Screening of Genes with Unique Mutations of Microcus

SHEN Xiao Na, XIA Lian Xu[#], HAI Rong[#], LIANG Ying, XU Dong Lei, CAI Hong, WANG Yu Meng, ZHENG Xiao, WANG Yan Hua, ZHANG Zhi Kai,
WEI Jian Chun, FU Xiu Ping, ZHANG En Min, ZHANG Hui Juan, and YU Dong Zheng

Yersinia pestis is the causative agent of bubonic and pneumonic plagues. Strains of *Y. pestis* are classified into four biovars: antiqua, mediaevalis, orientalis, and microtus^[1]. There are two microtus-related plague foci in China: the *Microtus brandti* plague focus in the Xilin Gol Grassland (focus L) and the *Microtus fuscus* plague focus in the Qinghai-Tibet Plateau (focus M).

Microtus strains are avirulent to humans, and experiments have shown that strains isolated from *Microtus brandti* in Inner Mongolia are virulent to small rodents but avirulent to larger mammals. In a previous human volunteer study, the subcutaneous injection of 1.5×10^7 cells of strain 91001 was found to cause neither bubonic nor pneumonic plague in the volunteers who participated in the trial^[2]. Previous experiments have revealed that the growth rate of the microtus biovar in human serum is significantly slow than that of other *Y. pestis* biovars^[3].

The complete genome sequence of *Y. pestis* strain 91001 has been determined^[4]. Comparison of the genomes of strains 91001, CO92, and KIM revealed that strain 91001 lacks a 33 Kb fragment related to a phage. However, the absence of this fragment does not result in any obvious alterations in the life cycle and virulence of *Y. pestis*^[5].

In this study, the unique genes of strain 91001 were screened by comparing the genome sequence of this strain with those of other *Y. pestis* biovars. The complete coding sequences (CDSs) of *Y. pestis*, including the strains sequenced by our laboratory (D182038, D106004, and Z176003)^[6] and six international strains (CO92, KIM, 91001, Antique, Nepal516, and Pestoides F), were downloaded from the NCBI database. Pairwise comparisons of the CDSs of each strain were carried out using BLAST. The gene characteristics were extracted and

compared between the identified unique sequences of strain 91001 and the sequence of strain CO92 at the mutation sites.

For further screening of genetic mutations, the following conditions were applied in order to exclude genes that exhibited less similarity: (1) genes with the same amino acid sequence in bacterial strains such as CO92 and *Y. pseudotuberculosis* IP32953; (2) identical mutations existing in strains 91001 and IP32953; and (3) genes with no mutations compared with the whole genome sequence of 91001.

Furthermore, genomic and PCR analyses were used to identify the *Y. pestis* strains isolated from different plague foci in China. In this study, we screened 129 strains including 22 and 28 *Y. pestis* strains isolated from the L and M foci, respectively. Supplementary Table 1 presents the background information of all the strains investigated in this study. The primer sequences are shown in supplementary Table 2. According to the gene mutation characteristics, all the PCR products of point mutation and short deletion genes were sequenced. The PCR products of long deletion mutation genes were randomly selected for sequencing.

Initial comparison of the CDSs among nine *Y*. *pestis* strains revealed 69 mutant genes, in strain 91001 on nucleic acid sequences. Further analysis as described above, a total of 21 unique mutated genes were identified in strain 91001. Table 1 presents the characteristics of the 21 mutations and the range of detection. As shown in the table, there were 15 point mutations and six insertion/deletion mutations. As classified by COG function, seven of these genes are involved in metabolism; five in cellular processes and signaling; two in information storage and processing; and the remaining seven genes remain poorly characterized or are unclassified.

