

Supplementary Figure S1. Melting curve analyses on the polymorphisms of vitamin D receptor gene (*VDR*). Panel A: Melting curve of *VDR Cdx2* (rs11568820, A). Panel B: Melting curve of *Fok1* (rs2228570, B). Panel C: Melting curve of *VDR Apa1* (rs7975232, C). Panel D: Melting curve of *VDR Taq1* (rs731236, D).

Supplementary Table S1. The information of molecular beacon probes and primers for genotyping the four single nucleotide polymorphisms (SNPs) of vitamin D receptor gene (*VDR*)

NCBI rs ID	SNP name	Alleles ^a	Position ^b	Oligo name	Oligo sequence, 5'-3' direction ^c	Length of amplicon, bp
rs11568820	Cdx2	C > T	promoter region,	Probe	cctgaTTACTGTGACCTAGTTTACTCAGG	179
			chr12:47908762	Forward primer	CAATGAAAGCAAACCAAGGGGTCTTC	
				Backward primer	AGGAAGGAAAAGAGGATAGAGAAAAT	
rs2228570	Fok1	$A > B^d$	exon 2, chr12:47879112	Probe	ccgcGGGATGGAGGCAATGGCGG	178
				Forward primer	CACTGACTCTGGCTCTGACCGT	
				Backward primer	GCAGCCTTCACAGGTCATA	
rs7975232	Apa1	C > A	intron 8, chr12:47845054	Probe ^e	ctTGGGCCCCTCACTGCTCAAg	185
rs731236	Taq1	A > G	exon 9, chr12:47844974	Probe ^e	cgcGGATGGCCTCAATCAGCGCG	
				Forward primer	GGCGGCAGCGGATGTACG	
				Backward primer	GCCGTTGAGTGTCTGTGT	

Note. ^aThe usages of these alleles are consistent to those used in the NCBI dbSNP database. ^bLocation of the allelic bases on the *VDR* and chromosome 12. ^cIn the probe sequence, the lowercase letters at the 5' or 3' end are adaptor bases, and the highlighted letters are one of the alleles in the SNP locus. ^dB, degenerate base standing for C, G, and T, i.e. not A. ^eApa1 and Taq1 were detected with their respective probe on the same qPCR amplicon.

Genotype	n	G	enotype frequency,	%	χ ²	P value [*]
Cdx2		тт	ст	сс		
DL	1,142	20.0	47.0	34.0	2.06	0.15
ND	845	19.0	51.0	30.0	0.80	0.37
total	1,987	19.0	49.0	32.0	0.26	0.61
Fok1		BB	AB	AA		
DL	1,142	28.0	52.0	20.0	2.38	0.12
ND	845	28.0	50.0	22.0	0.06	0.81
total	1,987	28.0	51.0	21.0	1.75	0.19
Apa1		AA	AC	сс		
DL	1,142	10.0	39.0	51.0	4.85	0.03
ND	845	9.0	42.0	49.0	0.09	0.76
total	1,987	9.0	40.0	50.0	2.14	0.14
Taq1		GG	AG	AA		
DL	1,142	0.5	8.0	90.0	2.73	0.10
ND	845	0.5	11.0	91.0	0.60	0.44
total	1,987	1.0	9.0	90.0	3.01	0.08

Supplementary Table S2. Hardy-Weinberg equilibrium tests on the vitamin D receptor gene polymorphisms, Cdx2 (rs11568820), Fok1 (rs2228570), Apa1 (rs7975232), and Taq1 (rs731236)

Note. Abbreviations: B, degenerate base standing for C, G, and T; DL, dyslipidemia; ND, non-dyslipidemia. ^{*}Hardy-Weinberg equilibrium analyses test for the genotypes of the four SNPs.

