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Frame Work of Data Envelopment Analysis—A Model to Evaluate the  
Environmental Efficiency of China’s Industrial Sectors  
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Objective  To evaluate the environmental and technical efficiencies of China’s industrial sectors and provide appropriate 
advice for policy makers in the context of rapid economic growth and concurrent serious environmental damages caused by 
industrial pollutants.  Methods  A data of envelopment analysis (DEA) framework crediting both reduction of pollution 
outputs and expansion of good outputs was designed as a model to compute environmental efficiency of China’s regional 
industrial systems.  Results  As shown by the geometric mean of environmental efficiency, if other inputs were made 
constant and good outputs were not to be improved, the air pollution outputs would have the potential to be decreased by about 
60% in the whole China.  Conclusion  Both environmental and technical efficiencies have the potential to be greatly 
improved in China, which may provide some advice for policy-makers. 

Key words: Technical efficiency; Environmental efficiency; Directional distance function; Technical-environmental 
efficiency; Data of envelopment analysis; China 

 
INTRODUCTION 

China is now experiencing rapid economic 
growth by developing industrial production. However, 
extremely rapid output growth has been accompanied 
with serious environmental damage and has posed in 
turn a threat to public health[1-3]. As a result, many 
cities in China are among the worst polluted urban 
areas in the world and are faced with serious public 
health hazards associated with environmental 
pollution[4-5]. Thus, in China, a measurement of the 
environmental performance of industrial 
manufacturing sectors is essential to identify the 
industrial sources of pollution, which is necessary for 
devising efficient control strategies. However, most 
of literature on regional environmental assessment of 
China only focuses on pollution indice or the impact 
of environmental regulations[6-7]. Zhang and Xue[8-9] 
analyzed the environmental efficiency of China’s 
agricultural sectors producing vegetables and crops, 
while ignoring the industrial system. Consequently, 
few studies have empirically measured the 
environmental efficiency of China’s industrial sectors 
at a nation-wide level and the perspectives of 
productivity efficiency.  

The measurement of productivity has 

traditionally focused on measuring the outputs of 
production units relative to inputs of production. The 
productivity of an individual production unit could be 
measured in terms of its ability to minimize input 
usage while producing given outputs, or to maximize 
output production with given inputs. In other words, 
any firm at full efficiency should be operated at 
maximum potential output levels, and any deviation 
from the frontier would be used to measure its 
inefficiency. Presently, the most popular methods 
used in efficiency evaluation involve non-parametric 
and mathematical programming framework, as well 
as stochastic and econometric framework. Since data 
of envelopment analysis (DEA) can be applied in 
multi-output situations and eliminate the need for 
parametric assumption of the underlying technology, 
DEA is a widely-used linear programming technique 
for conducting such an evaluation.  

However, with increasing interest in assessing 
environmental performance of industrial sectors, the 
above traditional method, typically ignoring the 
production of by-products such as pollution, fails to 
provide information on assessing environmental 
performance. Recently, some studies have partially 
satisfied the need of assessing environmental 
performance by incorporating the environmental 
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factor into adjusted measures of productivity or 
constructing environmental index. Being different 
from traditional studies of productivity ignoring the 
reduced emissions of pollutants, these studies 
implicitly assume that inputs into the pollution 
abatement activities are productive.  

Environmental performance assessment can be 
defined as an analysis to study the environmental 
performance of a given firm in different time periods, 
or to compare the environmental performance of 
different firms in a single time period by using some 
analytical tools. While traditional DEA models 
account for only two categories of variables (inputs 
and outputs), their use in environmental performance 
assessment should consider three kinds of variables, 
namely, inputs, desirable and undesirable 
(environmentally detrimental or pollution) outputs[10]. 
Here, the practical difficulty in incorporating the 
environmental factor into adjusted measures of 
productivity is the task of assigning weights to the 
bad outputs. 

