50.8% at		inconsistency.	subgroup analyses.		
	low risk.					
Insulin-SGLT2	25.8% of the	4.65 (3.54,5.77)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to

	10.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 64.2% at		inconsistency.	subgroup analyses.		
	low risk.					
Insulin-SU	25.8% of the	0.58 (-0.00,1.17)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	11.7% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 62.5% at		inconsistency.	subgroup analyses.		
	low risk.					
Insulin-TZD	43.5% of the	0.27 (-0.44,0.99)	Only one head-to-head study	The treatment effects	Only one head-to-head	Moderate
	estimate from	No concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		one level due to
	13.8% at moderate		direct and indirect estimate	modifiers in the		study limitation)
	risk, and 42.7% at		(Node-split p=0.610).	subgroup analyses.		
	low risk.					
Insulin-aGlu	50.2% of the	2.68 (1.74,3.61)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	6.7% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 43.1% at		inconsistency.	subgroup analyses.		
	low risk.					
Insulin-placebo	36.6% of the	2.42 (1.96,2.89)	Only one head-to-head study	The treatment effects	Only one head-to-head	Moderate
	estimate from	No concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		one level due to

	7.7% at moderate		direct and indirect estimate	modifiers in the		study limitation)
	risk, and 55.7% at		(Node-split p=0.731).	subgroup analyses.		
	low risk.					
Met-SGLT2	17.3% of the	1.44 (0.19,2.68)	No head-to-head study and	The treatment effects	No head-to-head study.	High
	estimate from	Some concerns	no heterogeneity.	were not significantly		
	studies at high risk,		Only indirect comparison,	influenced by clinical		
	13.2% at moderate		and no node-splitting	modifiers in the		
	risk, and 69.5% at		inconsistency.	subgroup analyses.		
	low risk.					
Met-SU	17.5% of the	-2.63 (-3.43,-1.84)	Only one head-to-head study	The treatment effects	Only one head-to-head	High
	estimate from	No concerns	and no heterogeneity.	were not significantly	study.	
	studies at high risk,		No inconsistency between	influenced by clinical		
	14.9% at moderate		direct and indirect estimate	modifiers in the		
	risk, and 67.6% at		(Node-split p=0.709).	subgroup analyses.		
	low risk.					
Met-TZD	22.5% of the	-2.94 (-3.83,-2.05)	Only one head-to-head study	The treatment effects	Only one head-to-head	Moderate
	estimate from	No concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		one level due to
	9.0% at moderate		direct and indirect estimate	modifiers in the		study limitation)
	risk, and 68.5% at		(Node-split p=0.663).	subgroup analyses.		
	low risk.					
Met-aGlu	42.9% of the	-0.54 (-1.60,0.53)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to

	9.8% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 47.3% at		inconsistency.	subgroup analyses.		
	low risk.					
Met-placebo	20.8% of the	-0.79 (-1.52,-0.07)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	10.1% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 69.1% at		inconsistency.	subgroup analyses.		
	low risk.					
SGLT2-SU	0.3% of the estimate	-4.07 (-5.17,-2.97)	No head-to-head study and	The treatment effects	No head-to-head study.	High
	from studies at high	No concerns	no heterogeneity.	were not significantly		
	risk, 13.0% at		Only indirect comparison,	influenced by clinical		
	moderate risk, and		and no node-splitting	modifiers in the		
	86.7% at low risk.		inconsistency.	subgroup analyses.		
SGLT2-TZD	18.3% of the	-4.38 (-5.56,-3.20)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	17.9% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 63.8% at		inconsistency.	subgroup analyses.		
	low risk.					
SGLT2-aGlu	44% of the estimate	-1.97 (-3.28,-0.67)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	from studies at high	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	risk, 5.1% at		Only indirect comparison,	influenced by clinical		one level due to
	moderate risk, and		and no node-splitting	modifiers in the		study limitation)

	50.9% at low risk.		inconsistency.	subgroup analyses.		
SGLT2-placebo	0.9% of the estimate	-2.23 (-3.27,-1.19)	Moderate heterogeneity	The treatment effects	The funnel plot for the	Moderate
	from studies at high	Some concerns	according to $I^2(70.3\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	risk, 7.7% at		P-value (0.067) in direct	influenced by clinical	suggestive of any	one level due to
	moderate risk, and		comparisons.	modifiers in the	dominant publication	heterogeneity and
	91.4% at low risk.		No inconsistency between	subgroup analyses.	bias.	inconsistency)
			direct and indirect estimate			
			(Node-split p=0.850).			
SU-TZD	18.6% of the	-0.31 (-1.01,0.39)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	19.8% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 61.6% at		inconsistency.	subgroup analyses.		
	low risk.					
SU-aGlu	43.7% of the	2.09 (1.20,2.98)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	7.4% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 48.9% at		inconsistency.	subgroup analyses.		
	low risk.					
SU-placebo	1.0% of the estimate	1.84 (1.40,2.28)	Moderate heterogeneity	The treatment effects	The funnel plot for the	Moderate
	from studies at high	Some concerns	according to $I^2(73.8\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	risk, 9.6% at		P-value (0.022) in direct	influenced by clinical	suggestive of any	one level due to
	moderate risk, and		comparisons.	modifiers in the	dominant publication	heterogeneity and

	89.4% at low risk.		No inconsistency between	subgroup analyses.	bias.	inconsistency)
			direct and indirect estimate			
			(Node-split p=0.504).			
TZD-aGlu	45.5% of the	2.40 (1.41,3.40)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	13.7% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 40.8% at		inconsistency.	subgroup analyses.		
	low risk.					
TZD-placebo	22.2% of the	2.15 (1.53,2.77)	Severe heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to $I^2(95.1\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	two levels due to
	15.6% at moderate		comparisons.	modifiers in the	dominant publication	study limitation,
	risk, and 62.2% at		There is inconsistency	subgroup analyses.	bias.	heterogeneity and
	low risk.		between direct and indirect			inconsistency)
			estimate (Node-split			
			p=0.002).			
aGlu-placebo	44.2% of the	-0.26 (-1.10,0.58)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	3.4% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 52.4% at		inconsistency.	subgroup analyses.		
	low risk.					
Ranking of	26.2% of the	SUCRA plots	High heterogeneity in	The treatment effects	The	Low

treatment	estimate from	suggested no	network meta-analyses	were not significantly	comparison-adjusted	(Downgrade by
	studies at high risk,	imprecision in a	according to global I ²	influenced by clinical	funnel plot for the	two level due to
	11.3% at moderate	ranking of treatments.	(91.4%).	modifiers in the	network is not	study limitation,
	risk, and 62.5% at		No inconsistency in test of	subgroup analyses.	suggestive of any	heterogeneity and
	low risk.		global inconsistency		dominant publication	inconsistency)
			according to Q statistic		bias.	
			(Q=27.75, P=0.479), and			
			few inconsistency in local			
			inconsistency.			

