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Objective  To indicate the deficiency of the classical method for analyzing data on individual
matching case-control study in consideration of the interaction between the study factor (exposure)
and the matching factor, and to find out a proper method for handling this deficiency.  Method
First, experimental data with 50 pairs of cases and controls were used for strata analysis according to
the values of a matching factor to illustrate the possible interaction between a risk factor (exposure)
and the matching factor. Second, a detailed procedure was proposed for analyzing such data.  Results
Interaction between the study factor and matching factor was demonstrated by using strata analysis
and unconditional logistic regression analysis. Therefore the results from the classical analysis for
such data might be incorrect.  Conclusion  Data from individual matching case-control study
design should be dealt with strata analysis or multivariate analysis to explore and evaluate the possible
interaction between the study factor and matching factor. The conclusion would be valid only after
such analysis is conducted.
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INTRODUCTION

The purpose of individual matching study design is to control confounders. Controls
individually matched with cases, influence of the confounding factors on both the cases and
controls would be the same[1, 2]. In addition to its confounding effect, other risk factors might
exert effect modification on the study factor, which could not be dealt with by the classical
analysis procedure for individual matching case-control study design. Since interaction
between risk factors is interesting to all researchers, and it is necessary to find out timely
and evaluate it accurately for disease prevention and control. Unfortunately, the classical
analysis procedure for the data from individual matching case-control study design does not
check the interaction between the study factor and matching factor at all. That is its defect
that needs to be improved.

MATERIALS AND METHODS

Without losing generalization, supposing that a 1:1 individual matching case-control
study was designed to explore the etiological relationship between disease D and risk factor
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A1. For simplicity, it was supposed that there were only two risk factors for disease onset:
A1 and A2, with each having only two levels (values, 0 for unexposed and 1 exposed). In
order to control the impact of A2, every control was matched with a case by the value of A2.
Fifty matching sets (100 individuals) were sampled, and information about A1 and A2
exposure history was collected and analyzed.

In this example, the classical method was to be used to illustrate the defect of the
method for dealing with such data firstly, and then a new procedure would be proposed for
the analysis of data from such design.

RESULTS

Classical Procedure for Analyzing Data From Individual Matching Case-control Design

Table 1-1 is the classical 2 by 2 tables, which summaries the results from a 1:1
matching design classified by risk factor A1. Totally 50 pairs were included in this study.
And Table 1-2 summaries the crude odds-ratio (ORc) and its confidential intervals estimated
from Table 1-1.

TABLE 1-1

A Classical 1:1 Case-control Study

Control
Case

1 0
Total

1 5 30 35

0 12 3 15

Total 17 33 50

TABLE 1-2

ORc Estimation

95% Confidence Interval
Parameter Point Estimates

Lower Upper

Adjusted OR (MH) 2.5000 1.2464 5.0145 (R)

Adjusted OR (MLE) 2.5000 1.2981 5.0624 (M)

Note. R: RGB; M: mid-P.

A conclusion could be made based on the results when the influence of A2 was ignored,
A1 would be a risk factor of D. The relationship strength (crude odds ratio) was expressed
as ORc=2.5000 with a 95% CI of (1.2464, 5.0145).

Defect of the Above Results and Strata Analysis

As mentioned previously, both A1 and A2 had two levels (values). If the above table is
separated according to the value of A2, we would see different results (Tables 2-1, 2-2, 3-1,
and 3-2).

Tables 2-1 and 2-2 are the results when A2=0, and Tables 3-1 and 3-2 for A2=1.
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TABLE 2-1

Association of A1 With D1 for A2=0

Exposed Controls
Exposed Cases

1 0
Total

1 2 10 12
0 9 1 10

Total 11 11 22

TABLE 2-2

Parameter Estimationa (A2=0)

95% Interval Confidence
Parameter Point Estimation

Lower Upper

Adjusted OR (MH) 1.1110 0.4013, 3.0765 (R) b

Adjusted OR (MLE) 1.1111 0.4418, 2.8274 (M)b

Note. aP=5000; b R: RGB; M: mid-P.