		Ferr	nale		Male				
Genotype	DL, % n = 236	ND, % n = 888	χ ²	P value	DL, % n = 299	ND, % n = 564	χ ²	P value	
Cdx2	·								
TT	17.8	19.4	0.955	0.620	20.4	19.1	0.390	0.823	
СТ	50.0	51.6			43.8	45.9			
СС	32.2	29.1			35.8	34.9			
т	42.8	45.2	0.841	0.359	42.3	42.1	0.006	0.937	
с	57.2	54.8			57.7	57.9			
Fok1									
AA	15.3	23.3	11.658	0.003	16.7	21.6	3.871	0.144	
AB	48.7	50.2			53.2	52.8			
BB	36.0	26.5			30.1	25.5			
А	39.6	48.4	11.618	0.001	43.3	48.0	3.528	0.060	
В	60.4	51.6			56.7	52.0			
Apa1									
AA	9.3	9.9	0.120	0.942	8.7	9.0	0.304	0.859	
AC	41.1	40.1			41.5	39.5			
СС	49.6	50.0			49.8	51.4			
А	29.9	30.0	0.001	0.972	29.4	28.8	0.073	0.787	
С	70.1	70.0			70.6	71.2			
Taq1									
AA	91.5	88.9	1.496	0.476	91.0	91.3	0.256	0.921	
AG	8.1	10.7			8.7	8.2			
GG	0.4	0.5			0.3	0.5			
А	95.6	94.2	1.305	0.253	95.3	95.4	0.005	0.946	
G	4.4	5.8			4.7	4.6			

Supplementary Table S3. Comparisons of the genotypic and allelic frequencies of vitamin D receptor gene polymorphisms, *Cdx2* (rs11568820), *Fok1* (rs2228570), *Apa1* (rs7975232), and *Taq1* (rs731236) between dyslipidemia (DL) and non-dyslipidemia (ND) adults

Note. Abbreviations: B, degenerate base standing for C, G, and T.

Supplementary [*]	Table S4. Ge	netic model cor	mparison of (<i>Cdx2</i> (r	s115688	320)	in vitamin D	receptor	gene
	betweer	n dyslipidemia (DL) and non-	dyslipi	idemia (I	ND)	adults		

Gene	Ad	ditive mo	odel	Dominan	it model	Recessi	ive model	Homozyg	ous model	Allelic	model
models	TT	СТ	CC	TT + CT	СС	TT	CT + CC	TT	СС	т	С
DL											
n	103	249	183	352	183	103	432	103	183	455	615
%	19.3	46.5	34.2	65.8	34.2	19.3	80.7	36.0	64.0	42.5	57.5
ND											
n	280	717	455	997	455	280	1,172	280	455	1,277	1,627
%	19.3	49.4	31.3	68.7	31.3	19.3	80.7	38.1	61.9	44.0	56.0
Total											
n	383	966	638	1,349	638	383	1,604	383	638	1,732	2,242
%	19.3	48.6	32.1	67.9	32.1	19.3	80.7	37.5	62.5	43.6	56.4
χ^2	1.54			1.48		0.00		0.38		0.67	
P value	0.46			0.22		0.99		0.54		0.41	

Gene	Ad	ditive m	odel	Dominar	nt model	Recessi	ive model	Homozyg	ous model	Allelic	model
models	AA	AC	CC	AA + AC	СС	AA	AC + CC	AA	сс	A	С
DL											
n	48	221	266	269	266	48	487	48	266	317	753
%	9.0	41.3	49.7	50.3	49.7	9.0	91.0	15.3	84.7	29.6	70.4
ND											
n	139	579	734	718	734	139	1,313	139	734	857	2,047
%	9.5	39.9	50.6	49.4	50.6	9.6	90.4	15.9	84.1	29.5	70.5
Total											
n	187	800	1,000	987	1,000	187	1,800	187	1,000	1,174	2,800
%	9.4	40.3	50.3	49.7	50.3	9.4	90.6	15.8	84.2	29.5	70.5
χ ²	0.40			0.11		0.17		0.10		0.01	
P value	0.82			0.74		0.68		0.79		0.94	

Supplementary Table S5. Genetic model comparison of *Apa1* (rs7975232) in vitamin D receptor gene between dyslipidemia (DL) and non-dyslipidemia (ND) adults