Table S7.2 Evaluation of the quality of evidence using GRADE framework: body mass index

Comparison	Study limitation	Imprecision	Heterogeneity and	Indirectness	Publication bias	Confidence in
		WMD (95% CI)	inconsistency			OR for risk of
						headache
DPP4-GLP1RA	80.7% of the	0.98 (0.66,1.30)	Severe heterogeneity	The treatment effects	The funnel plot for the	Very low
	estimate from	Some concerns	according to $I^2(88.6\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	three levels due to
	0.9% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 18.4% at		No inconsistency between	subgroup analyses.	bias.	(for two levels),
	low risk.		direct and indirect estimate			heterogeneity and
			(Node-split p=0.910).			inconsistency)
DPP4-Insulin	89.4% of the	-0.37 (-0.80,0.06)	Mild heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to $I^2(0.0\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.730) in direct	influenced by clinical	suggestive of any	two levels due to

	0.5% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 10.1% at		No inconsistency between	subgroup analyses.	bias.	(for two levels))
	low risk.		direct and indirect estimate			
			(Node-split p=0.388).			
DPP4-Met	98.8% of the	0.36 (-0.23,0.94)	Mild heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	Some concerns	according to $I^2(0.0\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.913) in direct	influenced by clinical	suggestive of any	two levels due to
	0.0% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 1.2% at		No inconsistency between	subgroup analyses.	bias.	(for two levels))
	low risk.		direct and indirect estimate			
			(Node-split p=0.695).			
DPP4-SU	95.3% of the	-0.69 (-1.15,-0.24)	Mild heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	Some concerns	according to I^2 (33.7%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.138) in direct	influenced by clinical	suggestive of any	two levels due to
	3.4% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 1.3% at		No inconsistency between	subgroup analyses.	bias.	(for two levels))
	low risk.		direct and indirect estimate			
			(Node-split p=0.590).			
DPP4-TZD	91.2% of the	-0.25 (-0.94,0.43)	Only one head-to-head study	The treatment effects	Only one head-to-head	Low
	estimate from	Some concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		two levels due to
	0.4% at moderate		direct and indirect estimate	modifiers in the		study limitation
	risk, and 8.4% at		(Node-split p=0.441).	subgroup analyses.		(for two levels))
	low risk.					

DPP4-aGlu	99.8% of the	0.31 (-0.28,0.91)	Mild heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	Some concerns	according to I^2 (0.0%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.899) in direct	influenced by clinical	suggestive of any	two levels due to
	0.0% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 0.2% at		No inconsistency between	subgroup analyses.	bias.	(for two levels))
	low risk.		direct and indirect estimate			
			(Node-split p=0.681).			
DPP4-placebo	85.3% of the	-0.11 (-0.40,0.17)	Moderate heterogeneity	The treatment effects	The funnel plot for the	Very low
	estimate from	No concerns	according to I^2 (55.4%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.001) in direct	influenced by clinical	suggestive of any	three levels due to
	0.4% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 14.3% at		No inconsistency between	subgroup analyses.	bias.	(for two levels)
	low risk.		direct and indirect estimate			and heterogeneity
			(Node-split p=0.468).			and
						inconsistency)
GLP1RA-Insulin	90% of the estimate	-1.35 (-1.68,-1.02)	Severe heterogeneity	The treatment effects	The funnel plot for the	Very low
	from studies at high	No concerns	according to I^2 (89.7%) and	were not significantly	direct comparison is not	(Downgrade by
	risk, 0.4% at		P-value (0.000) in direct	influenced by clinical	suggestive of any	three levels due to
	moderate risk, and		comparisons.	modifiers in the	dominant publication	study limitation
	9.6% at low risk.		No inconsistency between	subgroup analyses.	bias.	(for two levels),
			direct and indirect estimate			heterogeneity and
			(Node-split p=0.483).			inconsistency)
GLP1RA-Met	87.0% of the	-0.63 (-1.21,-0.04)	Severe heterogeneity	The treatment effects	The funnel plot for the	Very low
	estimate from	Some concerns	according to $I^2(95.7\%)$ and	were not significantly	direct comparison is not	(Downgrade by

	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	three levels due to
	0.6% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 12.4% at		No inconsistency between	subgroup analyses.	bias.	(for two levels),
	low risk.		direct and indirect estimate			heterogeneity and
			(Node-split p=0.709).			inconsistency)
GLP1RA-SU	85.8% of the	-1.68 (-2.15,-1.20)	Severe heterogeneity	The treatment effects	The funnel plot for the	Very low
	estimate from	No concerns	according to $I^2(98.0\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	three levels due to
	1.9% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 12.3% at		There is inconsistency	subgroup analyses.	bias.	(for two levels),
	low risk.		between direct and indirect			heterogeneity and
			estimate (Node-split			inconsistency)
			p=0.615).			
GLP1RA-TZD	87.2% of the	-1.24 (-1.89,-0.58)	Severe heterogeneity	The treatment effects	The funnel plot for the	Very low
	estimate from	Some concerns	according to I^2 (84.2%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.012) in direct	influenced by clinical	suggestive of any	three levels due to
	0.6% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 12.2% at		No inconsistency between	subgroup analyses.	bias.	(for two levels),
	low risk.		direct and indirect estimate			heterogeneity and
			(Node-split p=0.660).			inconsistency)
GLP1RA-aGlu	87.0% of the	-0.67 (-1.34,-0.01)	Only one head-to-head study	The treatment effects	Only one head-to-head	Low
	estimate from	Some concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		two levels due to
	0.6% at moderate		direct and indirect estimate	modifiers in the		study limitation

	risk, and 12.4% at		(Node-split p=0.705).	subgroup analyses.		(for two levels))
	low risk.					
GLP1RA-placebo	68.9% of the	-1.10 (-1.42,-0.78)	Moderate heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to I^2 (66.7%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	two levels due to
	0.6% at moderate		comparisons.	modifiers in the	dominant publication	study limitation,
	risk, and 30.5% at		No inconsistency between	subgroup analyses.	bias.	heterogeneity and
	low risk.		direct and indirect estimate			inconsistency)
			(Node-split p=0.571).			
Insulin-Met	93.2% of the	0.72 (0.06,1.39)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.3% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 6.5% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
Insulin-SU	92.0% of the	-0.33 (-0.89,0.24)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	1.6% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 6.4% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
Insulin-TZD	94.9% of the	0.12 (-0.58,0.82)	Only one head-to-head study	The treatment effects	Only one head-to-head	Low
	estimate from	No concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		two levels due to

