

Supplementary Figure S1. Locations of the study sites in the CHARLS project.

Supplementary Table S1. Associations between ambient fine particulate matter (FPM or PM_{2.5}) concentrations and blood pressure

Model	PM Conc. ^e –	<i>в</i> (95% <i>CI</i>) ^ª	
		Systolic blood pressure	Diastolic blood pressure
Model I ^b	FPM _{1Y}	0.868 (0.576, 1.161)	0.354 (0.169, 0.539)
	FPM _{2Y}	1.289 (0.818, 1.760)	0.675 (0.377, 0.973)
Model II ^c	FPM _{1Y}	1.266 (0.865, 1.667)	0.513 (0.260, 0.766)
	FPM _{2Y}	1.558 (0.966, 2.150)	0.853 (0.479, 1.226)
Model IV ^d	FPM _{1Y}	1.180 (0.777, 1.584)	0.513 (0.258, 0.768)
	FPM _{2Y}	1.460 (0.864, 2.055)	0.835 (0.459, 1.211)

Note. ^aBlood pressure change based on each 10 μ g/m³ change of ambient PM_{2.5} concentration (Conc.); ^bModel I: BP = $\beta \times PM_{2.5} + \beta_{1.2} \times CF_{1-2} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with the β coefficients of PM_{2.5}, β_{1-2} of potential confounders (CF_{1-2} : city and medication), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^cModel II: BP = $\beta \times PM_{2.5} + \beta_{1-4} \times CF_{1-4} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with the β coefficients of PM_{2.5}, β_{1-4} of potential confounders (CF_{1-4} : city, medication, temperature, and age), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^dModel IV: BP = $\beta \times PM_{2.5} + \beta_{1-16} \times CF_{1-16} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with β coefficients of PM_{2.5}, β_{1-16} of potential confounders ($CF_{1-16} + CF_{1-16} + CF_{1-16}$, temperature maintenance of household, heating fuel, living in a multi-story building or not, renting a house, untidiness of the household, and telephone usage), as well as a random intercept for each subject $\gamma_1(S)$ and each mousehold, and telephone usage), as well as a random intercept for each subject $\gamma_1(S)$ and each household, in the past one year; FPM_{2.5} concentration over the past time period before the survey, FPM_{1Y}: average PM_{2.5} concentration in the past two years.

Group	Systolic blood pressure		Diastolic blood pressure	
Group	β*	<i>P</i> -value [†]	β	<i>P</i> -value [†]
Age (years)				
40–49	1.208		0.587	
50–59	1.223		0.563	
60–69	1.220	0.314	0.419	0.716
70–79	1.443		0.465	
> 80	0.509		0.308	
Gender				
Female	1.046	0.270	0.512	0.858
Male	0.843	0.270	0.487	
ducation				
Below elementary	1.314		0.487	
Above middle	1.196	0.229	0.586	0.762
Elementary & middle	1.006		0.503	
Residence				
Rural	1.229	0.750	0.433	0.186
Urban	1.258	0.753	0.631	
<i>M</i> arriage				
No	1.067		0.315	0.088
Yes	1.276	0.355	0.540	
Smoking				
No	1.223		0.506	0.727
Yes	1.280	0.669	0.488	
Drinking				
Frequent	1.064		0.448	
Never	1.297	0.274	0.524	0.886
Rare	1.332		0.487	
Medication				
No	1.197	0.000	0.512	4 000
Yes	1.342	0.292	0.471	1.003

Supplementary Table S2. Associations between fine particulate matter (PM_{2.5}) concentrations in the year before the survey and blood pressure

Note. *Blood pressure change based on each 10 μ g/m³ change of ambient PM_{2.5} concentration; [†]*P*-value of the analysis of variance.

Supplementary Table S3. Associations between ambient fine particulate matter (FPM or PM_{2.5}) concentrations and blood pressure, excluding participants taking anti-hypertension medicine

Model	PM Conc. ^e	β (95% <i>Cl</i>) [*]	
		Systolic blood pressure	Diastolic blood pressure
Model I ^b	FPM _{1Y}	0.200 (-0.115, 0.514)	0.023 (-0.192, 0.238)
	FPM _{2Y}	0.388 (-0.123, 0.898)	0.204 (-0.145, 0.552)
Model II ^c	FPM _{1Y}	0.943 (0.511, 1.376)	0.379 (0.085, 0.673)
	FPM _{2Y}	1.299 (0.658, 1.941)	0.720 (0.285, 1.156)
Model III ^f	FPM _{1Y}	0.895 (0.463, 1.328)	0.357 (0.063, 0.65)
	FPM _{2Y}	1.226 (0.585, 1.867)	0.680 (0.244, 1.116)
Model IV ^d	FPM _{1Y}	0.819 (0.383, 1.255)	0.353 (0.057, 0.648)
	FPM _{2Y}	1.139 (0.494, 1.785)	0.654 (0.216, 1.092)

