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Abstract 

Objective  To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)3] exposure on the 
catabolism of amyloid precursor protein (APP) in rats. 

Methods  Forty adult male Sprague-Dawley (SD) rats were randomly divided into five groups: the 
control group, the maltolate group (7.56 mg/kg BW), and the Al(mal)3 groups (0.27, 0.54, and 1.08 
mg/kg BW, respectively). Control rats were administered with 0.9% normal saline through 
intraperitoneal (i.p.) injection. Maltolate and Al(mal)3 were administered to the rats also through i.p. 
injections. Administration was conducted daily for two months. Rat neural behavior was examined using 
open field tests (OFT). And the protein expressions and their mRNAs transcription related with APP 
catabolism were studied using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase 
chain reaction (RT-PCR). 

Results  The expressions of APP, β-site APP cleaving enzyme 1 (BACE1) and presenilin-1 (PS1) proteins 
and their mRNAs transcription increased gradually with the increase of Al(mal)3 doses (P<0.05). The 
enzyme activity of BACE1 in the 0.54 and 1.08 mg/kg Al(mal)3 groups increased significantly (P<0.05). 
The expression of β-amyloid protein (Aβ) 1-40 gradually decreased while the protein expression of 
Aβ1-42 increased gradually with the increase of Al(mal)3 doses (P<0.05). 

Conclusion  Result from our study suggested that one of the possible mechanisms that Al(mal)3 can 
cause neurotoxicity is that Al(mal)3 can increase the generation of Aβ1-42 by facilitating the expressions 
of APP, β-, and γ-secretase. 
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INTRODUCTION 

luminum (Al) is the third most abundant 
element in the crust of earth and has 
been suspected to be an important 

environmental risk factor for Alzheimer’s disease 
(AD)

[1-5]
. However, the role of Al in the pathogenesis 

of AD remains currently controversial
[1,5]

.  
AD, the most common form of dementia, is 

characterized clinically by the progressive loss of A 
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memory and other cognitive functions, and 
pathologically by senile plaques (SPs) which is 
composed of β-amyloid protein (Aβ), neurofibrillary 
tangles (NFTs) that is composed of hyperphosp- 
horylated tau, and neurons loss

[5-7]
. The excessive 

production and accumulation of Aβ plays a critical 
role in the pathogenesis of AD at early stage and 
may be a common pathway to AD induced by 
various factors

[8-10]
. Al accelerated Aβ generation and 

aggregation, induced structural changes of Aβ from 
an α-helix to a β-sheet, and increased the formation 
and stability of Aβ oligomers

[11-12]
. Abnormally high 

concentration of Al
3+

 was present along with Aβ in 
the SPs in AD patients

[13]
. Aβ are derived from the 

sequential proteolysis of the amyloid precursor 
protein (APP) by β- and γ-secretase

[14-16]
. Up- 

regulated expression of the APP gene occurred early 
in the cascade of events that led to the formation of 
SPs in the brain of AD patients

[17]
. And the potential 

relationship of Al with the expression of APP has 
been investigated extensively

[18]
. Chronic exposure to 

AlCl3 through drinking water or food led to the 
overexpression of APP in the brain of rats

[17,19]
. Yet, 

some other studies showed that Al had no effect on 
the expression or processing of APP

[20]
. Moreover, 

The β-site APP cleaving enzyme 1 (BACE1) is the most 
important β-secretase

[21]
. BACE1 cleavage of APP is a 

prerequisite for Aβ formation and is putatively the 
rate-limiting step in Aβ generation from APP

[22-23]
. It 

was shown that elevated BACE1 expression and 
activity were associated with the accumulation of 
APP products in AD

[24]
. And BACE1 suppression or 

knockout could prevent Aβ generation and 
completely abolish Aβ pathology in APP transgenic 
mice

[24-25]
. The mice treated with AlCl3 combined with 

D-galactose showed memory impairment and the 
high expression of Aβ and BACE1 in cortex and 
hippocampus

