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Abstract

Objective To investigate the toxic effect of sodium fluoride (NaF) on the nematode Caenorhabditis
elegans (C. elegans).

Methods Adult C. elegans were exposed to different concentrations of NaF (0.038 mmol/L, 0.38
mmol/L, and 3.8 mmol/L) for 24 h. To assess the physiological effects of NaF, the brood size, life span,
head thrashes, and body bend frequency were examined. Reactive oxygen species (ROS) and cell
apoptosis were detected as parameters of biochemical response. The gene expressions were
determined by real-time polymerase chain reaction (PCR) to assess the molecular-level response.

Results At the physiological level, the brood size of C. elegans exposed to 0.038 mmol/L, 0.38 mmol/L,
and 3.8 mmol/L concentrations of NaF were reduced by 6%, 26%, and 28% respectively in comparison
with the control group. The maximum life spans of C. elegans exposed to 0.038 mmol/L, 0.38 mmol/L,
and 3.8 mmol/L concentrations of NaF were reduced by 3 days and 5 days, respectively. Head thrashes
and body bend frequency both decreased with increasing concentrations of NaF. At the biochemical
level, the production of ROS and the incidence of cell apoptosis increased with increasing
concentrations of NaF(P<0.05). At the molecular level, different concentrations of NaF exposure raised
the expression of stress-related genes, such as hsp16.1, sod-3, ctl-2, dhs-28, gst-1, and cep-1.

Conclusion NaF exposure could induce multiple biological toxicities to C. elegans in a
concentration-dependent manner. These toxicities may be relevant to the oxidative stress induced by

increased ROS production and accumulation in C. elegans.
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INTRODUCTION

to humans and animals, but its safe

amount for consumption is very small. It
has been reported that too much or too little
fluorine can induce a number of diseases™. Since
fluoride was added into tap water in U.S. and Canada
to prevent tooth decay in 1945, fluoride has been
widely used in water. In addition, the industrial
discharge of fluorine has induced environmental

Fluorine is a microelement that is essential

pollution. These factors have led to acute human
exposure to fluorine. According to the statistics,
approximately 25 countries have reported frequent
cases of fluorosis. Among these countries, fluorosis
is most serious and widespread in China and India'.
Fluorosis has been paid increasing attention in
recent years. The standard concentration of fluoride
added into drinking water is 0.7-1.2 mg/L according
to the public health service, and an average of 1 mg
of fluorine is consumed per daym. As reported,
approximately 99% of the total body fluoride is
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retained in bones and teeth, and the remainder is
distributed in highly vascularized soft tissues™®™). In
vivo, fluoride can cross the cell membrane and be
distributed in various soft tissues, such as the
nervous system, reproductive system, liver, kidneys,
skin, and erythrocytes[6'8]. Increased lipid peroxidation
and disturbed antioxidant defense systems have
been found in the brain, erythrocytes and liver of
rats exposed to fluoride'. Therefore, studies on the
toxic effect of fluorides at different levels are urgent
and necessary.

The nematode Caenorhabditis elegans is an
excellent model organism. C.elegans is a small,
soil-dwelling nematode with a simple body formed
by 959 somatic cells in adult hermaphrodites and
1 031 somatic cells in adult males. Under laboratory
conditions, C. elegans develops from a unicellular
embryo to a fertile adult in 3-5 days. The life cycle of
C. elegans consists of an embryonic stage and four
larval stages (L1-L4)[1°]. It is the most thoroughly
studied and most completely understood metazoan
in terms of molecular and classical genetics,
development, behavior, and anatomy. Today, C
elegans is widely used in biological studies because
of its short lifespan, cellular simplicity, genetic
manipulability, and easy cultivation™ ™. To assess
the toxicity of NaF, C. elegans were exposed to three
concentrations of NaF (0.038 mmol/L, 0.38 mmol/L,
and 3.8 mmol/L) for 24 h. C. elegans were
investigated and analyzed at the physiological,
biochemical, and molecular levels .