Supplementary Table S6. Genetic model comparison of *Taq1* (rs731236) in vitamin D receptor gene between dyslipidemia (DL) and non-dyslipidemia (ND) adults

Gene	Ad	ditive m	odel	Dominar	it model	Recess	ive model	Homozygous model		Allelic model	
models	GG	AG	AA	GG + AG	AA	GG	AG + AA	GG	AA	G	А
DL											
n	2	45	488	47	488	2	533	2	488	49	1,021
%	0.4	8.4	91.2	8.8	91.2	0.4	99.6	0.4	99.6	4.6	95.4
ND											
n	7	141	1,304	148	1,304	7	1,445	7	1,304	155	2,749
%	0.5	9.6	89.9	10.2	89.8	0.5	99.5	0.5	99.5	5.3	94.7
Total											
n	9	186	1,792	195	1,792	9	1,978	9	1,792	204	3,770
%	0.5	9.4	90.2	9.8	90.2	0.5	99.5	0.5	99.5	5.1	94.9
χ^2	0.89			0.88		0.00		0.11		0.92	
P value	0.64			0.35		1.00		0.74		0.34	

	TG ≥ 1.7 <i>vs</i>	s. < 1.7 mmol/L	TC ≥ 5.2 <i>vs</i>	. < 5.2 mmol/L	LDLC ≥ 3.4 v	/s. < 3.4 mmol/L	HDLC < 1.0	vs. ≥ 1.0 mmol/L
Gene models	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
Apa1 (rs7975232)								
Add.: AA vs. AC vs. CC	0.47	1.11 (0.84–1.47)	0.48	0.93 (0.76–1.14)	0.38	1.12 (0.87–1.43)	0.93	1.03 (0.52–2.04)
Dom.: AA + AC vs. CC	0.59	1.10 (0.77–1.59)	0.35	0.88 (0.67–1.15)	0.59	1.09 (0.79–1.50)	0.87	1.08 (0.44–2.64)
Rec.: AA vs. AC + CC	0.84	1.06 (0.59–1.92)	0.88	0.97 (0.63–1.49)	0.33	1.29 (0.78–2.12)	0.99	1.01 (0.23–4.45)
Hom.: AA vs. CC	0.16	0.21 (0.03–1.86)	0.52	1.35 (0.54–3.34)	0.16	2.09 (0.75–5.81)	0.71	1.63 (0.13–20.27)
Alle.: A vs. C	0.45	1.12 (0.83–1.51)	0.38	0.91 (0.73–1.13)	0.54	1.08 (0.84–1.40)	0.79	1.11 (0.53–2.33)
Cdx2 (rs11568820)								
Add.: TT vs. CT vs. CC	0.15	0.83 (0.64–1.07)	0.77	0.97 (0.81–1.17)	0.79	1.03 (0.83–1.29)	0.38	0.76 (0.40–1.42)
Dom.: TT + CT vs. CC	0.10	0.73 (0.50–1.06)	0.30	0.86 (0.65–1.14)	0.70	1.07 (0.76–1.49)	0.79	0.88 (0.35–2.23)
Rec.: TT vs. CT + CC	0.65	0.90 (0.57–1.41)	0.49	1.12 (0.81–1.55)	0.97	0.99 (0.67–1.46)	0.20	0.38 (0.09–1.68)
Hom.: TT vs. CC	0.42	0.66 (0.23–1.85)	0.27	1.45 (0.75–2.82)	0.51	1.32 (0.58–3.02)	0.27	0.28 (0.03–2.71)
Alle.: T vs. C	0.11	0.81 (0.62–1.05)	0.98	1.00 (0.83–1.21)	0.79	0.97 (0.77–1.22)	0.45	0.77 (0.40–1.50)
Fok1 (rs2228570)								
Add.: BB vs. AB vs. AA	0.57	1.08 (0.84–1.39)	0.35	1.09 (0.91–1.31)	0.03	1.28 (1.03–1.59)	0.68	1.13 (0.62–2.07)
Dom.: BB + AB vs. AA	0.51	1.16 (0.75–1.80)	0.64	1.08 (0.79–1.47)	0.18	1.31 (0.89–1.92)	0.57	0.76 (0.29–1.99)
Rec.: BB vs. AB + AA	0.70	1.08 (0.73–1.59)	0.29	1.16 (0.88–1.54)	0.03	1.45 (1.04–2.00)	0.22	1.72 (0.72–4.14)
Hom.: BB vs. AA	0.22	0.55 (0.21–1.44)	0.68	1.15 (0.60–2.20)	0.02	2.86 (1.16–7.08)	0.98	1.03 (0.14–7.63)
Alle.: B vs. A	0.30	(0.88–1.49)	0.27	(0.92–1.34)	0.05	(1.00–1.58)	0.37	(0.70–2.65)
Taq1 (rs731236)								
Add.: GG vs. AG vs. AA	0.08	0.55 (0.28–1.08)	0.35	0.82 (0.54–1.25)	0.85	0.95 (0.58–1.58)	0.87	0.89 (0.20–3.87)
Dom.: GG + AG vs. AA	0.11	0.57 (0.28–1.13)	0.41	0.83 (0.53–1.29)	0.94	0.98 (0.58–1.66)	0.98	0.98 (0.21–4.64)
Rec.: GG vs. AG + AA	1.00	0.00 (0.00–NA)	0.45	0.42 (0.04–3.99)	0.96	1.06 (0.11–10.06)	1.00	0.00 (0.00–NA)
Hom.: GG vs. AA	NA	NA (NA–NA)	NA	NA (NA–NA)	NA	NA (NA–NA)	NA	NA (NA–NA)
Alle.: G vs. A	0.12	0.59 (0.30–1.15)	0.27	0.79 (0.51–1.21)	0.75	0.92 (0.56–1.53)	0.86	0.87 (0.19–4.09)