doi: 10.3967/0895-3988.2013.09.011

State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China

Expected Length	535 Hypothetical protein	443 Ferric uptake regulator	457/415 Putrescine transport system permease protein	336/367 Hypothetical protein	859 Peptidyl-prolyl cis-trans isomerase	920/410 Putative DEAD box family helicase	480 Probable response regulator	441 Putative AraC-family transcriptional regulatory protein	586 Sulfate transport system permease protein CysW	465 Putative UDP-N-acetyl-D-mannosaminuronic acid transferase	447 High-affinity transport ATP-binding protein	548 Putative sugar ABC transporter, permease protein	444 Putative tagatose 6-phosphate kinase	605 Cell division protein FtsQ	851 Hypothetical protein	535 Hypothetical protein	676 Hypothetical protein	406 Periplasmic alpha-amylase precursor	636 Putative outer membrane fimbrial usher protein	548 Thiol:disulfide interchange protein precursor	546 Anaerobic C4-dicarboxylate transporter
Expé Len	ΞĞ	4	457,	336,	õ	920,	4	4	5	4(4	Ω	4	9	õ	5	9	41	<u>6</u>	Ω	5,
Primer Name	S1-1	T2-5	Т3-2	Т4-1	05	T6-1	T7-1	T8-1	T13-3	T18-3	T19-1	Т21-1	Т22-1	T23-2	Т24-1	Т25-2	Т26-1	T29-1	T30-1	T31-1	Т32-2
Mutation rate in Microtus	22/50	0/50	22/50	50/50	50/50	50/50	50/50	50/50	49/50	0/50	50/50	50/50	50/50	50/50	0/50	50/50	50/50	22/50	50/50	50/50	50/50
Features	C-A	T-G	42 bp more	31 bp less	6 bp less	510 bp less	G-T	12 bp more	G-A	T-G	T-A	G-A	C-T	C-A	T-base deletion	G-T	A-C	G-A	G-T	C-A	G-A
Site of Mutation	352 th mutated site	62 th mutated site	261–302 th intercalary deletion	mutation deletion after 632 th site	intercalary deletion of 6 sites	intercalary deletion of later stage at 1043 th site	82 th mutated site	284 th -295 th deletion	647 th mutated site	563 th mutated site	502 th mutated site	433 th mutated site	302 th mutated site	428 th mutated site	T-base deletion at the 552 th site	230 th mutated site	454 th mutated site	1814 th mutated site	569 th mutated site	275 th mutated site	10 th mutated site
C092	YP01186	YPO2634	YP01334	YP01492	YPO0193	YPO2071	YPO2173	YP02243	YPO3013	YPO3855	YPO3805	YPO3332	YPO0832	YPO0558	YPO0467	YPO0399	YPO0397	YPO4080	YPO0302	YPO0345	YPO0347
91001	YP_0950	YP_1081	YP_1259	YP_1382	YP_0191	YP_1914	YP_1972	YP_2041	YP_2637	YP_3190	YP_3244	YP_0355	YP_3528	YP_3626	YP_3713	YP_3782	YP_3784	YP_3989	YP_0459	YP_0499	YP_0501
₽	1	2	£	4	2	Q	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21

Inconsisten mutations the published sequence data at the mutation sites in genes *YP_1081*, *YP_3190*, and *YP_3713* revealed the presence of TG, TG, and T deletion mutations; however, the 91001 strain and the strains isolated from the L and M foci did not show the presence of these mutations. This inconsistency is speculated to be a result of errors in the complete genome sequencing procedures used to sequence these strains.

The YP_2637 gene mutation (49/50) was observed in the 49 strains isolated from foci L and M. However, this mutation did not occur in one strain isolated from focus L of Inner Mongolia in 1988 (strain b18). The epidemic during the strain b18 separation was normal; therefore, the mutation may be unrelated to the virulence of this strain.

Two incompletely consistent gene mutations (*YP_0191* and *YP_0459*) were observed in the strains isolated from other foci (except the L and M foci) in China. The mutation was located in gene *YP_0191* of *slyD* showing a tandem repeat sequence. The length of the repeat unit was 6 bp. Strains isolated from other foci had 1-2 repeat units more than the *Y. pestis* strain isolated from focus L. The mutation site was in the *YP_0459* gene, whereas other *Y. pestis* strains mostly demonstrated GT mutations. Strains collected from focus B showed interruption in the IS285 element, although this may be unrelated to the virulence characteristics of the *Y. pestis* strains isolated from focus L.

Three genes (*YP_0950, YP_1259,* and *YP_3989*) were found to be mutated (22/50) in the microtus strains isolated from focus L but not in the strains isolated from focus M. These three mutations may

be associated with differences in the virulence factors of *Y. pestis* between the strains isolated from focus L and focus M. Therefore, these three mutations can be used to distinguish between the strains of these two foci.

Y. pestis strains exhibit a highly conserved genetic sequence. The declined virulence of microtus strains cannot be attributed to the occurrence of different mutations in different *Y. pestis* strains. The mutations that occurred in all *Y. pestis* strains isolated from both plague foci could be responsible for the low level of virulence of the microtus strains in humans. The remaining 12 mutations were unique and present in the microtus strains isolated from both foci investigated in this study. Table 2 lists the nature and type of mutations in the genes.

YP_3244, YP_0355, and YP_3528 are metabolismrelated genes that play important roles in the basic growth and metabolism of bacteria. These relatively conserved genes have been found to be mutated in microtus strains. The hydrophobic and hydrophilic nature of the amino acids remained unchanged at the mutated sites. Hence, the functions of the proteins are probably unaffected by these mutations.

The functions of five genes (*YP_1972, YP_1382, YP_3782, YP_3784,* and *YP_0501*), commonly known as "pseudogenes", are yet to be clarified in the protein cluster analysis. However, the quantity of these pseudogenes in *Y. pestis* is remarkably large. The hydrophobic/hydrophilic nature of the amino acids in these proteins was altered by the mutations. The *YP_1382* gene underwent a deletion in microtus strain 91001, and its role in the altered virulence of this strain should be highlighted.