Although some DEA frameworks have been used 
for environmental performance assessment in the past 
decades[11-12], most of them are only able to supply 
undesirable (environmentally detrimental or pollution) 
output-oriented technical efficiency (environmental 
efficiency) or directional distance function in which 
the good and bad outputs are treated asymmetrically.  

The undesirable output-oriented technical 
efficiency cannot provide overall productivity 
measurement. In addition, although the directional 
distance function credits reduction of 
environmentally detrimental outputs and expansion 
of good outputs, it cannot supply the same efficiency 
score for either the reduction of environmentally 
detrimental outputs or the expansion of good outputs 
at the same time. In other words, the method of 
directional distance function can provide both the 
technical efficiency measuring the expansion of 
good outputs and the environmental efficiency 
measuring the reduction of pollutions 
simultaneously, but their scores are different. In 
addition, scores of the calculated technical 
efficiency in the directional distance function model 
only can range from 0.5 to 1.  

In this paper, we established a DEA framework, 
which not only can credit the reduction of pollution 
outputs and the expansion of good outputs 
simultaneously but also can calculate the same values 
for both technical and environmental efficiencies.  

METHODS 

To describe the DEA framework used in this 
paper, we started from observations of K units that 

use N inputs x= (x1,. . .,xN)∈R+
N to produce M 

desirable outputs y= ( y1,. . .,yM)∈R+
M while releasing 

W undesirable outputs (environmentally detrimental 
outputs). To account for the characteristics of 
production process producing negative externalities, a 
distinctive technology set should be specified. As a 
definition of environmental efficiency (referred to as 
EE in this paper.), we used the following reference 
technology S proposed by Färe et al.[13].  
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The first two sets of constraints indicate a vector of 
desirable (good) outputs which are produced by a 
vector of inputs x, based on the reference technology 
S. The third constraint indicates a vector of 
undesirable (pollution) outputs b. From the above 
function, it is manifested that the good outputs and 
inputs are freely disposable. Here, we assumed that it 
was costly to reduce the bad outputs by imposing that 
b and y were jointly weaky disposable. The weak 
disposability indicates that it is feasible to reduce 
good and bad outputs proportionally, while it is 
infeasible to reduce only the bad output without the 
consumption of resources that otherwise could have 
been used to produce the good output. According to 
Färe[14], another property the model holds is that 
desirable and undesirable outputs are null joint, 
which means that it is technically impossible to 
produce good outputs without simultaneously 
producing bad outputs. Based on the above three 
properties and the idea of specified technology set, an 
undesirable output-oriented efficiency index can be 
described as: 

inf{ : ( , , ) }.x y b Sε θ θ= ∈  (2) 
Function (2) can be directly treated as the definition 
of EE. Here, ε is environmental efficiency, which is 
equal to θ. If ε<1, a sample is not lying on the frontier 
of the production set, and an improvement in 
environmental performance is possible for this 
sample. If ε=1, it indicates that, in the current status 
of technology reflected by the frontier of the 
production set, no significant improvements could be 
made in the sample. However, while this index can 
measure the reduction of bad outputs, it ignores the 
measurement of expansion of good outputs. 
Obviously, function (2) can provide us with 
environmental efficiency, but cannot give us an 
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overall productivity index.  
A significant effort was made by Chung, Färe, 

and Grosskopf[15] who developed a directional 
distance function crediting a producer for 
simultaneously reducing the bad outputs and 
increasing the good outputs. They believed that the 
original Malmquist index using Shephard output 
distance functions to represent technology[16] could 
expand both the good and bad outputs proportionally 
as much as feasible. The framework of Shephard 
output distance function considering both the good 
and bad outputs can be defined as 
     1( , , ) sup{ : ( , , ) }.D x y b x y b Sθ θ θ− = ∈      (3) 