Supplementary Table S7. Logistic regression analyses of lipids with SNPs of *VDR* in adult females with adjustment for age, body mass index, dietary 25-hydroxyvitamin D, and the sunshine time per week

Note. Abbreviations: Add., additive model; Alle., allelic model; B, degenerate base standing for C, G, and T; *Cl*, confidential interval; Dom., dominant model; HDLC, high-density lipoprotein cholesterol; Hom., homozygous model; LDLC, low-density lipoprotein cholesterol; NA, not available; *OR*, odds ratio; Rec., recessive model; SNPs, single nucleotide polymorphisms; TC, total cholesterol; TG, triglyceride; *VDR*, vitamin D receptor gene.

	TG ≥ 1.7 <i>vs</i>	. < 1.7 mmol/L	TC ≥ 5.2 vs	s. < 5.2 mmol/L	LDLC ≥ 3.4 i	vs. < 3.4 mmol/L	HDLC < 1.0	<i>vs</i> . ≥ 1.0 mmol/L
Gene models	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)
Apa1 (rs7975232)								
Add.: AA vs. AC vs. CC	0.55	1.08 (0.85–1.37)	0.95	0.99 (0.79–1.24)	0.92	0.99 (0.75–1.30)	0.11	1.72 (0.88–3.35)
Dom.: AA + AC vs. CC	0.49	1.12 (0.82–1.51)	0.46	0.90 (0.68–1.19)	0.74	0.94 (0.67–1.34)	0.13	2.11 (0.81–5.51)
Rec.: AA vs. AC + CC	0.77	1.08 (0.64–1.83)	0.23	1.35 (0.83–2.20)	0.82	1.07 (0.58–1.97)	0.51	1.54 (0.43–5.53)
Hom.: AA vs. CC	0.74	1.18 (0.45–3.11)	0.25	1.72 (0.69–4.29)	0.56	1.36 (0.49–3.82)	0.31	3.00 (0.37–24.68)
Alle.: A vs. C	0.47	1.10 (0.86–1.41)	0.66	1.05 (0.84–1.33)	0.83	0.97 (0.73–1.29)	0.35	1.39 (0.70–2.77)
Cdx2 (rs11568820)								
Add.: TT vs. CT vs. CC	0.65	0.96 (0.78–1.17)	0.09	0.85 (0.71–1.03)	0.46	0.92 (0.73–1.16)	0.12	1.62 (0.89–2.95)
Dom.: TT + CT vs. CC	0.88	0.98 (0.72–1.33)	0.14	0.81 (0.61–1.07)	0.64	0.92 (0.65–1.30)	0.57	1.32 (0.50–3.50)
Rec.: TT vs. CT + CC	0.57	0.90 (0.62–1.30)	0.20	0.80 (0.57–1.13)	0.40	0.83 (0.54–1.28)	0.04	2.68 (1.06–6.75)
Hom.: TT vs. CC	0.06	2.25 (0.97–5.23)	0.82	0.92 (0.42–1.99)	0.74	1.17 (0.47–2.95)	0.19	4.84 (0.46–51.14)
