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Objective  To predict neural tube birth defect (NTD) using support vector machine (SVM).  Method  The dataset in 

the pilot area was divided into non overlaid training set and testing set. SVM was trained using the training set and the trained 
SVM was then used to predict the classification of NTD.  Result  NTD rate was predicted at village level in the pilot area. 

The accuracy of the prediction was 71.50% for the training dataset and 68.57% for the test dataset respectively.  Conclusion  

Results from this study have shown that SVM is applicable to the prediction of NTD. 
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INTRODUCTION 

Neural tube defect (NTD) refers to any 

functional or structural anomaly present in infancy or 

later in life which represents a leading cause of infant 

mortality and disability in the world
[1]

. NTD affected 

people and their families incur the cost of health care for 

the whole life and thus usually become economically 

deprived, especially those living in rural areas. 

The study on prediction of NTD would bridge 

the gap between the sampling survey sites
[2]

 and  

estimation of its true distribution. Although previous 

epidemiological studies focused on the distributional 

pattern
[3-4]

 and determinants of NTD
[5-7]

, few dealt 

with its prediction
[8]

. NTD is an event of small 

probability, while conventional statistical methods are 

applicable to large sample size
[9-10]

. SVM is a 

machine learning model and is supposed to be useful 

for small sampling. The objective of this study was to 

apply SVM to the modelling and predicting of NTD. 

The dataset in the pilot area was divided into non 

overlaid training set and testing set. SVM was trained 

using the training set and the trained SVM was then 

used to predict the classification of NTD in a pilot 

area, namely Heshun county in Northern China. The 

prediction results reflected well the real life situation 

and thus the approach adopted in the exercise was 

promising for more general applications. 

MATERIALS AND METHODS 

Study Population 

Heshun county located at the Tai Hang mountain 

area of Shanxi province in northern China was 

selected as a pilot area for this study (Fig. 1), where 

NTD occurrence is the highest in the world. Our 

purpose was to test the applicability of SVM to 

predict the NTD prevalence rate in Heshun. Heshun 

county consists of 326 administrative villages with an 

area of 2 250 km
2
. Most of the people in this county 

are farmers and their living environment seldom 

changes for a long time. There was no large-scale 

human immigration in the history of this region. The 
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inherited and congenital causes of birth defects are 

believed to be similar among the people in this region. 

Most types of birth defects designated by WHO, 

which include anencephaly, spina bifida, 

encephalocele, holoprosencephaly, and hydroce- 

phalus, can be found in Heshun. During 1998-2005, 

there were 7 880 births in Heshun with 187 NTD 

cases. Births occurred at the hospital or at home, and 

mothers were residents of the county during that time 

period. Also included were all therapeutic abortions 

performed among residents of the area whose 

estimated delivery date fell within the time period of 

interest. All NTD cases, regardless of pregnancy 

outcome, were verified by doctors in the hospital. 

Records of NTD cases were collected from local 

family planning departments. 

  

 
FIG. 1. Location of Heshun County. (a. China, boundary of provinces and major rivers; b. Shanxi province, elevation; 

c. Heshun county, elevation overlaid by the 326 villages, in which the data is collected).

In the study, input data includes the spatial 

distributions of both NTD rate and the surrogates of its 

suspected determinants in Heshun county
[13-14]

. The 

suspected factors in various villages were classified 

into socioeconomic and geographical factors. The 

socioeconomic factors reported useful information on 

medical conditions (the number of doctors), the 

per-capita incomes (per-capita net incomes), the 

agricultural chemical exposures (the use of fertilizers 

and pesticides), and the crop yields (vegetable 

productions) of every village. All socioeconomic data 

were provided by the Heshun statistical bureau. The 
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geographical factors included elevation, gradient, access 

condition (distance to main roads), water shortage 

condition (distance to rivers) and the geological 

background (distance to faults, type of soil and 

lithological classes) of the villages.Villages with less than 

a total of 5 births were excluded from the calculation in 

order to use stable rate data. The birth defect rate was 

divided into the following three categories: 0, (0, 0.08), 

[0.08, 1], namely, 1 = no birth defects, 2 = birth defect rate 

not high, 3 = high incidence of birth defects. 

Categorical variables are treated as dummy 

variables. For examples lithology has seven categories 

(1, 2, 3, 4, 5, 6, 7), represented by dummy variables: 

lithology1, lithology2, lithology3, lithology4, 

lithology5, and lithology6, as shown in Table 1. 

Similarly, we introduced dummy variables to represent 

soil classes. Usually, we introduced n1 dummy 

variables to represent those variables with n categories. 