	0.2% at moderate		direct and indirect estimate	modifiers in the		study limitation
	risk, and 4.9% at		(Node-split p=0.639).	subgroup analyses.		(for two levels))
	low risk.					
Insulin-aGlu	92.9% of the	0.68 (-0.05,1.40)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.3% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 6.8% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
Insulin-placebo	83.2% of the	0.25 (-0.19,0.69)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.2% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 16.6% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
Met-SU	98.0% of the	-1.05 (-1.75,-0.35)	Only one head-to-head study	The treatment effects	Only one head-to-head	Low
	estimate from	Some concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		two levels due to
	1.9% at moderate		direct and indirect estimate	modifiers in the		study limitation
	risk, and 0.1% at		(Node-split p=0.915).	subgroup analyses.		(for two levels))
	low risk.					
Met-TZD	95.2% of the	-0.61 (-1.47,0.25)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to

	0.2% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 4.6% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
Met-aGlu	99.4% of the	-0.05 (-0.87,0.78)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 0.6% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
Met-placebo	90.7% of the	-0.47 (-1.09,0.15)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.2% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 9.1% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
SU-TZD	93.7% of the	0.44 (-0.34,1.23)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	1.8% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 4.5% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
SU-aGlu	97.6% of the	1.01 (0.26,1.75)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to

	1.8% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 0.6% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
SU-placebo	89.1% of the	0.58 (0.08,1.08)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	1.8% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 9.1% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
TZD-aGlu	94.8% of the	0.56 (-0.34,1.46)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.2% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 5% at low		inconsistency.	subgroup analyses.		(for two levels))
	risk.					
TZD-placebo	85.3% of the	0.14 (-0.56,0.84)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 14.7% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
aGlu-placebo	91.3% of the	-0.43 (-1.08,0.23)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to

	0.2% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 8.5% at		inconsistency.	subgroup analyses.		(for two levels))
	low risk.					
Ranking of	90.3% of the	SUCRA plots	High heterogeneity in	The treatment effects	The	Very low
treatment	estimate from	suggested no	network meta-analyses	were not significantly	comparison-adjusted	(Downgrade by
	studies at high risk,	imprecision in a	according to global I ²	influenced by clinical	funnel plot for the	three levels due to
	0.8% at moderate	ranking of treatments.	(84.5%).	modifiers in the	network is not	study
	risk, and 8.9% at		No inconsistency in test of	subgroup analyses.	suggestive of any	limitation(for two
	low risk.		global inconsistency		dominant publication	levels),
			according to Q statistic		bias.	heterogeneity and
			(Q=5.26, P=0.949), and few			inconsistency)
			inconsistency in local			
			inconsistency.			

Table S7.3 Evaluation of the quality of evidence using GRADE framework: waist circumference

Comparison	Study limitation	Imprecision	Heterogeneity and	Indirectness	Publication bias	Confidence in
		WMD (95% CI)	inconsistency			OR for risk of
						dizziness
DPP4-GLP1RA	10.4% of the	1.64 (1.09,2.19)	Severe heterogeneity	The treatment effects	The funnel plot for the	Moderate
	estimate from	No concerns	according to $I^2(85.4\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	one level due to
	0.0% at moderate		comparisons.	modifiers in the	dominant publication	heterogeneity and
	risk, and 89.6% at		No inconsistency between	subgroup analyses.	bias.	inconsistency)
	low risk.		direct and indirect estimate			

			(Node-split p=0.414).			
DPP4-Insulin	41.5% of the	-1.99 (-2.83,-1.15)	Only one head-to-head study	The treatment effects	Only one head-to-head	Moderate
	estimate from	No concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		one level due to
	0.0% at moderate		direct and indirect estimate	modifiers in the		study limitation)
	risk, and 58.5% at		(Node-split p=0.528).	subgroup analyses.		
	low risk.					
DPP4-Met	60.7% of the	-1.79 (-3.28,-0.31)	Only one head-to-head study	The treatment effects	Only one head-to-head	Moderate
	estimate from	Some concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		one level due to
	0.0% at moderate		direct and indirect estimate	modifiers in the		study limitation)
	risk, and 39.3% at		(Node-split p=0.073).	subgroup analyses.		
	low risk.					
DPP4-SGLT2	3.0% of the estimate	1.93 (0.76,3.11)	Only one head-to-head study	The treatment effects	Only one head-to-head	High
	from studies at high	No concerns	and no heterogeneity.	were not significantly	study.	
	risk, 0.0% at		No inconsistency between	influenced by clinical		
	moderate risk, and		direct and indirect estimate	modifiers in the		
	97.0% at low risk.		(Node-split p=0.884).	subgroup analyses.		
DPP4-SU	94.0% of the	-1.75 (-2.86,-0.64)	Mild heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	Some concerns	according to I2 (0.0%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.525) in direct	influenced by clinical	suggestive of any	two levels due to
	0.0% at moderate		comparisons.	modifiers in the	dominant publication	study limitations
	risk, and 6.0% at		No inconsistency between	subgroup analyses.	bias.	(for two levels))
	low risk.		direct and indirect estimate			

			(Node-split p=0.883).			
DPP4-TZD	44.3% of the	-0.76 (-1.93,0.41)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 55.7% at		inconsistency.	subgroup analyses.		
	low risk.					
DPP4-aGlu	54.9% of the	-2.78 (-7.19,1.64)	Only one head-to-head study	The treatment effects	Only one head-to-head	Very low
	estimate from	Major concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		There is inconsistency	influenced by clinical		three levels due to
	0.0% at moderate		between direct and indirect	modifiers in the		study limitation,
	risk, and 45.1% at		estimate (Node-split	subgroup analyses.		imprecision and
	low risk.		p=0.029).			heterogeneity and
						inconsistency)
DPP4-placebo	7.0% of the estimate	0.37 (-0.15,0.88)	Mild heterogeneity	The treatment effects	The funnel plot for the	High
	from studies at high	Some concerns	according to $I^2(0.0\%)$ and	were not significantly	direct comparison is not	
	risk, 0.0% at		P-value (0.830) in direct	influenced by clinical	suggestive of any	
	moderate risk, and		comparisons.	modifiers in the	dominant publication	
	93.0% at low risk.		No inconsistency between	subgroup analyses.	bias.	
			direct and indirect estimate			
			(Node-split p=0.584).			
GLP1RA-Insulin	97.0% of the	-3.63 (-4.29,-2.98)	Mild heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to $I^2(0.0\%)$ and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.544) in direct	influenced by clinical	suggestive of any	two levels due to