Alle.: T vs C	0.62	0.95 (0.76–1.18)	0.14	0.86 (0.70–1.05)	0.45	0.91 (0.71–1.17)	0.30	1.42 (0.73–2.73)
<i>Fok1</i> (rs2228570)								
Add.: BB vs. AB vs. AA	0.50	0.93 (0.75–1.15)	0.08	0.84 (0.69–1.02)	0.77	1.04 (0.81–1.33)	0.02	2.26 (1.12–4.56)
Dom.: BB + AB vs. AA	0.75	0.94 (0.65–1.36)	0.30	0.84 (0.59–1.17)	0.63	1.11 (0.72–1.72)	0.23	2.48 (0.57–10.90)
Rec.: BB vs. AB + AA	0.47	(0.64–1.23)	0.08	0.76 (0.56–1.03)	0.97	(0.68–1.45)	0.03	2.75 (1.12–6.74)
Hom.: BB vs. AA	0.89	(0.48–2.35)	0.80	(0.52–2.35)	0.82	(0.45–2.73)	0.82	(0.10-6.34)
Alle.: B vs. A	0.50	(0.75–1.15)	0.19	(0.71–1.07)	0.53	(0.84–1.39)	0.09	(0.91–3.76)
Taq1 (rs731236)								
Add.: GG vs AG vs. AA	0.67	1.12 (0.67–1.86)	0.70	1.10 (0.68–1.76)	0.30	0.72 (0.38–1.35)	0.64	0.69 (0.15–3.19)
Dom.: GG + AG vs. AA	0.69	1.12 (0.65–1.91)	0.75	1.09 (0.66–1.79)	0.42	0.76 (0.40–1.47)	0.85	0.86 (0.19–3.97)
Rec.: GG vs. AG + AA	0.83	1.27 (0.15–11.06)	0.47	2.36 (0.23–24.37)	1.00	0.00 (0.00–NA)	1.00	0.00 (0.00–NA)
Hom.: GG vs. AA	NA	NA (NA–NA)	NA	NA (NA–NA)	NA	NA (NA–NA)	NA	NA (NA–NA)
Alle.: G vs. A	0.65	1.13 (0.67–1.89)	0.68	1.11 (0.68–1.79)	0.31	0.72 (0.38–1.37)	0.71	0.75 (0.17–3.37)

Supplementary Table S8. Logistic regression analyses of lipids with SNPs of *VDR* in adult males with adjustment for age, body mass index, dietary 25-hydroxyvitamin D, and the sunshine time per week

Note. Abbreviations: Add., additive model; Alle., allelic model; B, degenerate base standing for C, G, and T; *Cl*, confidential interval; Dom., dominant model; HDLC, high-density lipoprotein cholesterol; Hom., homozygous model; LDLC, low-density lipoprotein cholesterol; NA, not available; *OR*, odds ratio; Rec., recessive model; SNPs, single nucleotide polymorphisms; TC, total cholesterol; TG, triglyceride; *VDR*, vitamin D receptor gene.