TABLE 3-1

Association of A1 With D1 for A2=1

Exposed Controls
Exposed Cases

1 0
Total

1 3 20 23

0 3 2 5

Total 6 22 28

TABLE 3-2

Parameter Estimationa (A2=1)

95% Interval Confidence
Parameter Point Estimation

Lower Upper

Adjusted OR (MH) 6.6667 2.0182 22.0216 (R)b

Adjusted OR (MLE) 6.6667 2.1720 28.1748 (M)b

Note. aP=0.0001; b R: RGB; M: mid-P.

From the above tables, we could conclude that there is no statistically significant
relationship between A1 (exposure) and D (disease) when A2=0 (OR0=1.1110, with a
95%CI of (0.4013, 3.0765)). But we do find that the relatinship between the exposure of
variable A1 and disease (D) was of statistical difference when A2=1. In the second case, the
Odds ratio (OR1) was equal to 6.6667 with a 95%CI between 2.0182 and 22.0216
(P=0.0001).

From an epidemiological view of point, A2 could be called a confounder of A1. Then
the differences between Tables 1-1, 2-1, and 3-1 could be explained. As we know, there are
two types of relationship between the two factors: independent from, or correlated with each
other. If the two factors are independent from each other, the analysis like table 1-1 would
be correct. Otherwise, the above procedure and its results would conceal the truth and
produce a pseudo correct conclusion.
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How should we deal with such data correctly? First, the data should be stratified
according to the values of matching factor A2. Association between the exposure variable
A1 and D should be analyzed in each stratum with stratum ORis estimated. Second,
homogeneity of stratum ORis should be tested to judge the presence of interaction. If there
was no interaction on the one hand, the classical analyzing procedure would be able to
control confounding of A2, so the conclusion is correct. If there was interaction between A1
and A2 on the other hand, we can conclude that the above results are pseudo. At that
moment, we should give the results in accordance with the criteria for interaction.

Test for the Homogeneity of Stratum ORis

The stratum ORis must be tested for homogeneity to check the presence of interaction
between the two factors. We gave out the formulae for the test on the basis of that for group
matching case-control study data[2].

The formulae for the summarized Odds Ratio (ORw) and the Variance of log of stratum
ORi (Var(In ORi)) were
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If there was no interaction between A1 and A2, the stratified ORis should be
synthesized into one ORw. The ORw aslo should be tested for statistical significance with the
following formulae:
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Theoretically, ORw and 2

wχ  should be identical with the crude ORc and 2

cχ .
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Contrarily, if the interaction between A1 and A2 existed, the stratified specific
conclusion, or the results from multivariate analysis results should be given out. In that case,
the summary ORw and 2

wχ  needed not to be calculated, as it was incorrect.
The above analyzing procedure for homogeneity test of stratum ORis could be

summarized in the following Table (Table 4).

TABLE 4

Test for Homogeneity of Stratum ORis in 1:1 Individual Matching Case-control Study

Stratum iOR iORln iW ∑⋅
iii

WORW ln
wOR ( )iORVar ln ( )

( )
i

wi

ORVar

OROR

ln

lnln 2−

A2=0 1.1111 0.1054 4.7368 0.0679 0.2111 1.9180

A2=1 6.6667 1.8971 2.6087 0.6737
2.0995

0.3833 3.4827

Total / / 7.3455 0.7417 / 0.5944 5.4007

Because 2

1−χk =5.4007, �=k-1, P<0.05, we couclude that there is statistically significant
difference between the strtified odds ratios (OR1 and OR2). In other words, they are drawn
from different population, and the interaction between A1 and A2 exists. So the stratum
ORis can not be synthesized, and the crude ORc and Chi-square are illogical.

As the interaction between A1 and A2 existed, there were two ways to report the
results:

Reporting the stratum specific results, including the interaction between A1 and A2;
when A2=0, there was no relation between A1 and D. In other words, OR=1; when A2=1,
A1 was significantly associated with D, OR=6.6667, with a 95% confidence interval of
(2.0182, 22.0216). That is to say, the interaction between A1 and A2 made A1 become a
significant risk factor from non-risk one. (from OR=1.1111 to OR=6.6667).