MATERIALS AND METHODS

Chemicals and Organisms

Three concentrations of NaF (pure analytical-
grade, Sigma-Aldrich Chemical, USA) were used in
this study (0.038 mmol/L, 0.38 mmol/L, and 3.8
mmol/L). These solutions were prepared with M9
medium (2.2 mmol/L KH,PO,4, 4.2 mmol/L Na,HPOQ,,
8.55 mmol/L NaCl, and 1 mmol/L MgSQ,). The wild-
type C. elegans strain N2 was used and maintained
on nematode growth medium (NGM) plates seeded
with Escherichia coli strain OP50, at 20 oct,

Sample Preparation

Young adults (L4 stage) from a synchronized
culture (three days after hatching) were exposed to
the three concentrations of NaF for 24 h. The control
groups were cultivated in M9 medium for 24 h.
Three parallel experiments were conducted for all
the test types.
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Brood Size and Life Span

The methods were performed as previously
described™. The brood size was assayed by placing
a single tested nematode into an individual well of
tissue culture plates. The nematode was transferred
to a new well every 1.5 days until the nematode
finished laying eggs. The progeny were counted the
day following the transfer, and the test process
lasted about 10 days. The brood size was the
summation of eggs laid by the tested nematodes.
For the brood size test, at least 10 replicates were
performed for each experiment. Life span was
assayed by placing 50 nematodes onto a single NGM
plate with OP50 after the nematodes had been
exposed to NaF for 24 h. The time of eggs brooding
was recorded as t=0. The nematodes were
transferred every 2 days to fresh plates during the
brood period. The number of survivors was recorded
every day. Nematodes that failed to respond to
repeated touch stimulation were considered dead.
The period of this test was about 27 days. To focus
on aging, worms that had become desiccated on the
side of the plate after crawling off, or that displayed
extruded internal organs or that died because of
hatching progeny inside the uterus (matricidal death)
were excluded from the analysis. The results of the
survival assays were analyzed by GraphPad Prism 5.

Head Thrashes and Body Bend Frequency

The methods were performed as previously
described™. A thrash was defined as a change in the
direction of bending at mid body. For the head
thrash assay, the nematodes were washed with M9
medium after they had been exposed to NaF for 24 h.
Each nematode was transferred to 60 pL of M9
medium on top of agar. After a 1-min recovery
period, the head thrashes were counted for 1 min. A
body bend was counted as a change in the direction
of the part of the nematodes corresponding to the
posterior bulb of the pharynx along the y axis,
assuming that the nematode was traveling along the
x axis. To assay the body bends, C. elegans was
placed onto a new plate and scored for the number
of body bends at an interval of 20 s. For both head
thrashes and body bend frequency tests, 15
nematodes were examined per treatment.

Quantification of Reactive Oxygen Species (ROS)

The quantification of ROS was performed as
previously described™.  To assay ROS, the
nematodes that had been exposed to the chemical

for 24 h were washed with ddH,0 twice and with M9



218

medium once. The nematodes were then pendulated
in M9 medium mixed with dichlorofluorescein (DCF)
at 20 °C for 1 h. ROS was detected using a
fluorescence microplate reader (ELX800, Biotek,
America). The excitation wave was 528/20 nm, and
the absorption wave was 485/20 nm. All of the
above procedures were performed away from light.

Cell Apoptosis Assay

The cell apoptosis assay was performed as
previously described™. Acridine orange (AO) was
used to observe cell apoptosis induced by NaF. After
exposure to NaF for 24 h, the nematodes were
pendulated in M9 medium mixed with AO at 20 °C
for 2 h. The concentration of AO was 2.5x10” g/mL.
Then, the nematodes were allowed to recover for 10
min on the top of agar and were mounted in 6x10~

g/mL levamisole onto agar pads on microscope slides.

The nematodes were examined using a fluorescence
inverted microscope (TE-2000E, Nikon, Japan) to
determine cell apoptosis. The excitation wave was
515 nm, and the absorption wave was 488 nm. 15
nematodes were observed per treatment.