	0.0% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 3.0% at		No inconsistency between	subgroup analyses.	bias.	(for two levels))
	low risk.		direct and indirect estimate			
			(Node-split p=0.557).			
GLP1RA-Met	62.0% of the	-3.44 (-4.84,-2.03)	Severe heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to I^2 (88.2%) and	were not significantly	direct comparison is not	(Downgrade by
	studies at high risk,		P-value (0.000) in direct	influenced by clinical	suggestive of any	two levels due to
	0.0% at moderate		comparisons.	modifiers in the	dominant publication	study limitation,
	risk, and 38.0% at		No inconsistency between	subgroup analyses.	bias.	heterogeneity and
	low risk.		direct and indirect estimate			inconsistency)
			(Node-split p=0.096).			
GLP1RA-SGLT2	7.0% of the estimate	0.29 (-0.92,1.51)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	from studies at high	Major concerns	no heterogeneity.	were not significantly		(Downgrade by
	risk, 0.0% at		Only indirect comparison,	influenced by clinical		one level due to
	moderate risk, and		and no node-splitting	modifiers in the		imprecision)
	93.0% at low risk.		inconsistency.	subgroup analyses.		
GLP1RA-SU	40.7% of the	-3.39 (-4.62,-2.17)	Only one head-to-head study	The treatment effects	Only one head-to-head	Moderate
	estimate from	No concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		one level due to
	0.0% at moderate		direct and indirect estimate	modifiers in the		study limitation)
	risk, and 59.3% at		(Node-split p=0.959).	subgroup analyses.		
	low risk.					
GLP1RA-TZD	99.4% of the	-2.40 (-3.44,-1.37)	Mild heterogeneity	The treatment effects	The funnel plot for the	Low
	estimate from	No concerns	according to I^2 (0.0%) and	were not significantly	direct comparison is not	(Downgrade by

	studies at high risk,		P-value (0.717) in direct	influenced by clinical	suggestive of any	two levels due to
	0.0% at moderate		comparisons.	modifiers in the	dominant publication	study limitation
	risk, and 0.6% at		No inconsistency between	subgroup analyses.	bias.	(for two levels))
	low risk.		direct and indirect estimate			
			(Node-split p=0.697).			
GLP1RA-aGlu	55.3% of the	-4.42 (-8.84,0.00)	Only one head-to-head study	The treatment effects	Only one head-to-head	Low
	estimate from	Some concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		two levels due to
	0.0% at moderate		direct and indirect estimate	modifiers in the		study limitation
	risk, and 44.7% at		(Node-split p=0.028).	subgroup analyses.		and heterogeneity
	low risk.					and
						inconsistency)
GLP1RA-placebo	11.0% of the	-1.28 (-1.69,-0.86)	Mild heterogeneity	The treatment effects	The funnel plot for the	High
	estimate from	No concerns	according to I^2 (22.8%) and	were not significantly	direct comparison is not	
	studies at high risk,		P-value (0.179) in direct	influenced by clinical	suggestive of any	
	0.0% at moderate		comparisons.	modifiers in the	dominant publication	
	risk, and 89.0% at		No inconsistency between	subgroup analyses.	bias.	
	low risk.		direct and indirect estimate			
			(Node-split p=0.590).			
Insulin-Met	74.8% of the	0.20 (-1.35,1.75)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Major concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 25.2% at		inconsistency.	subgroup analyses.		and imprecision)

	lorr male					
-	IOW FISK.					
Insulin-SGLT2	36.1% of the	3.93 (2.55,5.30)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 63.9% at		inconsistency.	subgroup analyses.		
	low risk.					
Insulin-SU	56.8% of the	0.24 (-1.14,1.63)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Major concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 43.2% at		inconsistency.	subgroup analyses.		and imprecision)
	low risk.					
Insulin-TZD	98.5% of the	1.23 (0.10,2.36)	Only one head-to-head study	The treatment effects	Only one head-to-head	Low
	estimate from	Some concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		two levels due to
	0.0% at moderate		direct and indirect estimate	modifiers in the		study limitation
	risk, and 1.5% at		(Node-split p=0789).	subgroup analyses.		(for two levels))
	low risk.					
Insulin-aGlu	71.6% of the	-0.78 (-5.25,3.68)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Major concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 28.4% at		inconsistency.	subgroup analyses.		and imprecision)

	low risk					
T 1' 1 1	10w 115K.	2 26 (1 50 2 12)				
Insulin-placebo	53.6% of the	2.36 (1.59,3.13)	No head-to-head study and	The treatment effects	No head-to-head study	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 46.4% at		inconsistency.	subgroup analyses.		
	low risk.					
Met-SGLT2	47.7% of the	3.73 (1.88,5.57)	No head-to-head study and	The treatment effects	No head-to-head study	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 52.3% at		inconsistency.	subgroup analyses.		
	low risk.					
Met-SU	67.2% of the	0.04 (-1.76,1.85)	Only one head-to-head study	The treatment effects	Only one head-to-head	Low
	estimate from	Major concerns	and no heterogeneity.	were not significantly	study.	(Downgrade by
	studies at high risk,		No inconsistency between	influenced by clinical		two levels due to
	0.0% at moderate		direct and indirect estimate	modifiers in the		study limitation
	risk, and 32.8% at		(Node-split p=0.738).	subgroup analyses.		and imprecision)
	low risk.					
Met-TZD	75.6% of the	1.03 (-0.73,2.79)	No head-to-head study and	The treatment effects	No head-to-head study	Low
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 24.4% at		inconsistency.	subgroup analyses.		and imprecision)

	low risk.					
Met-aGlu	99.2% of the	-0.98 (-5.61,3.65)	No head-to-head study and	The treatment effects	No head-to-head study	Very low
	estimate from	Major concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		three levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 0.8% at		inconsistency.	subgroup analyses.		(for two levels)
	low risk.					and imprecision)
Met-placebo	56.0% of the	2.16 (0.70,3.62)	No head-to-head study and	The treatment effects	No head-to-head study	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 44.0% at		inconsistency.	subgroup analyses.		
	low risk.					
SGLT2-SU	41.5% of the	-3.68 (-5.30,-2.07)	No head-to-head study and	The treatment effects	No head-to-head study	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 58.5% at		inconsistency.	subgroup analyses.		
	low risk.					
SGLT2-TZD	39.1% of the	-2.70 (-4.29,-1.10)	No head-to-head study and	The treatment effects	No head-to-head study	Moderate
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 60.9% at		inconsistency.	subgroup analyses.		