[26]
. Some previous reports 

demonstrated that exposure to Al increased the 
expression of APP and Aβ in the brains of 
experimental animals

[27-28]
. However, Castorina A 

thought that the effects of AlCl3 on the mRNA 
transcription of β-secretase were subtle

[8]
. Lin R 

found that PC12 cells treated with Al
3+

 (50-100 
mmol/L) did not increase the expression of either 
APP or BACE1

[21]
. γ-Secretase is a highly hydrophobic 

complex and presenilin-1 (PS1) is its crucial catalytic 
components. The final cleavage of APP by γ-secretase 
determines the length of Aβ peptides. Aβ1-42 may be 
more hydrophobic and amyloidogenic than other Aβ 
peptides and increase Aβ1-42 levels likely provide the 
core for oligomerization, fibrillation, and SPs 
generation

[29]
. All these studies suggested that Al 

increased the formation of Aβ by directly promoting 
Aβ synthesis. However, the exact mechanism of this 
remains elusive

[10,13]
. Further research on the effect 

of Al on the metabolism of APP and the formation of 
Aβ is therefore needed and it is critical.  

The physiological activity and the bioavailability 
of Al largely depended on its chemical form and the 
equilibrium state

[30]
. Aluminum-maltolate [Al(mal)3] 

is stable between pH 3.0 and 10.0 and it does not 
form aluminum hydroxide precipitates at 
physiological pHs. Al(mal)3 may be formed in vivo in 
the gastrointestinal tract and it has strong 
neurotoxic effect

[31-32]
. This compound is therefore 

needed to be studied in terms of its toxicology and 
neuropathology of AD

[31]
. And the aim of this study is 

to investigate the impact of sub-chronic Al(mal)3 
exposure on the catabolism of APP in rats and, at 
present, no relevant researches have been reported 
both home and abroad. 

MATERIALS AND METHODS 

Material 

The AlCl3·6H2O (purity 99%), maltolate (purity 
99%), and SensiZyme BACE1 activity assay kit were 
from Sigma-Aldrich Chemical Co. The BCA protein 
quantitative kit was from Wuhan Boster 
Bio-engineering Limited Company. The rat APP, 
BACE1, PS1, Aβ1-40, and Aβ1-42 ELISA kits were 
from Wuhan Life Science, Inc. Primers, the reverse 
transcriptase reagent, and the fluorescence 
quantitative kit were from Takara Biotechnology 
(Dalian) Co., LTD. All chemicals were analytical grade 
unless otherwise indicated. 

Al(mal)3 Preparation 

Al(mal)3 was prepared according to a previous 
publication

[33]
. AlCl3·6H2O was dissolved in distilled 

water to final concentration of 80 mmol/L. And 
maltolate was dissolved in phosphate-buffered 
saline (PBS) to final concentration of 240 mmol/L. 
The solutions were then mixed in equal volumes, 
and the pH was adjusted to 7.4 with 1 mol/L NaOH. 
The resulting Al(mal)3 was freshly prepared for each 
experiment and all solutions were filter sterilized 
using 0.22 μm syringe filters immediately following 
preparation. 

Animals and Treatment  

The male Sprague-Dawley (SD) rats (200-220 g 
BW) were purchased from the Experimental Animal 
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Centre of Shanxi Medical University. The rats were 
group-housed in standard laboratory cages for one 
week of habituation in an environment at 22-24 °C 
and 65% humidity on a 12:12 h light-dark cycle with 
access to food and water ad libitum prior to 
experiment. The rat behavioral screenings were 
conducted using the Morris water maze test. Forty 
SD rats were selected and were divided randomly 
into five groups: the control group, the maltolate 
group (7.56 mg/kg BW) and the Al(mal)3 groups (0.27, 
0.54, and 1.08 mg/kg BW respectively). Control rats 
were administered with 0.9% normal saline through 
intraperitoneal (i.p.) injection. Maltolate and 
Al(mal)3 were administered to the rats also through 
i.p. injections. Administration was conducted daily 
for two months and all injections were performed at 
the same time. 