ID	91001	Mutation Type	Amino Acid Change	Nature of Mutation
1	YP_3244	point mutation	C-S	hydrophilic-hydrophilic
2	YP_0355	point mutation	G-S	hydrophilic—hydrophilic
3	YP_3528	point mutation	P-L	hydrophobic-hydrophobic
4	YP_1972	point mutation	G-C	hydrophilic—hydrophilic
5	YP_1382	gene deletion	deletion	Deletion of 14 amino acids
6	YP_3782	point mutation	R-L	hydrophilic—hydrophobic
7	YP_3784	point mutation	T-P	hydrophilic—hydrophobic
8	YP_0501	point mutation	V-I	hydrophobic-hydrophobic
9	YP_3626	point mutation	R-L	hydrophilic—hydrophobic
10	YP_0499	point mutation	P-Q	hydrophobic-hydrophilic
11	YP_2041	Increase	increase	4 amino acids more
12	YP_1914	gene deletion	deletion	Deletion of 170 amino acids

Table 2. Unique Mutant Genes of Microtus that Caused Amino Acid Mutations

FtsQ is the cell division protein expressed by *YP_3626*. It is a crucial protein in the bacterial cell division protein family, which contains at least 12 proteins. The *FtsQAZ* complex plays a key role in bacterial cell division^[7]. *FtsQ* affects cell division by reacting with other proteins. The *FtsQ* gene mutation occurs at nucleotide 428, which results in the expression of leucine instead of arginine; this changes the nature of the amino acid from hydrophilic to hydrophobic.

The YP_0499 gene expresses a protein precursor for thiol disulfide interchange. The hydrophobic/hydrophilic nature of the amino acid changed at the mutation site in microtus strain 91001. The YP_2041 gene encodes a transcriptional regulatory protein of the AraC protein family, which is involved in signal storage and processing. YP_2041 may affect the acid resistance of the bacteria and consequently play a positive regulatory role in bacterial virulence^[8].

The YP_1914 gene encodes an RNA helicase of the DEAD box protein family. Compared to other strains, microtus strain 91001 lacks a 510 bp fragment of the YP_1914 gene. RNA helicase is involved in all intracellular RNA metabolic processes, and plays numerous indispensable roles in the growth and development of cells. RNA helicase is also involved in the formation and degradation of mRNA and plays a crucial role in the growth rate of the entire cell^[9].

In addition, as we compared the point mutations with the 933 SNPs discovered by Morelli^[10], we found that 7 SNPs are the same, one of them is *YP_0950* mutated in the microtus strains isolated from focus L but not in the strains isolated from focus M. Other 6 SNPs were unique and present in the microtus strains isolated from both foci investigated in this study. The 7 SNPs were all in branch III-0.PE4 in the minimal spanning tree. These 7 SNPs play an important role in the minimal spanning tree and can be used in genotyping in microtus and other biovars isolates.

In conclusion, the 12 identified gene mutations can be used in genotyping in microtus and other biovars and they may have affected the novel virulence determinants of *Y. pestis* and may also be responsible for the low level of virulence of microtus strain 91001 in humans.

*This study was supported by the Industry Research Special Foundation of China Ministry of Health (No. 201202021).

[#]Correspondence should be addressed to XIA Lian Xu or HAI Rong, both are professors, Tel: 86-10-61739444. Fax: 86-10-61731691. E-Mail: xialianxu@icdc.cn, hairong@icdc.cn

Biographical note of the first author: SHEN Xiao Na, female, born in 1983, master, junior professor, majoring in microbiology.

Received: December 10, 2012; Accepted: March 17, 2013

REFERENCES

- Zhou D, Tong Z, Song Y, et al. Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol, 2004; 186, 5147-52.
- Fan Z, Luo Y, Wang S, et al. Microtus brandti plague in the Xilin Gol Grassland was inoffensive to human, Chin J Control Endemic Dis, 1995; 10, 56-7.
- Wang S, Chen J, Mao F, et al. A study on growth curves of different ecotypes of Yersinia pestis in human sera. Monograph of Pestis, Chinese Academy of Medical Science, 1983; 12, 52-8.
- Song Y, Tong Z, Wang J, et al. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res, 2004; 11, 179-97.
- Derbise A, Chenal-Francisque V, Huon C, et al. Delineation and analysis of chromosomal regions specifying Yersinia pestis. Infect Immun, 2010; 78, 3930-41.
- Shen X, Wang Q, Xia L, et al. Complete genome sequences of Yersinia pestis from natural foci in China. J Bacteriol, 2010; 192, 3551-2.
- Villanelo F, Ordenes A, Brunet J, et al. A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex. BMC Struct Biol, 2011; 11, 28.
- Frota CC, Papavinasasundaram KG, Davis EO, et al. The AraC family transcriptional regulator Rv1931c plays a role in the virulence of Mycobacterium tuberculosis. Infect Immun, 2004; 72, 5483-6.
- Fuller-Pace FV. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res, 2006; 34, 4206-15.
- 10.Morelli1 G, Song Y Mazzoni CJ, et al. Phylogenetic diversity and historical patterns of pandemic spread of Yersinia pestis. Nat Gene, 2010; 42, 1140-3.