	low risk.					
SGLT2-aGlu	40.9% of the	-4.71 (-9.27,-0.15)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 59.1% at		inconsistency.	subgroup analyses.		
	low risk.					
SGLT2-placebo	2.8% of the estimate	-1.57 (-2.74,-0.40)	Only one head-to-head study	The treatment effects	Only one head-to-head	High
	from studies at high	Some concerns	and no heterogeneity.	were not significantly	study.	
	risk, 97.2% at		No inconsistency between	influenced by clinical		
	moderate risk, and		direct and indirect estimate	modifiers in the		
	100.0% at low risk.		(Node-split p=0.884).	subgroup analyses.		
SU-TZD	58.3% of the	0.99 (-0.62,2.59)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 41.7% at		inconsistency.	subgroup analyses.		
	low risk.					
SU-aGlu	71.4% of the	-1.03 (-5.58,3.53)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Major concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 28.6% at		inconsistency.	subgroup analyses.		and imprecision)
	low risk.					
SU-placebo	49.0% of the	2.12 (0.90,3.33)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
--------------	-----------------------	--------------------	---------------------------	------------------------	------------------------	-------------------
	estimate from	No concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 51.0% at		inconsistency.	subgroup analyses.		
	low risk.					
TZD-aGlu	72.7% of the	-2.01 (-6.55,2.52)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Major concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 27.3% at		inconsistency.	subgroup analyses.		and imprecision)
	low risk.					
TZD-placebo	57.2% of the	1.13 (0.01,2.24)	No head-to-head study and	The treatment effects	No head-to-head study.	Moderate
	estimate from	Some concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		one level due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation)
	risk, and 42.8% at		inconsistency.	subgroup analyses.		
	low risk.					
aGlu-placebo	48.8% of the	3.14 (-1.28,7.57)	No head-to-head study and	The treatment effects	No head-to-head study.	Low
	estimate from	Major concerns	no heterogeneity.	were not significantly		(Downgrade by
	studies at high risk,		Only indirect comparison,	influenced by clinical		two levels due to
	0.0% at moderate		and no node-splitting	modifiers in the		study limitation
	risk, and 51.2% at		inconsistency.	subgroup analyses.		and imprecision)
	low risk.					

Ranking	of	53.6% of the	SUCRA plots	Mild heterogeneity in	The treatment effects	The	Moderate
treatment		estimate from	suggested no	network meta-analyses	were not significantly	comparison-adjusted	(Downgrade by
		studies at high risk,	imprecision in a	according to global I ²	influenced by clinical	funnel plot for the	one level due to
		0.0% at moderate	ranking of treatments.	(36.7%).	modifiers in the	network is not	study limitation)
		risk, and 46.4% at		No significant inconsistency	subgroup analyses.	suggestive of any	
		low risk.		in test of global		dominant publication	
				inconsistency according to Q		bias.	
				statistic (Q=3.79, P = 0.925),			
				and few inconsistency in			
				local inconsistency.			

Note: WMD: weighted mean difference; DPP4: dipeptidyl-peptidase IV inhibitors; GLP1RA: glucagon-like peptide-1 receptor agonists; INS: insulin; Met: metformin; SGLT2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinediones; aGlu: alpha-glucosidase. The item impression was judged by CINeMA: Confidence in Network Meta-Analysis [Software]. Institute of Social and Preventive Medicine, University of Bern, 2017. Available from cinema.ispm.ch

Supplementary File 14

Subgroup network meta-analyses for weight, body mass index and waist circumference compared with placebo

Characteristics	DPP-4I	GLP-1RA	Insulin	Metformin	SGLT-2	SU	TZD	a-Glu
(No. of studies)								
All trials (262)	0.31	-1.34	2.42	-0.79	-2.23	1.84	2.15	-0.26
	(0.05,0.58)	(-1.60,-1.00)	(1.96,2.89)	(-1.52,-0.07)	(-3.27,-1.19)	(1.40,2.28)	(1.53,2.77)	(-1.10,0.58)
Mean age								
≤60 years(208)	0.49	-1.23	2.63	-0.75	-2.12	2.12	2.28	-0.12
	(0.19,0.79)	(-1.51,-0.90)	(2.13,3.12)	(-1.56,0.06)	(-3.16,-1.07)	(1.64,2.60)	(1.63,2.92)	(-1.17,0.93)
>60 years (50)	-0.33	-1.88	1.11	-1.01		0.36	1.66	-0.91
	(-0.84,0.19)	(-2.54,-1.2)	(-0.05,2.27)	(-2.41,0.39)	NA	(-0.64,1.35)	(-0.21,3.53)	(-2.14,0.32)
DM duration								
≤5 years (48)	0.51	-1.03	3.14	-0.80	NT A	1.45	1.35	-0.40
	(-0.04,1.07)	(-1.67,-0.39)	(1.68,4.60)	(-1.77,0.16)	NA	(0.11,2.79)	(0.26,2.43)	(-2.45,1.66)
5-10 years (117)	0.43	-1.26	2.69	-1.37	-2.30	1.98	3.58	-0.46
	(0.05,0.82)	(-1.61,-0.90)	(2.07,3.30)	(-3.23,0.48)	(-3.76,-0.84)	(1.41,2.54)	(2.55, 4.60)	(-1.75,0.83)
>10 years (24)	-0.16	-1.63	1.12			0.93		0.84
	(-0.96,0.63)	(-2.18,-1.08)	(-0.02,2.25)	NA	NA	(-0.49,2.36)	NA	(-3.42,5.09)
Mean HbA1c								
≤7.5% (39)	-0.28	-1.82	2.34	0.45		1.06	1.71	-0.36
	(-1.33,0.77)	(-2.96,-0.68)	(0.31,4.36)	(-2.35, 3.25)	NA	(-0.27,2.40)	(-1.12,4.54)	(-2.17,1.45)
7.5%-8.0% (63)	0.34	-1.07	1.75	-1.23	-2.57	2.22	1.99	-0.64
	(-0.03,0.72)	(-1.49,-0.64)	(0.85,2.64)	(-2.34,-0.13)	(-4.05,-1.09)	(1.54,2.90)	(0.60,3.37)	(-1.86,0.59)
8.0%-8.5% (89)	0.22	-1.32	2.33	-0.47		2.08	2.83	-0.13
	(-0.23,0.68)	(-1.70,-0.95)	(1.70,2.96)	(-1.71,0.77)	NA	(1.30,2.87)	(2.05,3.60)	(-2.03,1.77)
>8.5% (43)	0.87	-1.32	3.55	-0.83	-1.53	2.55	0.45	-0.43
	(-0.02,1.75)	(-2.25,-0.39)	(2.10,4.99)	(-2.95,1.29)	(-4.64,1.57)	(0.93,4.18)	(-1.51,2.40)	(-3.45,2.58)