Open Field Test (OFT) 

General motor activities and behavioral 
responses of tested rats to a novel environment 
were measured via an open field apparatus. The 
measure device consisted of a wooden 100 cm ×  
100 cm square surrounded by a 30-cm-high wall and 
an overhead video camera. The area within the walls 
was divided into 25 segments with approximately 
equal area (20 cm × 20 cm) and the 16 squares along 
the walls were defined as the periphery. The 
remaining nine squares were defined as the central 
lattice. The tested rats were placed in the center of 
the apparatus at the beginning of each test, and they 
were allowed to move freely around the open field 
for 5 min. The retention time in the central lattice 
and the number of rearings were scored. Fecal 
pellets were removed, and the floor was wiped with 
clean damp tissues after each trial.  

Sample Preparation 

Four rats randomly selected from each group 
were anesthetized and killed and their cerebral 
cortex was dissected, weighed and frozen shortly 
after death. All subsequent operations were 
performed on ice and the samples were frozen in 
cryogenic refrigerators at -80 °C for further analysis. 

ELISA for APP, BACE1, PS1, Aβ1-40, and Aβ1-42 
Proteins 

Approximately 200 mg cerebral cortex of rats 
was homogenized in 3 mL organization cracking 
liquid (PMSF was diluted prior to use, and its final 
concentration was 100 ng/mL) by ultrasonic cracking 
(ultrasonic time for 5 s, takt time for 6 s, total for 5 

times). The homogenates were then centrifuged at 
12 000 rpm for 15 min at 4 °C and the supernatants 
were collected afterwards. All experimental 
procedures were operated according to 
manufacturer's instructions. 

RT-PCR of APP, BACE1, and PS1 Gene Expression 

Total cellular RNA from cerebral cortex of tested 
rats was isolated using Trizol reagent. First-strand 
cDNA was synthesized from 3 μg total RNA with 
SuperScript II. All primers were synthesized by 
Takara Biotechnology (Dailian) Co., LTD. The primers 
were designed using Oligo 6.0 primer analysis 
software for each analyzed gene: APP forward 
primer 5’-AACATGTGCGCATGGTGGA-3’ and reverse 
primer 5’-CACGGCAGGGACGTTGTAGA-3’; BACE1 
forward primer 5’-AGCTGGATTATGGTGGCCTGAG-3’ 
and reverse primer 5’-CCTGCAGCTTTCAGGGTCTTC-3’; 
PS1 forward primer 5’-ATGGACCGCATGGCTCATC-3’ 
and reverse primer 5’-TCGACCAGCATACGAAGTGGA- 
3’; β-actin forward primer 5’-GGAGATTACTGCCCT 
GGCTCCTA-3’ and reverse primer 5’-GACTCATCGT 
ACTCCTGCTTGCTG-3’. Each PCR reaction contained 
SYBR Premix Ex Taq II (10 μL), forward/reverse 
primers (0.8 μL), ROX reference dye II (0.4 μL), dH2O 
(6 μL) and DNA template (2 μL). And PCR was 
performed using the following two-cycle programs: 
(1) denaturation of cDNA (one cycle: 95 °C for 30 s); 
(2) amplification (40 cycles: 95 °C for 5 s, 60 °C for  
30 s); and (3) drawing melting curve. 

BACE1 Activity Assay 

BACE1 activity in rat cerebral cortex was 
measured using a series of multistep reactions 
according to manufacturer’s instructions. Briefly,  
100 μL of standard, blank and test sample were 
pipetted into the each corresponding wells of the 
plates respectively and incubated for 2 h at 4 °C. The 
solution was aspirated from the wells and wells were 
washed with 100 μL wash buffer for 4 times. The 
plate was blotted on tissue paper in order to remove 
any residual solution. 50 μL substrate working 
solution was placed into each well and the plates 
were incubated in a humidified chamber at room 
temperature overnight. Then, 50 μL reagent mixture 
was added to each well and the plates were shaked 
for 20 s and incubated at room temperature for    
3 h. After removing the lid, the absorbance for each 
well was measured at 405 nm using a microplate 
reader. 