Gene Expression Assay by Real-time PCR

For the gene expression assay, we first chose
stress-related genes based on previous studies, such
as glyceraldehyde 3-phosphate dehydrogenase
(gpd-1) (as the parameter gene), heat shock protein
(hsp16.1), superoxide dismutase (sod-3), catalase
(ctl-2), glutathione s-transferases (gst-1), deHydrog-
enasesb short-chain (dhs-28), and p53-like protein
(cep-1). We designed these primers on the basis of
the sequences retrieved from C. elegans database by
Primer Premier 5.0 software (Table 1). After
exposure to NaF for 24 h, 100 nematodes were
collected for each concentration to isolate the total
RNA using an EZ-10 Spin Column Total RNA Isolation
Kit (BBI, Canada). Next, the two-step reverse
transcription-polymerase chain reaction (RT-PCR)
method was used to acquire the cDNA using the RNA
PCR Kit (TaKaRa, Japan). The real-time PCR was
conducted using the SYBR PCR kit (TaKaRa, Japan)
and the 7500 Fast Real-time PCR System (ABI,
America). The reaction mixture(25 pL) consisted of
17.25 pL RNase-Free water, 2.5 uL 10xbuffer, 2 L
dNTP, 0.25 pL Tag DNA polymerase, 1 puL DNA
template, and 0.5 pL of each primer. The real-time
PCR proceeded as follows: an initial activation of
DNA polymerase at 95 °C for 10 s one cycle followed
by 45 cycles of primer annealing and extension at 95 °C
for 15 s and 60 °C for 1 min.
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Table 1. The Primers for Real-time PCR

Name Primers (5'-3')
gpd-1 Sense: AGGGAATCCTCGCCTACACTG
Antisense: ATTCATTGTCGTACCAAGAGACGA

hsp16.1 Sense: CTTTACCACTATTTCCGTCCAGC
Antisense : GGCTTGAACTGCGAGACATTG
sod-3 Sense: CGAGCTCGAACCTGTAATCAGCCATG
Antisense: GTTGCTGATTGTCATAAGCCATTGC
ctl-2 Sense: TTCGCTGAGGTTGAACAATCCG
Antisense: GTTGCTGATTGTCATAAGCCATTGC
gst-1 Sense: GATGATCTTCGGCCAGGTTC
Antisense: TGTCTCGTTGGAGCCATTGA
dhs-28 Sense: TGGGATCTTATCTTCAAGGTCCA

Antisense: TGGG ACCAGGGTATTTGCC
cep-1 Sense: ACGCTCACTCGTCGACTGCT
Antisense: ACACTGAATCGTGCCCTGCT

Data Analysis

All data in this report were expressed as
meanstSD, which were analyzed by Origin 6.0
software and GraphPad Prism 5.0 software. The
statistical differences between the control group and
the experimental groups were determined with the
aid of the parametric t-test. A probability level of
0.05 was considered statistically significant.

RESULTS

Toxic Effects of NaF on the Reproduction of C. elegans

In this report, the brood sizes of all three
experimental groups were smaller than those of the
control group. As shown in Figure 1, the brood size of the
nematodes exposed to 0.038 mmol/L, 0.38 mmol/L, and
3.8 mmol/L concentrations of NaF were reduced by 6%
(P<0.05), 26% (P<0.01), and 28% (P<0.01) , respectively
compared with the control group. The 0.38 mmol/L and
3.8 mmol/L concentrations of NaF exposure induced a
more severe effect on the brood size compared with the
control group. This also indicated that the reproductive
toxicity of NaF was concentration- dependent.
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Figure 1. Brood sizes are reduced dramatically
in C. elegans exposed to NaF. Bars represent
meansSD. P<0.05; P<0.01.
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Life Span Defects Caused by NaF Toxicity

When the nematodes were exposed to 0.038 mmol/L,
0.38 mmol/L, and 3.8 mmol/L concentrations of NaF,
the maximum life spans were reduced by three days,
three days and five days compared with the control
group, respectively (Figure 2a). Moreover, the mean
life span of the nematodes exposed to 3.8 mmol/L
concentration of NaF were remarkably decreased
compared with the control group (P<0.05) (Figure
2b). However, no significant differences were found
among the 0.038 mmol/L and 0.38 mmol/L concentr-
ations groups and the control group. Accordingly,
exposure to high concentration (3.8 mmol/L) of NaF
could cause more severe life span reduction. The low
concentrations (0.038 mmol/L and 0.38 mmol/L) in
the NaF exposure groups exhibited no apparent
changes compared with the control group.
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Figure 2. (a) Life spans of C. elegans exposed
to different concentrations of NaF. (b) Mean
life spans of C. elegans exposed to different
concentrations of NaF. Bars represent
means+SD. P<0.05.