Multivariate analysis. Unconditional logistic regression analysis could be used with D
as an outcome variable, A1, A2 and interactive item A1*A2 as the explanatory variables, to
explore the impact of A1, A2 and A1*A2 on D.

Unconditional Logistic Regression Analysis

Judging the presence of interaction. Different models would be compared with each
other to estimate the impact of interactive items A1*A2 on the relationship between A1, A2
and D.

Model 1: D as an outcome variable and A1 as an explanatory variable:

LogitP1=-0.7885+1.5106A1,
-2lnL1=125.3500.

Model 2: D as an outcome variable, A1 and A1*A2 as explanatory variables
Based on the above model, an interaction term would be added and the second model to

be established:

LogitP2=-0.7885+0.8755A1+1.2567(A1*A2),
-2lnL2=121.0349,

Q=-2ln(L1/L2)=125.3500-121.0349=4.3151, df =1, P<0.05.

Therefore the interactive item A1*A2 had an significant impact on D.
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OR (A1=1: A1=0)=exp. (0.8755+1.2567A2).

When A2=0, OR (A1=1:A1=0)=exp. 0.8755=2.4001. When A2=1, OR (A1=1:A1=0)=
exp. (0.8755+1.2567)=8.4334. A2 imposed a significant influence on the relation between
A1 and D.

Model 3: D as an outcome variable, A2 as an explanatory variable:

LogitP3=0,
-2lnL3=138.6294.

Model 4: D as an outcome variable, A2 and A1*A2 as explanatory variables:

LogitP4=-1.4856A2+2.8253 (A1*A2),
-2lnL4=116.4412,

Q=-2ln (L3/L4)=138.6294 116.4412=22.1882, df =1, P<0.05.

Therefore, the interactive item A1*A2 had an significant impact on D.

OR (A2=1:A2=0)=exp. (-1.4856+A1).

When A1=0, OR (A2=1:A2=0)= exp. (-1.4856)=0.2264. When A2=1, OR (A1=1:A1=0)
= exp. (-1.4856+2.8253)=3.8179

A1 imposed a significant influence on the relation between A2 and D.
From the above analysis, it was obvious that there did exist interaction between A1 and

A2. And the interactive term A1*A2 exerted impact both on the association of D with A1,
and on that of D with A2.

Unconditional Logistic Regression Analysis

Unconditional logistic regression analysis was to be carried out with D as outcome
variable, A1, A2 and interactive item A1*A2 as the explanatory variables, to explore the
impact of A1, A2 and interactive item A1*A2 on D.

LogitP=-0.0953+0.1823A1-1.3863A2+2.6430(A1*A2).

TABLE 5

Significant Test for Explanatory Variables

Term Coefficient ±s Z statistics P value

A1 0.1823 0.6043 0.3017 0.7629

A1*A2 2.6430 0.9060 2.9174 0.0035

A2 -1.3863 0.6606 -2.0986 0.0359

Constant -0.0953 0.4369 -0.2181 0.8273

Based on Table 5, we can conclude that, the interaction does exist between A1 and A2.

OR (A1=1: A1=0 | A2=0)=exp. (0.1823)=1.2000,
OR (A1=1: A1=0 | A2=1)=exp. (0.1823+2.6430)=16.8660,

OR (A2=1: A2=0 | A1=0)=exp. (-1.3863)=0.2500,
OR (A2=1: A2=0 | A1=1)=exp. (-1.3863+2.6430)=3.5138.
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CONCLUSION

As to individual matching case-control design, data analysis should not be carried out
with the classical methods, which might ignore the interaction between the matching factor
and factors interested, and reach a seemingly correct but really biased result. The proper
procedure for analyzing such data should be stratified according to the value of matching
factor first, and followed by calculating stratified ORis, and testing the homogeneity of
stratifieds ORis to make the adjustiment on the presence of interaction between the matching
factor and studying factors. If the interaction does not exist, the crude association or
synthesized one could be reported. Otherwise, the association of the studying factor with the
disease should be reported accoding to the level of the matching factor, or the results from
multivariate analysis.
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