TABLE 1 

The Introduction of Dummy Variables for Variable Lithology Types 

Before After 

Lithology Types Lithology 1 Lithology 2 Lithology 3 Lithology 4 Lithology 5 Lithology 6 

1 0 0 0 0 0 0 

2 1 0 0 0 0 0 

3 0 1 0 0 0 0 

4 0 0 1 0 0 0 

5 0 0 0 1 0 0 

6 0 0 0 0 1 0 

7 0 0 0 0 0 1 

 

SVM 

SVM (Support Vector Machine) is a machine 

learning method
[11-12]

, which is based on the statistical 

theory and integrates the largest interval hyperplane, 

Mercer nucleus, convex quadratic programming and 

relaxation variable technologies. Abiding by 

structural risk minimization principle, SVM can 

effectively solve the practical problems such as 

small sample size, non-linearity, high dimension, 

and local minimum. The basic idea of SVM is to 

convert an input sample dataset to a high-dimensional 

feature space through a nonlinear transformation, 

then is used to calculate the optimal separating 

surface that separates samples linearly in the feature 

space (Fig. 1). 
Support Vector Machine developed from the 

optimal separating surface in the circumstances of 
linearly separable, the so-called optimal separating 

surface, is able not only to separate two 

classifications correctly, but also to make the interval 

between the two classifications the largest. In Fig. 1, 

the right side of the H1 is divided into positive 

category, while the left side of H2 is divided into the 

negative category, and the samples located in the middle 

of two types refused classification (an alternative 
explanation of refusing classification is that classifying 

into either positive or negative domain is reasonable, 

and therefore it is actually unreasonable to limit to any 

one classification). The points on the border have 

special meanings. In fact, it is the border points that 

determine the optimal separating hyperplane. These 

points (imagining they are the points that are exact on 

the H1 and H2 in Fig. 1), in the issue of text classification, 

are vectors themselves, and are called support vector. 

The H1 and H2 are modelled by equations in the 

following functional form:  

xw+b=0. 
 

 

FIG. 2. The optimal separating surface in two dimensions. 
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where b and w are parameters. The distance 

between H1 and the origin is |1b|/||w||, the distance 

between H2 and the origin is |1b|/||w||, therefore, the 
distance between H1 and H2 is 2/||w||, which means the 

interval distance equals to =2/||w||. The maximum 
interval is equivalent to the minimum of ||w||

2
. 

Constraint conditions. The sample set (xi, yi), i=1, 

2,…,n ， xR
d
, y(+1, 1) that can be linearly 

separable must satisfy: 

(wxi)+b≥1, if yi=1 and (wxi)+b≥1, if y =1 

that is, 

  1i iy w x b   ≥ , i=1,2,…,n      (1) 

That is, samples must be on H1 or H2 side, rather 
than at the middle between the two. The sample 
satisfying the above equation is support vector. 

The separating surface that minimizes the 
(1/2)||w||

2 
and satisfies the condition (1) is called 

optimal separating surface, that is, 

min
21

2
w  

subject to   1 0i iy w x b     ≥  1,2,i l  

( l is the sample size) (2) 

where w is independent variables, the objective 
function is the above quadratic equation (2) w; all 

constraints are linear functions of w . Note, xi here is 

not a variable, but it refers to a sample element, and 
is known. 

Using the method of Lagrange multipliers (ai) to 
solve this constrained optimal problem, 

L(w, b, a)=
1

2
||w||

2


1

[ ( ) 1]
N

i i i

i

a y wx b


    (3) 

differentiating w leads to w i i i

i

a y x =0, or 

w= i i i

i

a y x  (4) 

differentiating b leads to i i

i

a y =0 (5) 

consequently, problem (2) can be rewritten by 
Eqs (3)-(5) as 

maximize: L=
1 1 1

1

2

n n n

i i j i j i j

i i j

a a a y y x x
  

   (6) 

subject to: i i

i

a y =0 and ai≥0, i (7) 

This is an optimization problem for quadratic 
function constrained by inequality, therefore there 
exists an unique solution. 

In the case of linearly inseparable surfaces, we 

can add a relaxation item i≥0 in the condition (1), 

and it becomes, 

  1 0, 1,2, ,i i iy w x b i n       ≥  (8) 

  
2

1

1
,

2

n

i

i

w w C 


 
   

 
     (9) 

Then, change the target to find the minimum of 

equation (9) with the limitation of 0≤a≤C, in which 

C is the punishment factor. It means, considering the 

smallest misclassification and the largest 

classification intervals, we can get the generalized 

optimal separating surface. 