where technical efficiency can be computed 
using 1/θ (referred to as TE in this paper). Since both 
types of outputs are expanded at the same rate in 
Shephard output distance functions, it cannot be used 
to measure environmental performance. So, Chung, 
Färe, and Grosskopf have developed a new index that 
could explicitly credit firms or industries for 
reductions in undesirable outputs, while providing a 
measurement of “true” productivity. This method is 
based on the basic idea of the Luenberger 
productivity index which takes account of both input 
reductions and output improvements when measuring 
efficiency[17-18]. In their studies, the directional 
distance function seeking to increase the good 
outputs while simultaneously decreasing the bad 
outputs is defined as 
    { }( , , ; ) sup : ( , ) .oD x y b g y b g Sθ θ= + ∈

r
    (4) 

where “g” is the vector of “directions” in which 
outputs are scaled, θ is the expansion of the desirable 
outputs and contraction of the undesirable outputs 
when the expansion and contraction are identical 
proportions for a given level of inputs. The above 
directional distance functions can be expressed as 
solutions to linear programming problems as follows: 

( , , ; )oD x y b g Maxθ=
r

            (5) 
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Since the technical and environmental 

efficiencies in this model are calculated 
simultaneously using direct distance function, we call 
them DTE and DEE in this model. Here, according to 
the definition of technical efficiency and 
environmental efficiency, DTE can be computed as 

DTE=1/(1+θ), and DEE as DEE=1-θ. Thus, although 
the method of directional distance function can 
provide both the technical efficiency measuring the 
expansion of good outputs and the environmental 
efficiency measuring the reduction of bad outputs 
simultaneously, their scores are different.  

In this paper, we took the advantages of both 
Farrell’s output measure of technical efficiency[19] 
and Shephard’s distance function to establish our 
DEA framework. Here, we also sought to increase the 
good outputs while decreasing the bad outputs 
simultaneously. The technical-environmental 
efficiency (referred to as TEE in this paper.) index 
can be defined as 

{ }1 sup : ( , , / ) .TEE y x b Sθ θ θ− = ∈     (6) 
where TEE=1/θ or defined as 

{ }inf : ( / , , ) .TEE y x b Sθ θ θ= ∈      (7) 
where TEE=θ. The above functions can expand 

the good outputs and contract the bad outputs as 
much as feasible at the same time. Obviously, 
function (6) is the reciprocal of function (7). Such a 
relationship also exists between the Farrell output 
function and Shephard’s output distance function. 
The functions can be calculated as optimal solutions 
to the following programming problems 

1TEE Maxθ− =             (8) 
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Or               TEE Minθ=           (9) 
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After the empirical experiment in which we 

used extremely small value as a good output, we 
found that the value of TEE approached zero as a 
limit. Because this method satisfies the basic idea 
of efficiency measurement, it is more applicable 
than directional distance function in efficiency 
analysis.  
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RESULTS 

For the empirical measurement, we established a 
province-level database from official yearbooks 
available in China: China Environment Yearbooks 
(2005), China Statistical Yearbooks (2005), and 
China Industry Economy Statistical Yearbooks (2005). 
The term "province" refers to provinces, autonomous 
regions and municipalities directly under the central 
government. A data set in 2004 for the industrial 
sector in China’s 30 provinces was established, which 
consists of provincial level observations on industrial 
outputs and inputs, as well as emissions of 

 pollutants. 
The two inputs considered were the provincial 

aggregates of industrial employment and capital. The 
data of one undesirable output (pollutant emission) 
were the emissions of air pollution by the industrial 
sector. We treated the total volume of waste gas 
emission from the industry as air pollution output.  

The calculated values for the various efficiency 
indexes, which were mentioned in the former section, 
are listed in Table 1. In addition, the discrepancies 
between the different efficiency scores and rankings 
obtained from four programming models also can be 
found in Table 1. 