Genotype			Female		Male			
comparison	n	Median	IQR	P value	n	Median	IQR	P value
Apa1 (rs7975232)								
Add: AA vs. AC vs. CC								
CC	561	58.97	[49.68–69.18]	0.35	439	63.18	[53.75–72.59]	0.83
AC	453	58.75	[49.16–68.63]		347	62.33	[52.65–73.59]	
AA	110	57.04	[48.40–65.71]		77	60.91	[52.44–73.32]	
Dom: AC + AA vs. CC								
AC + AA	563	58.53	[49.01–68.18]	0.47	424	62.12	[52.66–73.49]	0.54
СС	561	58.97	[49.68–69.18]		439	63.18	[53.75–72.59]	
Rec: AA vs. AC + CC								
AA	110	57.04	[48.40–65.71]	0.16	77	60.91	[52.44–73.32]	0.83
AC + CC	1,014	58.86	[49.50–68.82]		786	62.63	[53.24–72.72]	
Hom: AA vs. CC								
AA	110	57.04	[48.40–65.71]	0.15	77	60.91	[52.44–73.32]	0.74
CC	561	58.97	[49.68–69.18]		439	63.18	[53.75–72.59]	
Alle: A vs. C								
А	673	58.30	[48.86–67.20]	0.23	501	62.04	[52.66–73.38]	0.57
С	1,575	58.90	[49.54–68.88]		1,225	62.85	[53.38–72.66]	
<i>Cdx2</i> (rs11568820)								
Add.: TT vs. CT vs. CC								
CC	334	59.17	[50.94–68.68]	0.20	304	61.79	[53.30–72.53]	0.69
СТ	576	59.08	[48.96–69.29]		390	63.11	[53.50–72.93]	
тт	214	56.48	[48.30–67.03]		169	61.65	[51.85–72.31]	
Dom.: CT + TT vs. CC								
CT + TT	790	58.35	[48.80–68.56]	0.41	559	62.76	[53.14–72.88]	0.72
СС	334	59.17	[50.94–68.68]		304	61.79	[53.30–72.53]	
Rec.: TT vs. CT + CC								
TT	214	56.48	[48.30–67.03]	0.08	169	61.65	[51.85–72.31]	0.56
CT + CC	910	59.15	[49.50–69.12]		694	62.83	[53.46–72.73]	
Hom.: TT vs. CC								
TT	214	56.48	[48.30–67.03]	0.08	169	61.65	[51.85–72.31]	0.81
СС	334	59.17	[50.94–68.68]		304	61.79	[53.30–72.53]	
Alle: T vs. C								
т	1,004	58.00	[48.65–68.27]	0.13	728	62.59	[52.78–72.82]	0.93
С	1,244	59.15	[49.95–68.88]		998	62.61	[53.36–72.66]	
<i>Fok1</i> (rs2228570)								
Add.: BB vs. AB vs. AA								
AA	243	57.56	[48.62–69.02]	0.83	172	63.52	[54.12–73.35]	0.47
AB	561	58.75	[49.14–69.11]		457	62.44	[53.50–72.16]	
BB	320	59.04	[49.98–67.16]		234	61.49	[51.87–72.67]	

Supplementary Table S9. Comparison of 25-hydroxyvitamin D concentration (nmol/L) across genotype models of VDR gene polymorphisms in adult males and females