Locomotion Behavior Assay

Head thrashes and body bends were used to
assay the locomotion behavior of C. e/egans“g'zol. As
shown in Figure 3, the frequency of the head

219

thrashes and body bends both decreased
dramatically after exposure to NaF, even at the low
concentration of 0.038 mmol/L (P<0.05). More
severe phenotypes were observed for the 0.38
mmol/L and 3.8 mmol/L concentrations of NaF
(P<0.01). The results indicated that the toxic effect
of NaF on the locomotion behavior of C. elegans was
concentration- dependent.
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Figure 3. NaF exposure causes locomotion
behavior defects in C. elegans. (a) Head thrashes
of C. elegans exposed to NaF show a concen-
tration-dependent decrease. (b) Body bend
frequency of C. elegans exposed to NaF show
a concentration-dependent decrease. Bars
represent meansxSD. *P<0.05; ”p<0.01.

ROS Assay

ROS is the main in vivo free radical in humans
and animals. An ROS assay can help us understand
the toxic effects of NaF on C. elegans at the
biochemical level. As shown in Figure 4, ROS
increased rapidly with the increased concentration
of NaF (P<0.05). This relationship indicated that the
generation of ROS in the tested nematodes was
concentration-dependent. This result is consistent
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with a report showing increased free radical in the
liver of rats exposed to NafF®,
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Figure 4. NaF exposure effects on reactive
oxygen species. Bars represent meanstSD. P
<0.05; P<0.01.

Cell Apoptosis Assay

Acridine orange (AO) was used to determine cell
apoptosis. We found that the apoptotic cells were
yellow or orange under the fluorescence inverted
microscope because of DNA cleavage. The normal
cells were green. As shown in Figure 5, increasing
numbers of apoptotic cells were found in C. elegans
with increased NaF concentration. Apoptotic cells
were spread over nearly the entire body of C
elegans exposed to 3.8 mmol/L concentration of
NaF.

Gene Expression Assay

We determined the gene expression of hsp16.1,
sod-3, ctl-2, dhs-28, gst-1, and cep-1. As shown in
Figure 6, the expression of gst-1, dhs-28, hsp16.1,
sod-3, and cep-1all increased compared with the
control group. The expression of ct/-2 decreased in
the nematodes exposed to the 0.038 mmol/L
concentration of NaF compared with the control
group but increased in the nematodes exposed to
the 0.38 mmol/L and 3.8 mmol/L concentrations of
NaF. These results indicated that the expression of
stress- related genes changed after NaF exposure.
Taken together, the altered expression of
stress-related genes at the molecular level suggested
that severe oxidative stress was induced by NaF
exposure in C. elegans.

DISCUSSION

In this study, we investigated the toxicity of NaF
to C. elegans at the physiological, biochemical and
molecular levels. By assaying the three levels and the
relationships among them, we were able to explore
the toxicity of NaF in a comprehensive and intensive
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way.

Brood size reflects the reproductive capacity
of C. elegans. Thus, brood size can help us assess
the toxicity of NaF to the reproductive system of
C. elegans. The brood sizes of all three
experimental groups were reduced compared
with the control group. This result indicates that
NaF exposure could induce reproductive toxicity
to C. elegans. Moreover, the toxicity was
concentration-dependent.

Life span is an important parameter for
assessing the toxicity of NaF. C. elegans provides an
excellent model system for the study of aging
because of its relatively short life span. As a life span
indicator, the maximum and mean life span of C
elegans after NaF exposure were reduced in all three
experimental groups compared with the control
group. This result reveals that NaF exposure causes
reduced life span of C. elegans in a concentration-
dependent manner.

Fluorine and its compounds can accumulate in
the brain, inducing overoxidation in the brain tissue
of animals. Recent reports have confirmed the
neurotoxicity of NaF to organismsm]. It has been
reported that NaF exposure can induce damage to
the nervous system of rats®?". The behavioral
phenotypes for both the head thrashes and body
bend frequency were remarkably decreased in the
NaF exposure groups compared with the control
group. This result demonstrates that NaF can induce
neurotoxicity to C. elegans.