All experimental protocols used in the present 
study were approved by the Ethics Committee for 
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Animal Studies of Shanxi Medical University and 
efforts were made to minimize use and suffering of 
animals.  

Statistical Analysis  

All data were analyzed using SPSS 16.0 software 
and were expressed as mean±SD. One-way ANOVA 
was performed, and the statistical significance level 
was defined as P<0.05.  

RESULTS 

Al(mal)3 Treatment Impaired Anxiety State and 
Exploratory Behavior 

The OFT was performed as a general measure in 
order to evaluate the potential neurotoxicity of Al. 
The retention times in the central lattice in     
0.27, 0.54, or 1.08 mg/kg BW Al(mal)3 groups 
(28.58±8.34 s, n=8; 39.40±9.28 s, n=8; 66.33±11.06 s, 
n=8, respectively) were significantly longer 
compared with those in the control group 
(13.75±3.96 s, n=8) as well as maltolate group 
(13.10±6.37 s, n=8) (P<0.05) (Figure 1A). Also,    
the number of rearings in the 0.54 mg/kg and   
1.08 mg/kg BW Al(mal)3 groups (10.50±7.74, n=8; 
5.00±1.37, n=8, respectively) were significantly lower 
than those in the saline group (14.40±1.95, n=8) as 
well as the maltolate group (15.00±5.47, n=8) 
(P<0.05) (Figure 1B). 

Expressions of APP, BACE1, PS1, Aβ1-40, and 
Aβ1-42 Proteins 

The protein expressions of APP, BACE1, PS1, 
Aβ1-40, and Aβ1-42 in the cerebral cortex of     
the tested rats in each group were measured. As the 
 

result, the expression of APP protein in 1.08 mg/kg 
BW Al(mal)3 group (131.76±12.33 ng/mL, n=4) was 
significantly higher than those in the control group 
(106.62±5.07 ng/mL, n=4) as well as the maltolate 
group (108.49±5.14 ng/mL, n=4) (P<0.05) (Figure 2A). 
The expressions of BACE1 protein in 0.54 and   
1.08 mg/kg BW Al(mal)3 groups (12 933.01±   
974.37 pg/mL, 13 676.34±481.77 pg/mL, n=4) were 
signifi- cantly higher than those in the control group 
(11 110.08±743.75 pg/mL, n=4) as well as the 
maltolate group (11 319.44±1 463.8 pg/mL, n=4) 
(P<0.05) (Figure 2B). The expressions of PS1 protein 
in 0.27, 0.54, and 1.08 mg/kg BW Al(mal)3 groups 
(10.91±3.26 ng/mL, 12.48±3.45 ng/mL and 
12.85±1.51 ng/mL, n=4) increased significantly 
compared with the control group (7.83±0.40 ng/mL, 
n=4) (P<0.05) (Figure 2C). The expressions of PS1 
protein in 0.54 and 1.08 mg/kg BW Al(mal)3 groups 
were significantly higher than that of the maltolate 
group (9.24±0.36 ng/mL) (P<0.05). The expressions 
of Aβ1-40 protein in 0.54 and 1.08 mg/kg       
BW Al(mal)3 groups (872.55±57.86 pg/mL, 784.49± 
72.08 pg/mL, n=4) were significantly lower than that 
in saline group (1077.02±90.22 pg/mL) (P<0.05)  
(Figure 2D). The expression of Aβ1-40 protein in 1.08 
mg/kg BW Al(mal)3 group decreased significantly 
compared with the maltolate group (1045.79±  
61.75 pg/mL) (P<0.05). The expressions of Aβ1-42 
protein in all Al(mal)3 groups (352.19±33.05 pg/mL, 
361.33±2.88 pg/mL and 420.33±32.57 pg/mL, n=4) 
increased significantly compared with the control 
group (249.00±27.81 pg/mL, n=4) (P<0.05) (Figure 
2E). The expressions of Aβ1-42 protein in 0.54 and 
1.08 mg/kg BW Al(mal)3 groups were significantly 
higher than that in the maltolate group 
(296.72±54.43 pg/mL, n=4) (P<0.05). 