Table S8.1 Subgroup network meta-analyses compared with placebo: weight

Trial duration								
≤24 weeks (148)	0.48	-1.05	3.05	-0.05	-2.00	1.13	2.35	-0.22
	(0.23,0.74)	(-1.31,-0.79)	(2.32,3.78)	(-0.82,0.72)	(-3.07,-0.92)	(0.53,1.73)	(1.62,3.08)	(-0.87,0.44)
24-48 weeks (60)	0.04	-1.77	1.89	-0.98	-2.60	1.61	1.18	
	(-0.68,0.77)	(-2.30,-1.24)	(1.12,2.66)	(-2.62,0.65)	(-4.24,-0.96)	(0.50,2.71)	(0.14,2.21)	NA
>48 weeks (54)	-0.07	-1.79	1.97	-2.38		1.91	4.67	0.93
	(-0.87,0.73)	(-2.73,-0.85)	(0.61,3.33)	(-4.24,-0.52)	NA	(0.92,2.91)	(2.46,6.88)	(-3.70,5.56)
Sample size								
≤500 (202)	0.37	-1.35	2.54	-0.77	-2.02	1.91	2.22	-0.07
	(0.03,0.70)	(-1.67,-1.03)	(1.93,3.16)	(-1.74,0.21)	(-3.80,-0.25)	(1.29,2.53)	(1.36,3.08)	(-1.05,0.92)
>500 (60)	0.20	-1.34	2.24	-0.82	-2.41	1.74	2.09	-1.10
	(-0.24,0.64)	(-1.80,-0.89)	(1.54,2.95)	(-1.90,0.26)	(-3.57,-1.26)	(1.11,2.36)	(1.22,2.95)	(-2.99,0.79)
Sponsors								
With industry	0.36	-1.25	2.41	-1.00	-2.03	1.94	2.25	-0.49
(190)	(0.07,0.65)	(-1.53,-0.98)	(1.91,2.92)	(-1.85,-0.14)	(-3.28,-0.79)	(1.46,2.42)	(1.54,2.95)	(-1.59,0.62)
Unclear & without	0.06	-1.91	2.49	-0.44	-2.72	1.34	1.73	-0.15
industry (72)	(-0.59,0.71)	(-2.61,-1.21)	(1.25,3.72)	(-1.90,1.01)	(-4.64,-0.80)	(0.13,2.55)	(0.36,3.10)	(-1.52,1.23)

Note: DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinedione; a-Glu: alpha-glucosidase; NA: not available.

Characteristics	DPP-4I	GLP-1RA	Insulin	Metformin	SU	TZD	a-Glu
(No. of studies)							
All trials (91)	-0.11	-1.10	0.25	-0.47	0.58	0.14	-0.43
	(-0.40,0.17)	(-1.42,-0.78)	(-0.19,0.69)	(-1.09,0.15)	(0.08, 1.08)	(-0.56,0.84)	(-1.08,0.23)

Table S8.2 Subgroup network meta-analyses compared with placebo: body mass index

Mean age							
≤60 years(56)	-0.09	-1.11	0.39	-0.51	0.60	-0.05	0 45 (1 66 0 75)
	(-0.49,0.32)	(-1.51,-0.71)	(-0.16,0.95)	(-1.27,0.25)	(-0.02,1.23)	(-0.98,0.87)	-0.43 (-1.00,0.73)
>60 years (29)	0.06	-0.56	-0.19	-0.14	0.43	0.82	0.27 (0.62 0.00)
	(-0.19,0.32)	(-1.00,-0.13)	(-0.66,0.28)	(-0.68,0.40)	(-0.01,0.87)	(0.35,1.30)	-0.27 (-0.03,0.09)
DM duration							
≤5 years (11)	0.08	-0.75	0.96	-0.19	0.08	ΝA	0.32
	(-1.30,1.47)	(-1.75,0.25)	(-0.81,2.74)	(-1.65,1.27)	(-3.43,3.59)	INA	(-2.30,2.95)
5-10 years (28)	-0.03	-1.10	0.54	-0.43	0.88	NA	0.02(2.40.2.24)
	(-0.47,0.40)	(-1.54,-0.66)	(-0.11,1.20)	(-1.61,0.75)	(-0.01,1.76)	INA	-0.05 (-2.40,2.54)
>10 years (12)	-0.05	-1.08	-0.16	NTA	-0.02	NA	N A
	(-0.88,0.79)	(-2.13,-0.03)	(-1.36,1.03)	INA	(-2.09,2.05)	INA	INA
Mean HbA1c							
≤7.5% (25)	-0.25	-1.53	-0.37	ΝA	-0.00	0.51	0.62(1.280.12)
	(-0.77,0.26)	(-2.56,-0.51)	(-1.79,1.04)	INA	(-1.04,1.03)	(-0.60,1.61)	-0.02 (-1.38,0.13)
7.5%-8.0% (15)	-0.32	-1.31	-0.11	-1.57	0.66	ΝA	0 52 (2 36 1 32)
	(-1.11,0.47)	(-2.07,-0.55)	(-1.20,0.99)	(-3.03,-0.11)	(-0.62,1.95)	INA	-0.52 (-2.50,1.52)
8.0%-8.5% (29)	-0.10	-0.87	0.57	0.01	0.36	0.17	NΛ
	(-0.41,0.21)	(-1.19,-0.55)	(0.13,1.01)	(-0.61,0.63)	(-0.46,1.19)	(-0.43,0.77)	MA
>8.5% (12)	0.69	-1.15	0.45	-0.21	1.21	ΝA	0.08 (2.78.2.63)
	(-0.91,2.30)	(-3.14,0.84)	(-2.03,2.94)	(-3.61,3.18)	(-1.29,3.71)	INA	-0.08 (-3.78,3.03)
Trial duration							
≤24 weeks (49)	-0.08	-1.03	-0.12	-0.34	0.32	0.68	0.40(1.02.0.22)
	(-0.44,0.28)	(-1.51,-0.56)	(-0.84,0.60)	(-1.25,0.57)	(-0.46,1.10)	(-0.37,1.73)	-0.40 (-1.02,0.22)
24-48 weeks (23)	-0.42	-0.75	0.96	0.66	0.06	0.35	NΛ
	(-0.86,0.01)	(-1.03,-0.48)	(0.62,1.30)	(0.02,1.30)	(-0.36,0.49)	(-0.07,0.77)	11/1

>48 weeks (19)	-0.29	-1.24	-0.27	-1.10	1.33	NA	NA
Sample size	(0107,0100)	(1.55, 0.15)	(1.52,0170)	(2.51,0110)	(0.01,2.07)	NA	NA
≤500 (80)	-0.08	-1.19	0.22	-0.22	0.73	0.27	-0.40 (-1.07,0.26)
500 (11)	(-0.38,0.21)	(-1.55,-0.83)	(-0.31,0.75)	(-0.92,0.48)	(0.18, 1.28)	(-0.57,1.12)	
>500 (11)	(-0.84,1.35)	-0.99 (-1.64,-0.35)	(-0.43,1.08)	(-2.36,-0.15)	-0.23 (-1.34,0.83)	-0.12 (-1.21,0.97)	NA
Sponsors							NA
With industry	-0.05	-0.87	0.54	-1.13	0.93	0.00	-0.35 (-1.95,1.25)
(31)	(-0.69,0.60)	(-1.45,-0.30)	(-0.23,1.31)	(-2.72,0.45)	(-0.04,1.91)	(-1.57,1.58)	
Unclear & without industry	-0.18 (-0.48.0.11)	-1.33	-0.06 (-0.61.0.49)	-0.34 (-0.93.0.26)	0.39 (-0.17.0.94)	0.11 (-0.57.0.79)	-0.54 (-1.18,0.10)
(60)	(3.10,011)	(1.72, 0.90)	(0.01,0.19)	(0.95,0.20)	(0.17,0.51)	(0.07,0.79)	