TABLE 1 

Results of DEA 

Province EE TE DTE DEE TEE 

Beijing 0.492(9) 0.865(15) 0.777(12) 0.713(12) 0.758(15) 

Tianjin 0.902(2) 0.820(19) 0.958(2) 0.956(2) 0.960(2) 

Hebei 0.268(20) 0.970(2) 0.761(13) 0.686(13) 0.798(11) 

Shanxi 0.180(24) 0.913(11) 0.598(23) 0.327(23) 0.555(23) 

Inner Mongolia 0.151(26) 0.936(6) 0.576(26) 0.264(26) 0.510(26) 

Liaoning 0.311(16) 0.941(5) 0.704(17) 0.579(17) 0.780(13) 

Jilin 0.292(19) 0.843(17) 0.666(19) 0.498(19) 0.616(22) 

Heilongjiang 0.347(14) 0.899(12) 0.736(15) 0.641(15) 0.742(16) 

Shanghai 1.000(1) 1.000(1) 1.000(1) 1.000(1) 1.000(1) 

Jiangsu 1.000(1) 1.000(1) 1.000(1) 1.000(1) 1.000(1) 

Zhejiang 1.000(1) 1.000(1) 1.000(1) 1.000(1) 1.000(1) 

Anhui 0.528(7) 1.000(1) 1.000(1) 1.000(1) 1.000(1) 

Fujian 0.711(3) 0.756(21) 0.878(3) 0.861(3) 0.872(4) 

Jiangxi 0.308(17) 0.969(3) 0.823(8) 0.786(8) 0.827(8) 

Shandong 0.571(6) 0.921(9) 0.876(4) 0.859(4) 0.877(3) 

Henan 0.339(15) 0.962(4) 0.857(5) 0.833(5) 0.859(5) 

Hubei 0.496(8) 0.890(13) 0.822(9) 0.784(9) 0.820(10) 

Hunan 0.349(13) 0.933(7) 0.836(7) 0.805(7) 0.839(6) 

Guangdong 1.000(1) 1.000(1) 1.000(1) 1.000(1) 1.000(1) 

Guangxi 0.362(11) 0.920(10) 0.756(14) 0.678(14) 0.771(14) 

Hainan 0.625(5) 0.547(23) 0.813(11) 0.769(11) 0.791(12) 

Sichuan 0.354(12) 0.825(18) 0.725(16) 0.620(16) 0.717(17) 

Guizhou 0.155(25) 1.000(1) 0.588(24) 0.300(24) 0.646(19) 

Yunnan 0.464(10) 0.926(8) 0.815(10) 0.773(10) 0.825(9) 

Tibet 0.692(4) 0.193(24) 0.846(6) 0.818(6) 0.833(7) 

Shaanxi 0.298(18) 0.785(20) 0.668(18) 0.502(18) 0.622(20) 

Gansu 0.216(23) 0.868(14) 0.617(22) 0.379(22) 0.547(24) 

Qinghai 0.237(22) 0.677(22) 0.625(21) 0.400(21) 0.519(25) 

Ningxia 0.146(27) 1.000(1) 0.583(25) 0.286(25) 0.666(18) 

Xinjiang 0.259(21) 0.864(16) 0.655(20) 0.474(20) 0.621(21) 

Geometric Mean 0.397 0.846 0.773 0.639 0.764 
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The geometric mean of all EE scores was 0.397, 

indicating that, if we make other inputs constant and 
do not want to improve the good outputs, the bad 
outputs can probably be decreased by about 60% 
throughout China. The geometric mean of all TE 
scores was 0.846, indicating that, if we make all 
inputs constant and do not want to decrease the 
pollutant emissions, both the good and bad outputs 
have the potential to be increased by about 15% in 
the whole China. The geometric mean of DTE and 
DEE scores were 0.773 and 0.639 respectively, 
indicating that we can improve the good outputs by 
23% and reduce the pollutant emissions by 36% 
simultaneously while making inputs constant. The 
geometric mean of TEE score was 0.764, suggesting 
that we can increase the good outputs by 24% and 
reduce the pollutant emissions by 24% 
simultaneously while making inputs constant. The 

estimated results in Table 1 show that both the 
environmental and technical efficiencies have the 
potential to be greatly improved.  