 

Figure 1. Al(mal)3 treatment impaired anxiety state and exploratory behavior. A: The retention time in 
the central lattice of the OFT. B: The number of rearings of the OFT. Bars represent means±SD. Note. 
*
P<0.05 vs. control group, 

#
P<0.05 vs. maltolate group.  
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Relative Expressions of APP, BACE1, and PS1 mRNA 

The relative expressions of APP, BACE1, and 
PS1 mRNA are presented in Figure 3. The relative 
expressions of APP and BACE1 mRNA in 1.08 mg/kg 
BW Al(mal)3 group (2.60±1.47, 1.53±0.13, n=4) were 
significantly higher than those in the control group 

(1±0, 1±0, n=4) as well as the maltolate group 

(1.24±0.34, 1.02±0.11, n=4) (P<0.05) (Figure 3A and 

B). The relative expressions of PS1 mRNA in     

1.08 mg/kg BW Al(mal)3 group (1.54±0.38, n=4) was 

significantly higher than that in the control group 

(1±0, n=4) (Figure 3C).
 

 

Figure 2. Expressions of APP, BACE1, PS1, Aβ1-40, and Aβ1-42 proteins in cerebral cortex of tested rats. 
A, B, C, D, and E represent protein expressions of APP, BACE1, PS1, Aβ1-40, and Aβ1-42 in cerebral 
cortex of tested rats of the control group, maltolate group, and Al(mal)3 groups, respectively. 
Bars represent the means±SD. Note. 

*
P<0.05 vs. saline group, 

#
P<0.05 vs. maltolate group. 

 

 

Figure 3. Relative expressions of APP, BACE1, and PS1 mRNA in the cerebral cortex of tested rats. A, B, 
and C represent the relative expressions of APP, BACE1, PS1 mRNA in the control, maltolate, and 
Al(mal)3 groups, respectively. Bars represent the means±SD. Note. 

*
P<0.05 vs. saline group, 

#
P<0.05 vs. 

maltolate group. 
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BACE1 Activity 

Higher BACE1 activity levels were observed in 
rats in the Al(mal)3 groups compared with the rats in 
control as well as in maltolate groups (Figure 4) and 
significant differences in BACE1 activity levels were 
fund among the control group (0.23±0.11 ng/mL, 
n=4), maltolate group (0.37±0.19 ng/mL, n=4), and 
Al(mal)3 groups (0.53±0.07 ng/mL, 1.06±0.63 ng/mL, 
and 1.87±0.17 ng/mL, n=4).  
 

 

Figure 4. BACE1 activity levels in cerebral 
cortex of tested rats. Bars represent the 
means±SD. Note. 

*
P<0.05 vs. saline group, 

#
P<0.05 vs. maltolate group. 

DISCUSSION 

Behavioral changes as indicators of 
neurotoxicity may be more sensitive than 
neurochemical alterations and these changes may be 
observed during early Al exposure

[34]
. The OFT is a 

classic behavioral experiment in order to assess an 
anxiety state and exploratory behavior of tested 
animals in a novel environment. Findings from our 
study showed that Al(mal)3 sub-chronic exposure led 
to significant reductions in spontaneous locomotor 
and exploratory activities in OFT. And some previous 
investigations have interestingly found the similar 
altered behaviors in Al-treated animals

[35,37]
, yet our 

findings contrast with those of some other 
studies

[2,36]
. We believe that the controversy of Al 

neurotoxicity and behavioral toxicity in experimental 
animals may be due to the difference of Al 
administration, the types of Al salt, and the animal 
species (rats are less susceptible to the toxic effects 
of Al than cats, rabbits, mice, and guinea pigs)

[34,38]
.  