For nonlinear problems, we only need to 

non-linearly map the input vector to a higher 

dimension feature space, and further to construct the 

optimal separating hyperplane. We do not need to 

know the expression of the specific mapping function 

(xi), since in this high-dimension space it only 
involves the inner product operation. If K(xi, xj)= 

(xi)·(xj), then K(xi, xj) is called kernel function, the 
condition that a function is kernel function has been 

given by Mercer theorem. The corresponding optimal 

decision function becomes: 

    
1

sgn ,
n

i i i

i

f x a y K x x b 



 
  

 
  (10) 

SVM needs not to carry out characteristics 

reduction! It has a strong anti-interference ability. 

We divided the data in line with the format of 

LIBSVM, a software of SVM, into two categories, 

NTD_ training (200 sample data) and NTD testing 

(70 sample data). During the process of classification 

training, svmscale.exe was called first to transform 

the original sample vector, then traverse the default c 

(Cost) and g (Gamma) parameter; next, svmtrain.exe 

was called to calculate the precision of parameters c 

and g, after reaching the best accuracy, then the 

model was ready for prediction use with the 

corresponding c and g. 

RESULTS 

The output of training and testing: c is punish 
factor in Eq. (9) and equal to 2048, g is objective Eq. 
(9) under constraint Eq. (8) and equal to 0.00012. 
First, the data was rescaled to the proper range so that 
training and predicting would be faster. Second, cross 
validation was used to find the best parameters cost 
(c) and gamma (g) for the model in order to reach the 
optimal accuracy. After that, the model with optimal 
parameters was obtained, which then was employed to 
predict the classification. Finally, the scaled testing 
data was applied to test the accuracy of model. 

Fig. 3 suggests the process of cross validation. It 
is apparent that log2 (gamma) and log2 (C) valued 
-11 and 10 first. Also, -11.5 and 14 was tried. But 
after several validation tests, they changed to -13 and 
11, and the accuracy increased from 69.5 to 71.5 
correspondingly. 

The experimental results showed that, when the 
parameters of RBF kernel were functioning, Cost and 
Gamma, were 2 048 and 0.00012207 respectively, 
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and the classification was most accurate and the 
accuracy rate was 71.5% for the training dataset and 
68.5714% for the test dataset. This means that of the 
200 sample training dataset and 70 sample testing 
dataset, respective 143 and 48 villages, were 
correctly classified using the support vector machine 
model. Table 2 lists part of the predictions, compared 
with the actual observed data. 

 
FIG. 3. Searching the optimal cost and gamma. 

TABLE 2 

The Predicted and Observed Classification of NTD Rate of 

Part of Villages in Test Dataset 

Village Name 
Observed 

Classification 
Predicated 

Classification 

Baimuzhai 1 1 

Bomugua 1 1 

Beicun  1 1 

Ximaquan  1 1 

Hedi  1 1 

Xingcun  2 2 

Caijiacun  2 2 

Dongnao  2 2 

Xinao  2 2 

Renyuanzhi  2 2 

Jiajiagou  1 2 

Jiujing  1 1 

Jingyugou  2 2 

Raocun  2 2 

Hougou  1 1 

Hebei  3 1 

Liujiayoa  1 2 

Dongyaogou  3 2 

Houshimengou  1 1 

Fengtia  2 1 

Baizhen  2 2 

Huili  2 2 

Yangpozhuang  1 2 

Nanyao  2 1 

Qiannanyao  2 1 

Hounanyao  2 2 

Taiyangpo  1 1 

Qingbei  2 1 

CONCLUSION 

Neural tube birth defects are a group of rare but 

severe diseases, which usually impose high life 

burden on the patients and their families and 

impoverished them, especially in rural China. Spatial 

sampling survey monitors the situation at sampled 

sites, the overall dynamic of NTD in a region, 

including the values at unsampled sites which need to 

be predicted based on the observed sample values and 

using suitable models.  

As a tool to handle small sampling redients, the 

support vector machine (SVM) was proved to be 

efficient to estimate the prevalence of neural tube 

birth defects at unsampled sites in the study area, and  

displayed its potential to be applicable to other areas 

o predict the rare events. 

DISCUSSION 

Although lots of tools could be used for 

prediction of NTD, few are suitable for small 

sampling featured by high dimension and nonlinear 

simultaneously. Unfortunately, the NTD occurrence 

has the above three features, which is small probability 

event, often effected linearly or nonlinearly by many 

environmental and social factors
[7, 14-15]

. The SVM 

algorithm addresses the above challenge by using a 

support vector and kernel function. Although SVM 

outperforms others in prediction for a small sampling, 

high dimension and nonlinear dataset, it is 

conceptually a black box approach. The explicit 

relationship between NTD and its suspect factors as 

input into the model, which leads to a good prediction, 

deserved to be explored in the future studies. 
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