Reactive oxygen species (ROS) are mainly
produced in mitochondria during respiration by the
incomplete reduction of oxygen and as a
side-product of cellular reactions”””’. Environmental
stressors, such as radiation, drugs, metal ions,
ultraviolet (UV) radiation, and heat, can generate
free radicals, including ROS, thereby causing damage
to tissues, cells and nucleic acids”®. Numerous
researches have considered that the mechanism of
fluorosis is mainly determined by the metabolic
disorder of free radicals”’”. Increased free radical
generation have been proposed as mediators of the
toxic effects of fluoride on soft tissues'®®. ROS in C.
elegans increased along with an increasing
concentration of NaF, which indicates that fluorosis
may be related to the oxidative damage induced by
increased ROS in C. elegans.

Apoptosis results from the action of a
genetically encoded suicide program that leads to a
series of characteristic morphological and biochemical
changes. Fluorine is a protoplasmic poison that can
accumulate in all tissues because it can penetrate
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(a) (b)

Figure 5. (a) Apoptosis of the control group under dark field. (b) Apoptosis of the control group under
bright field. (c) Apoptosis of C. elegans exposed to 0.038 mmol/L concentration of NaF under dark field.
(d) Apoptosis of C. elegans exposed to 0.038 mmol/L concentration of NaF under bright field. (e)
Apoptosis of C. elegans exposed to 0.38 mmol/L concentration of NaF under dark field. (f) Apoptosis of
C. elegans exposed to 0.38 mmol/L concentration of NaF under bright field. (g) Apoptosis of C. elegans
exposed to 3.8 mmol/L concentration of NaF under dark field. (h) Apoptosis of C. elegans exposed to
3.8 mmol/L concentration of NaF under bright field.
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Figure 6. NaF exposure effect on stress-related
gene expression. Bars represent meanstSD.
P<0.05.

the cell wall of almost any tissue and combine with
the protoplasmlzg'sol. The cytotoxicity of fluorine is
mainly exhibited in two ways: the inhibition of cell
growth and the inducing of cell apoptosis. Thus, it is
an effective way to study the mechanism of fluorosis
by assessing the toxic effect of NaF on cells. In this
study, the toxic effect of NaF induced far more
apoptosis in C. elegans compared with the control
group. The result is consistent with the report that
apoptosis could be induced by the generation of ROS
in organisms[31

Many environmental stresses result in an
increased generation of active oxygen species in
animals and the changes of related gene expression.
In this study, the expression of some oxidative
stress-related genes and that of apoptosis were
tested. Temperature elevation or a variety of
chemical agents would induce the heat shock

response in both eukaryotic and prokaryotic systems,

resulting in the induced synthesis of a group of heat
shock polypeptides (HSPS)BZ]. Sod-3 and ctl-2 are
reported to play an important role in the oxidative
stress responseml, Dhs-28 has the function of an
oxidoreductase. Glutathione S-transferases (GSTs)
performs functions ranging from catalyzing the
detoxification of electrophilic compounds to
protecting against peroxidative damage[34]. Cep-lisa
p53-like protein gene that is concerned with
immunity and apoptosis induced by DNA
damage[35'36]. The results of these genes expression
were consistent with those of the above ROS assay
and apoptosis assay. These facts also indicate that
cells respond to oxidative stress by inducing the
expression of stress-related genes, by repairing
stress-related damage or by inactivating ROS®.

Biomed Environ Sci, 2011; 24(6): 408-414

The findings of the present study demonstrate
that NaF could cause multiple biological defects in a
concentration-dependent manner at physiological,
biochemical and molecular levels. The main injury
induced in C. elegans by NaF was oxidative damage
caused by increased ROS production and its
accumulation in these organisms. Therefore,
understanding of the multiple biological toxicities of
fluorine to Celegans may help us to know the
potential toxicity of fluorine to human, and may also
provide new clues to reveal the mechanism of
fluorine toxicity and lay the foundation for
prevention and treatment of fluorosis. Above all, the
present study can provide a sound scientific basis for
the safe use of fluoride in medical and health care
services.
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