We tested the differences in the indexes for the 
observations by using Anova test and Kruskal-Wallis 
test. Anova test is based on a single-factor 
(between-subjects) analysis of variance (ANOVA). 
The basic idea is that if the subgroups have the same 
mean, then the variability between the sample means 
(between groups) should be the same as the variability 
within any subgroup (within group). Kruskal-Wallis 
test is a median equality test for more than two 
subgroups. The basic idea is to rank the series from the 
smallest to the largest value, and to compare the sum 
of ranks from subgroup 1 to that from subgroup 2. 
Then, the null hypothesis of the same median is tested. 
If the groups have the same median, the values should 
be similar. The test results are shown in Table 2.  

TABLE 2  

Non-parametric Tests of Equality of the Indice 

Included Indice Anova (F) Prob.>F Kruskal-Wallis (χ2) Prob.> χ2 

TEE, DTE 0.028 0.869 0.007 0.935 
TEE, DEE 3.239 0.077 2.1201 0.145 
TEE, TE 5.360 0.024 8.099 0.004 
TEE, EE 28.890 0.000 17.75 0.000 
TEE, DTE, DEE, TE, EE 17.669 0.000 37.670 0.000 

 
From the results in Table 2, we could see that 

there were significant differences between TEE and 
TE/ EE scores. Nevertheless, the hypothesis that TEE, 
DTE and DEE are the same and cannot be rejected, 
indicating that there are no significant differences 
between the scores of TEE, DTE and DEE, 
suggesting that, if there does not exist the observation 
in which inputs and bad outputs are high enough, and 
good outputs are low enough to produce a very low 
TEE score (lower than 0.5), the results of TEE and 
DTE/DEE models are similar.  

However, although the geometric means of DTE 
and TEE were not significantly different, the 
discrepancies between the individual ranks of DTE 
and TEE were different. Only about 1/3 of all 
provinces held the same ranks for both DTE and TEE. 
In addition, the lowest score of DTE was 0.576, 
whereas the lowest score of TEE was 0.510, 
indicating that the limitation of DTE score is stronger 
when its score approaches 0.5.  

DISCUSSION 

From the estimated results, it is obvious that 

three provinces and one city (Jiangsu, Zhejiang, 
Guangdong, and Shanghai) holding the highest 
efficiency scores for all indicators (EE, TE, DTE, 
DEE, and TEE) are located in best-developed regions 
of China. These three provinces and one city 
contribute heavily to China’s overall efficiency 
(geometric-mean in Table 1) in industries. In these 
three provinces and one city, although the absolute 
quantities of overall pollutant emissions are relatively 
higher than those in the other regions, the efficiency 
in these areas is the highest, indicating that industrial 
manufacturers in these areas can produce more 
outputs while yielding less pollutant emissions. The 
possible reason for the above situation is the different 
technology levels. In Jiangsu, Shanghai, Zhejiang and 
Guangdong, the economy and industries are 
relatively well developed, and therefore 
manufacturers in these regions have more financial 
sources to develop or obtain better technologies and 
management in production. The higher level of 
technology and management in these regions can 
improve the efficiency in production.  

Although we measured the efficiency of China’s 
industries by taking into account the productivity and 
air-pollutant emissions, it cannot provide more 
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information on the factors which may potentially 
influence the efficiency estimates because DEA is not 
a stochastic model. A second-stage regression is a 
possible method but it is probably sensitive to DEA 
results, which should be reassessed in future. 

In conclusion, we compared the original EE and 
TE with DEE and DTE, and accordingly introduced a 
new DEA framework to calculate the TEE that credits 
the reduction of undesirable outputs while 
simultaneously crediting increases in desirable 
outputs. An empirical example of China’s industrial 
production in 2004 was provided by showing how to 
compute the indice using programming problems. 
The geometric mean of environmental efficiency 
shows that, if we make other inputs constant and do 
not want to improve the good outputs, the pollution 
outputs have the potential to be decreased by about 
60% in the whole China. Both environmental and 
technical efficiencies can be greatly improved in 
China.  
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