APP has two alternative proteolytic pathways: 
the nonamyloidosis pathway and the amyloidosis 

pathway
[15,29]

. In the nonamyloidosis pathway, APP is 
cleaved by α-, γ-secretase into sAPPα, p3 and, APP 
intracellular domain (AICD). This pathway seems to 
be protective because it prevents Aβ generation. In 
the amyloidosis pathway, APP is cleaved by β- and 
γ-secretase, releasing the 39-43 aa Aβ peptide

[15]
. 

And abnormal amyloidosis proteolysis of APP and 
the generation of Aβ are key events in the 
pathogenesis of AD

[39-40]
. The overproduction of Aβ 

results in the formation of SPs and NFTs, neuronal 
loss in the brain. Al increases the level of Aβ, 
promotes Aβ aggregation, and increases Aβ 
neurotoxicity

[41]
. Increased Aβ production or reduced 

Aβ metabolism then results in the formation of 
aggregated Aβ deposits and AD

[15]
. Al increases the 

Aβ burden in experimental animals through a direct 
influence on Aβ anabolism or direct or indirect 
impact on Aβ catabolism

[42]
. The Aβ1-42 isoform is 

more directly neurotoxic, and it has a greater 
propensity to aggregate

[43-44]
. We found that 

increasing sub-chronic Al(mal)3 doses decreased 
gradually the expression of Aβ1-40 and gradually 
increased the expression of Aβ1-42 in the cerebral 
cortexes of rats, suggesting that Al toxicity is related 
to the proteolytic cleavage of APP. However, the 
direct influence of Al on the secretases (α, β, γ) that 
proteolytically cleave APP remains unknown

[42]
. 

Al
3+

 binding to the phosphate groups of DNA and 
RNA affects the expression of various genes that are 
essential for brain functions. Nanomolar levels of 
Al

3+
 were sufficient to influence neuronal gene 

expression
[46-47]

. Human neural cells exposed to  
100 nmol/L Al up-regulated the expression of APP 
gene

[42]
. The inhibition of the nonamyloidosis 

pathway and increase of the expression of APP 
induced by Al would be in favor of Aβ formation

[41]
. 

In our present study, the expressions of APP protein 
and mRNA in the 1.08 mg/kg BW Al(mal)3 group 
were significantly higher than those in the control 
group, which are in consistent with published data

[45]
. 

BACE1 triggers the amyloidogenic processing of APP 
and the deposition of Aβ, which is the key 
component of SPs in AD

[21]
. BACE1 protein and its 

activity levels are elevated in brain and in CSF from 
AD patients compared with controls

[46-49]
. Aβ 

generation is abolished in BACE1 knockout mice
[50]

. 
In this study, we also found that the expression of 
BACE1 gene and protein and BACE1 activity levels in 
cerebral cortexes of rats in 0.54 and 1.08 mg/kg BW 
Al(mal)3 groups were significantly higher than those 
in the control group and the maltolate groups. The 
increase of BACE1 activity is predicted to be 



Biomed Environ Sci, 2013; 26(6): 445-452 451 

amyloidogenic and may exacerbate AD. However, 
some other studies suggested that BACE1 gene 
variants do not influence BACE1 protein and its 
activity, APP levels or Aβ isoforms

[47,51]
. The level of 

BACE mRNA is not altered in AD or transgenic mouse 
models of AD

[51-53]
. PSs are the crucial catalytic 

components of γ-secretase. PS1 mRNA levels are 
significantly elevated in high plaque areas of AD 
brain

[51]
. In this study, we also found that the 

expression of PS1 protein and gene gradually 
enhanced with the increase of Al(mal)3 doses. 

In conclusion, findings from our present study 
shows that one of the possible mechanisms that 
Al(mal)3 can cause neurotoxicity is that Al(mal)3 can 
increase the generation of Aβ1-42 by facilitating the 
expressions of APP, β-, and γ-secretase, and further 
researches on the role of Al(mal)3 in generation of 
Aβ are needed. 
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