Note. ^aBlood pressure change based on each 10 μ g/m³ change of ambient PM_{2.5} concentration (Conc.); ^bModel I: BP = $\beta \times PM_{2.5} + \beta_1 \times CF_1 + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with the β coefficients of PM_{2.5}, β_{1-2} of potential confounders (CF_1 : city), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^cModel II: BP = $\beta \times PM_{2.5} + \beta_{1-3} \times CF_{1-3} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with the β coefficients of PM_{2.5}, β_{1-4} of potential confounders (CF_{1-3} : city, temperature, and age), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^fModel III: BP = $\beta \times PM_{2.5} + \beta_{1-9} \times CF_{1-9} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with the β coefficients of PM_{2.5}, β_{1-10} of potential confounders (CF_{1-9} : CF_{1-4} , residence, gender, education, marriage, smoking, and drinking alcohol), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^dModel IV: BP = $\beta \times PM_{2.5} + \beta_{1-15} \times CF_{1-15} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with β coefficients of PM_{2.5}, β_{1-10} of potential confounders (CF_{1-9} : CF_{1-9} , residence, gender, education, marriage, smoking, and drinking alcohol), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^dModel IV: BP = $\beta \times PM_{2.5} + \beta_{1-15} \times CF_{1-15} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with β coefficients of PM_{2.5}, β_{1-16} of potential confounders (CF_{1-15} : CF_{1-10} , temperature maintenance of household, heating fuel, living in a multi-story building or not, renting a house, untidiness of the household, and telephone usage), as well as a random intercept for each subject $\gamma_1(S)$ and each household, set (FPM) concentration over the past time period before the survey, FPM_{1Y}: average PM_{2.5} concentration in the past one year; FPM_{2Y}: average PM_{2.5} concentration in the pas Model IV^d

FPM_{1Y}

FPM_{2V}

Model	PM Conc. ^e	β (95% <i>CI</i>) [°]	
		Systolic blood pressure	Diastolic blood pressure
Model I ^b	FPM _{1Y}	0.864 (0.553, 1.176)	0.292 (0.096, 0.489)
	FPM _{2Y}	1.234 (0.729, 1.738)	0.529 (0.211, 0.848)
Model II ^c	FPM _{1Y}	1.126 (0.695, 1.556)	0.368 (0.096, 0.639)
	FPM _{2Y}	1.305 (0.667, 1.942)	0.604 (0.203, 1.006)
Model III ^f	FPM1Y	1.101 (0.670, 1.532)	0.355 (0.083, 0.627)
	FPM2Y	1.276 (0.639, 1.913)	0.586 (0.184, 0.988)

1.066 (0.633, 1.499)

1.259 (0.619, 1.899)

Supplementary Table S4. Associations between ambient fine particulate matter (FPM or PM_{2.5}) concentrations and blood pressure after deletion of missing data

Note. ^a Blood pressure change based on each 10 μ g/m³ change of ambient PM_{2.5} concentration (Conc.); ^bModel I: BP = $\beta \times PM_{2.5} + \beta_1 \times CF_1 + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with the β coefficients of PM_{2.5}, β_{1-2} of potential confounders (CF_1 : city), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^cModel II: BP = $\beta \times PM_{2.5} + \beta_{1-3} \times CF_{1-3} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with the β coefficients of PM_{2.5}, β_{1-4} of potential confounders (CF_{1-3} : city, temperature, and age), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^fModel III: BP = $\beta \times PM_{2.5} + \beta_{1-9} \times CF_{1-9} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with the β coefficients of PM_{2.5}, β_{1-10} of potential confounders (CF_{1-9} : CF_{1-4} , residence, gender, education, marriage, smoking, and drinking alcohol), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^dModel IV: BP = $\beta \times PM_{2.5} + \beta_{1-15} \times CF_{1-15} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with β coefficients of PM_{2.5}, β_{1-10} of potential confounders (CF_{1-9} : CF_{1-4} , residence, gender, education, marriage, smoking, and drinking alcohol), as well as a random intercept for each subject $\gamma_1(S)$ and each household $\gamma_2(H)$; ^dModel IV: BP = $\beta \times PM_{2.5} + \beta_{1-15} \times CF_{1-15} + \gamma_1(S) + \gamma_2(H)$. This model incorporated fixed terms with β coefficients of PM_{2.5}, β_{1-16} of potential confounders (CF_{1-15} : CF_{1-10} , temperature maintenance of household, heating fuel, living in a multi-story building or not, renting a house, untidiness of the household, and telephone usage), as well as a random intercept for each subject $\gamma_1(S)$ and each household, matter (FPM) concentration over the past time period before the survey, FPM_{1Y}: average PM_{2.5} concentration in the past one year; FPM_{2Y}: average PM_{2.5} concentration in the

0.391 (0.118, 0.664)

0.627 (0.224, 1.030)