Biomed Environ Sci, 2022; 35(2): S1-S9

								Continued
Genotype			Female				Male	
comparison	n	Median	IQR	P value	n	Median	IQR	P value
Dom.: BB + AB vs. AA								
BB + AB	881	58.87	[49.43–68.55]	0.54	691	62.30	[53.17–72.33]	0.40
AA	243	57.56	[48.62–69.02]		172	63.52	[54.12–73.35]	
Rec.: BB vs. AB + AA								
BB	320	59.04	[49.98–67.16]	0.87	234	61.49	[51.87–72.67]	0.27
AB + AA	804	58.37	[49.03–69.07]		629	62.80	[53.64–72.82]	
Hom.: BB vs. AA								
BB	320	59.04	[49.98–67.16]	0.62	234	61.49	[51.87–72.67]	0.24
AA	243	57.56	[48.62–69.02]		172	63.52	[54.12–73.35]	
Alle.: B vs. A								
В	1,201	58.92	[49.55–68.41]	0.65	925	62.16	[52.72–72.54]	0.24
А	1,047	58.32	[49.01–69.02]		801	62.99	[53.89–72.93]	
<i>Taq1</i> (rs731236)								
Add.: GG vs AG vs. AA								
AA	1,005	58.53	[49.43–68.66]	0.92	787	62.37	[53.24–72.59]	0.50
AG	114	60.05	[48.85–67.77]		72	64.27	[52.80–75.16]	
GG	5	53.88	[37.14–74.36]		4	67.28	[66.31–71.96]	
Dom.: AG + GG vs. AA								
AG + GG	119	59.98	[48.95–67.63]	0.91	76	64.98	[53.28–74.37]	0.46
AA	1,005	58.53	[49.43–68.66]		787	62.37	[53.24–72.59]	
Rec.: GG vs AG + AA								
GG	5	53.88	[37.14–74.36]	0.68	4	67.28	[66.31–71.96]	0.30
AG + AA	1,119	58.73	[49.36–68.59]		859	62.56	[53.20–72.72]	
Hom.: GG vs. AA								
GG	5	53.88	[37.14–74.36]	0.68	4	67.28	[66.31–71.96]	0.29
AA	1,005	58.53	[49.43–68.66]		787	62.37	[53.24–72.59]	
Alle.: G vs. A								
G	124	59.97	[49.01–67.61]	0.84	80	65.45	[53.57–73.86]	0.34
А	2,124	58.64	[49.41–68.64]		1,646	62.49	[53.23–72.66]	

Note. Abbreviations: Add., additive model; Alle., allelic model; B, degenerate base standing for C, G, and T; Dom., dominant model; Hom., homozygous model; IQR, interquartile range; Rec., recessive model; *VDR*, vitamin D receptor gene.

Supplementary Table S10. Comparison of 25-hydroxyvitamin D concentration (nmol/L) in abnormal and normal lipid groups of adult males and females

Genotype			Female				Male	
comparison	n	Median	IQR	P value	n	Median	IQR	P value
TG								
≥ 2.3 mmol/L	92	57.79	[49.43–65.74]	0.40	213	59.58	[49.47–69.60]	< 0.01
< 2.3 mmol/L	1,032	58.80	[49.25–68.85]		650	63.43	[54.29–73.70]	
тс								
≥ 6.2 mmol/L	151	59.19	[47.87–72.64]	0.68	111	59.18	[49.73–71.13]	0.09
< 6.2 mmol/L	973	58.56	[49.55–68.31]		752	62.92	[53.42–72.93]	
LDLC								
≥ 4.1 mmol/L	29	56.70	[45.80–66.12]	0.52	17	55.45	[45.07–74.43]	0.20
< 4.1 mmol/L	1,095	58.78	[49.41–68.66]		846	62.65	[53.27–72.72]	
HDLC								
< 1.0 mmol/L	22	67.80	[59.52–78.05]	< 0.01	20	69.35	[57.83–83.61]	0.11
≥ 1.0 mmol/L	1,102	58.52	[49.13–68.44]		843	62.57	[53.19–72.59]	

Note. Abbreviations: HDLC, high-density lipoprotein cholesterol; IQR, interquartile range; LDLC, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.

Supplementary	/ Table S11. Simple	linear regressions betwee	en serum 25-hydroxyvitamii	n D and lipid profiles
---------------	---------------------	---------------------------	----------------------------	------------------------

tinid avefiles	Female		Male	
Lipid profiles	β	P value	β	P value
lg TG	< 0.001	0.902	-0.003	< 0.001
TC	0.001	0.647	-0.003	0.088
LDLC	-0.001	0.584	-0.003	0.006
HDLC	< 0.001	0.461	-0.001	0.025

Note. Abbreviations: HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.