Table S8.3 Subg	roup network meta	-analyses compare	d with placebo: v	vaist circumferenc	e			
Characteristics	DPP-4I	GLP-1RA	Insulin	Metformin	SGLT-2	SU	TZD	a-Glu
(No. of studies)								
All trials (56)	0.37	-1.28	2.36	2.16	-1.57	2.12	1.13	3.14
	(-0.15,0.88)	(-1.69,-0.86)	(1.59,3.13)	(0.70,3.62)	(-2.74,-0.40)	(0.90,3.33)	(0.01,2.24)	(-1.28,7.57)
Mean age								
≤60 years(43)	0.49	-1.19	2.51	2.16	-1.51	2.22	1.24	5.86
	(-0.17,1.14)	(-1.65,-0.73)	(1.68,3.34)	(0.64,3.68)	(-2.78,-0.24)	(0.90,3.54)	(0.06,2.42)	(-0.39,12.11)
>60 years (11)	0.37	-2.16	-0.76	NIA	NTA	NIA	NI A	0.47
	(-0.20,0.94)	(-3.72,-0.61)	(-5.80,4.28)	INA	INA	NA	INA	(-5.71,6.64)
DM duration								
≤5 years (11)	2.40	-0.84	NA	4.26	NA	NA	1.88	6.21

	(-6.42,11.22)	(-1.86,0.17)		(2.14,6.38)			(-1.37,5.14)	(-0.16,12.57)
5-10 years (26)	0.47	-1.22	2.78	-1.92	NT A	2.20	0.88	0.57
	(-0.26,1.20)	(-1.79,-0.65)	(1.75,3.80)	(-4.86,1.02)	INA	(0.84,3.56)	(-0.73,2.49)	(-5.73,6.87)
>10 years (6)	0.35	-1.22	-4.22	NIA	NTA	NIA	NTA	NT A
	(-0.94,1.64)	(-2.05,-0.38)	(-13.79,5.36)	INA	NA	NA	NA	NA
Mean HbA1c								
≤8.0% (21)	0.55	-1.30	1.43	-2.00		2.65	1.42	0.65
	(-0.31,1.41)	(-1.96,-0.65)	(-2.14,4.99)	(-4.88,0.88)	NA	(1.11,4.18)	(-1.51,4.36)	(-5.64,6.93)
>8.0% (31)	0.20	-1.44	2.22	3.06		1.51	0.93	5.61
	(-0.53,0.93)	(-2.05,-0.83)	(1.33,3.12)	(1.43,4.69)	NA	(-0.35,3.36)	(-0.33,2.19)	(-0.63,11.85)
Trial duration								
≤24 weeks (32)	0.45	-1.08	2.67	-1.31	-1.53	1.54	1.09	3.29
	(0.04,0.86)	(-1.52,-0.63)	(0.47,4.87)	(-3.52,0.90)	(-2.09,-0.98)	(0.04,3.04)	(0.09,2.10)	(-1.06,7.63)
24-48 weeks (14)	0.30	-1.04	2.61	4.06			1.60	NT A
	(-0.81,1.41)	(-1.91,-0.16)	(1.53,3.68)	(2.45,5.68)	NA	NA	(-0.08,3.28)	NA
>48 weeks (10)	-0.78	-2.32	1.36	NT A		1.32	NT A	NT A
	(-2.27,0.70)	(-3.54,-1.10)	(-1.44,4.17)	NA	NA	(-1.11,3.75)	NA	NA
Sample size								
≤500 (47)	0.41	-1.23	2.57	2.39		1.66	1.51	3.19
	(-0.18,1.00)	(-1.66,-0.80)	(1.67,3.48)	(0.89,3.90)	NA	(-0.05,3.37)	(0.11,2.91)	(-1.21,7.58)
>500 (9)	0.01	-1.70	1.73	NT A	-1.74	2.11	0.40	NT A
	(-1.59,1.61)	(-3.34,-0.06)	(-0.48,3.94)	NA	(-3.65,0.16)	(-0.52,4.74)	(-2.29,3.09)	NA
Sponsors								
With industry (32)	0.44	-1.25	2.35	-1.95	-1.53	2.54	0.97	NT A
	(-0.10,0.99)	(-1.69,-0.81)	(1.52,3.19)	(-4.80,0.91)	(-2.58,-0.48)	(1.13,3.96)	(-0.36,2.30)	INA
Unclear & without	0.22	-1.41	2.44	2.88	NA	1.54	1.36	3.00

industry (24)	(-1.02, 1.47)	(-2.47, -0.35)	(0.65, 4.23)	(0.58, 5.17)	(-0.66,3.75)	(-0.90, 3.63)	(-1.56, 7.57)
---------------	---------------	----------------	--------------	--------------	--------------	---------------	---------------

Note: DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinedione; a-Glu: alpha-glucosidase; NA: not available.

Supplementary File 15

Meta-regression for network meta-analyses compared with placebo

Variables		Regression	Standard	
(No. of studies)	Comparison	coefficient	Stanuard	P value
Scale		(95% CI)	error	
Age	DPP-4I VS Placebo	-0.49 (-1.06,0.08)	0.29	0.09
(260)	GLP-1RA VS Placebo	0.18 (-0.43,0.79)	0.31	0.57
Per 10 years	Insulin VS Placebo	-0.59 (-2.12,0.94)	0.78	0.94
	Met VS Placebo	0.24 (-1.22,1.69)	0.74	0.75
	SGLT-2 VS Placebo	-6.41 (-39.26,26.45)	16.76	0.70
	SU VS Placebo	<u>-1.00 (-1.98,-0.02)</u>	0.50	0.05
	TZD VS Placebo	0.89 (-1.34,3.12)	1.14	0.43
	a-Glu VS Placebo	0.26 (-1.79,2.30)	1.04	0.81
HbA1c	DPP-4I VS Placebo	<u>0.52 (0.05,0.99)</u>	0.24	0.03
(237)	GLP-1RA VS Placebo	0.02 (-0.00,0.04)	0.01	0.10
Per 1%	Insulin VS Placebo	0.65 (-0.04,1.35)	0.36	0.07
	Met VS Placebo	-0.36 (-1.90,1.19)	0.79	0.65
	SGLT-2 VS Placebo	0.97 (-1.90,3.84)	1.46	0.51
	SU VS Placebo	0.76 (-0.19,1.70)	0.48	0.12
	TZD VS Placebo	-1.22 (-2.95,0.52)	0.88	0.17
	a-Glu VS Placebo	0.08 (-1.14,1.57)	0.76	0.92
DM duration	DPP-4I VS Placebo	-0.06 (-0.14,0.02)	0.04	0.12
(205)	GLP-1RA VS Placebo	<u>-0.08 (-0.15,-0.01)</u>	0.03	0.02
Per 1 years	Insulin VS Placebo	-0.22 (-0.40,-0.05)	0.09	0.01
	Met VS Placebo	0.49 (-0.20,1.17)	0.35	0.16
	SGLT-2 VS Placebo	0.52 (-2.63,3.68)	1.61	0.75
	SU VS Placebo	-0.11 (-0.25,0.04)	0.07	0.14
	TZD VS Placebo	<u>0.59 (0.28,0.89)</u>	0.16	0.00
	a-Glu VS Placebo	0.08 (-0.28,0.43)	0.18	0.67

Table S9.1 Results of univariate meta-regression: weight

Note: DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinedione; a-Glu: alpha-glucosidase.

Comparison	Variables	Scale	Regression coefficient (95% CI)	Standard error	P value
DPP-4I VS Placebo	Age	Per 10 years	-0.19 (-1.22,0.85)	0.53	0.72
	HbA1c	Per 1%	0.25 (-0.41,0.90)	0.33	0.46
	DM duration	Per 1 years	-0.04 (-0.15,0.06)	0.06	0.42
GLP-1RA VS Placebo	Age	Per 10 years	<u>0.70 (0.00,1.40)</u>	0.36	0.05
	HbA1c	Per 1%	0.20 (-0.49,0.89)	0.35	0.58
	DM duration	Per 1 years	<u>-0.11 (-0.19,-0.04)</u>	0.04	0.00
Insulin VS Placebo	Age	Per 10 years	2.57 (-0.77,5.90)	1.70	0.13
	HbA1c	Per 1%	<u>1.46 (0.29,2.62)</u>	0.60	0.01
	DM duration	Per 1 years	<u>-0.41 (-0.69,-0.13)</u>	0.14	0.01
Met VS Placebo	Age	Per 10 years	0.37 (-1.42,2.16)	0.91	0.69
	HbA1c	Per 1%	-0.37 (-2.11,1.37)	0.89	0.67
	DM duration	Per 1 years	0.43 (-0.28,1.14)	0.36	0.23
SGLT-2 VS Placebo	Age	Per 10 years	NA	NA	NA
	HbA1c	Per 1%	0.73 (-1.93,3.39)	1.36	0.59
	DM duration	Per 1 years	NA	NA	NA
SU VS Placebo	Age	Per 10 years	-1.05 (-2.47,0.37)	0.72	0.15
	HbA1c	Per 1%	-0.18 (-1.28,0.93)	0.56	0.76
	DM duration	Per 1 years	-0.05 (-0.22,0.12)	0.09	0.58
TZD VS Placebo	Age	Per 10 years	-4.89 (-11.41,1.63)	3.32	0.14
	HbA1c	Per 1%	-3.01 (-6.57,0.55)	1.82	0.10
	DM duration	Per 1 years	0.65 (0.25,1.05)	0.20	0.00
a-Glu VS Placebo	Age	Per 10 years	2.97 (-3.18,9.12)	3.14	0.34

Table S9.2 Results of multivariate meta-regression in 190 studies: weight

HbA1c	Per 1%	1.59 (-1.93,5.11)	1.80	0.38
DM duration	Per 1 years	-0.15 (-0.76,0.46)	0.31	0.64

Note: DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinedione; a-Glu: alpha-glucosidase; NA: not available.

Comparison	Before adjustment	Age	HbA1c	DM duration	Age/HbA1c/DM duration
DPP-4I	<u>0.31</u>	<u>0.28</u>	<u>0.56</u>	<u>0.33</u>	<u>0.47</u>
VS Placebo	<u>(0.05,0.58)</u>	<u>(0.01,0.56)</u>	<u>(0.22,0.91)</u>	<u>(0.03,0.62)</u>	<u>(0.08,0.86)</u>
GLP-1RA	<u>-1.34</u>	<u>-1.30</u>	<u>-1.29</u>	-1.25	<u>-1.03</u>
VS Placebo	<u>(-1.60,-1.09)</u>	<u>(-1.56,-1.04)</u>	<u>(-1.57,-1.02)</u>	<u>(-1.51,-0.98)</u>	<u>(-1.43,-0.63)</u>
Insulin	2.42	2.50	2.65	<u>2.73</u>	<u>3.28</u>
VS Placebo	<u>(1.96,2.89)</u>	<u>(2.02,2.98)</u>	<u>(2.13,3.17)</u>	<u>(2.18,3.29)</u>	<u>(2.59,3.97)</u>
Met	<u>-0.79</u>	<u>-0.87</u>	-0.92	1.13	0.76
VS Placebo	<u>(-1.52,-0.07)</u>	<u>(-1.60,-0.14)</u>	(-1.88,0.05)	(-1.72,3.98)	(-2.46,3.97)
SGLT-2	-2.23	-3.43	-2.03	<u>-2.21</u>	<u>-2.11</u>
VS Placebo	<u>(-3.27,-1.19)</u>	(-9.56,2.71)	<u>(-3.62,-0.45)</u>	<u>(-3.91,-0.51)</u>	(-3.58,-0.64)
SU	<u>1.84</u>	<u>1.84</u>	2.35	<u>1.77</u>	<u>1.86</u>
VS Placebo	(1.40,2.28)	(1.39,2.30)	<u>(1.65,3.06)</u>	(1.30,2.25)	(1.13,2.59)
TZD	2.15	2.37	2.06	<u>4.01</u>	2.69
VS Placebo	(1.53,2.77)	(1.62,3.12)	<u>(1.34,2.79)</u>	<u>(2.95,5.07)</u>	<u>(0.82,4.56)</u>
a-Glu	-0.26	-0.45	-0.39	-0.14	0.05
VS Placebo	(-1.10,0.58)	(-1.40,0.49)	(-1.90,1.12)	(-1.46,1.18)	(-2.10,2.20)

Table S9.3 Results of network meta analysis before and after regression: weight

Table S9.4 Ranking probability after meta-regression

Treatment	Weight				
	SUCRA	Rank			
Placebo	57.4	3			
DPP-4I	56.6	4			
GLP-1RA	64.1	2			
Insulin	3.0	9			
Met	52.6	6			
SGLT-2	93.2	1			
SU	27.5	8			
TZD	55.8	5			
a-Glu	39.8	7			

Note: Results were reported after the meta-regression of age, HbA1c and DM duration. DPP-4I: dipeptidyl-peptidase IV inhibitors; GLP-1RA: glucagon-like peptide-1 receptor agonists; Met: metformin; SGLT-2: sodium-glucose co-transporter 2; SU: sulphanylureas; TZD: thiazolidinedione; a-Glu: alpha-glucosidase.