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An Improved Method for Predicting Linear B-cell  
Epitope Using Deep Maxout Networks* 

LIAN Yao1, HUANG Ze Chi2, GE Meng3, and PAN Xian Ming1,# 

To establish a relation between an protein 
amino acid sequence and its tendencies to generate 
antibody response, and to investigate an improved 
in silico method for linear B-cell epitope (LBE) 
prediction. We present a sequence-based LBE 
predictor developed using deep maxout network 
(DMN) with dropout training techniques. A graphics 
processing unit (GPU) was used to reduce the 
training time of the model. A 10-fold 
cross-validation test on a large, non-redundant and 
experimentally verified dataset (Lbtope_Fixed_ 
non_redundant) was performed to evaluate the 
performance. DMN-LBE achieved an accuracy of 
68.33% and an area under the receiver operating 
characteristic curve (AUC) of 0.743, outperforming 
other prediction methods in the field. A web server, 
DMN-LBE, of the improved prediction model has 
been provided for public free use. We anticipate 
that DMN-LBE will be beneficial to vaccine 
development, antibody production, disease 
diagnosis, and therapy.  

The humoral immune response is based on the 
amazing ability of antibodies to recognize and bind 
to antigens of intruding organisms, such as bacteria 
and viruses. Antibodies bind specifically to either a 
contiguous amino acid sequence of a protein known 
as the linear B-cell epitope (LBE), or to a folded 
structure formed by discontinuous amino acids 
known as the conformational B-cell epitope[1]. 
Predicting LBEs is difficult but important for 
immunological applications. Specifically, predicted 
LBEs can be synthesized and substituted for intact 
antigen molecules for detecting anti-protein 
antibodies in immunoassays, as immunogens for 
raising anti-peptide antibodies to cross-react with 
proteins of interest, or in the development of 
synthetic peptide vaccines. 

The trailblazing propensity-based LBE prediction 

models were fairly simple in which a single or 
combined multiple physicochemical properties (for 
example, flexibility, solvent accessibility) were 
utilized to profile epitope propensity over antigen’s 
primary sequence. Predictive quality of these 
methods was questioned in 2005 in a study by Blythe 
and Flower. They analyzed the predictive 
performance of 484 amino acid propensity scales on 
50 antigens and determined that these propensity 
profiling methods performed only slightly better 
than random. The more sophisticated 
knowledge-based methods were explored to 
improve the prediction performance[2]. Such models 
included recurrent neural network, hidden Markov 
model, and naïve Bayes. In recent years, support 
vector machine (SVM) method was widely applied. 
These methods differ in the features extracted from 
the input epitope sequence, the size of datasets that 
were used to train the SVM model, and the type of 
SVM kernel function used. These knowledge-based 
methods have two major limitations including 
relatively small dataset (-1000 LBEs and non-LBEs) 
and inaccurate dataset (non-LBEs were random 
peptides instead of experimentally verified 
non-LBEs). LBtope method exploited the availability 
of several thousand experimentally verified LBEs and 
non-LBEs. Based on the large and experimentally 
verified dataset of Lbtope_Fixed_non_redundant 
(LFNR), LBtope model achieved an area under the 
receiver operating characteristic curve (AUC) of 
0.688 (≈0.69). Using a multiple linear regression 
(MLR) method on the same LFNR dataset, the EPMLR 
model reported an AUC of 0.616 (≈0.62). Thus, 
utilizing a large and accurate dataset is critical for 
future LBE prediction method development. The 
modest levels of predictive performance (AUCs less 
than 0.70) also indicates a need for improved new 
predictive models and further research in the field. 
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In this research, we investigated the deep 
architecture of a deep maxout network (DMN),  
DMN-LBE (Deep Maxout Networks for Linear B-cell 
Epitope prediction), combined with deep learning 
training technique of dropout. DMN is a modification 
of the deep neural network (DNN) that employs a 
new activation function called maxout[3]. DMN has 
been shown to improve the accuracy of dropout’s 
fast approximate model averaging technique. We 
exploited a graphics processing unit (GPU) to 
accelerate the DMN training. The dipeptide 
composition features extracted from the primary 
amino acid sequence information were used to 
characterize and differentiate LBEs from non-LBEs. 
We evaluated the effectiveness of DMN-LBE using 
10-fold cross-validation on a large, non-redundant 
and experimentally verified dataset, the LFNR 
dataset. The results demonstrated an accuracy of 
68.33% and an AUC of 0.743, showing that DMN-LBE 
outperforms previous reported models. 

The Immune Epitope Database (IEDB)[4] contains 
a large number of up-to-date experimentally verified 
epitopes and non-epitopes. It is the most commonly 
used and most authoritative database for epitope 
prediction. Currently, there are three large LBE 
datasets derived from the IEDB: the BEOracle 
dataset, the SVMTriP dataset and the LBtope dataset. 
New LBEs are continuously added to the IEDB, 
leading to an increasing number of LBEs contained in 
this database. The most recently curated dataset 
(LBtope) not only covers the LBE/non-LBE patterns of 
previous datasets (BEOracle and SVMTriP) but also 
includes new patterns discovered through 
subsequent biological experiments. The LBtope 
dataset is used for this study.  

Within the LBtope dataset, five LBE sub-datasets 
have been created: Lbtope_Fixed (LF), Lbtope_ 
Fixed_non_redundant (LFNR), Lbtope_Variable (LV), 
Lbtope_Variable_non_redundant (LVNR) and 
Lbtope_Confirm (LC). The LF sub-dataset contains 
12,063 LBEs and 20,589 non-LBEs, but does not have 
a redundancy reduction process. Similar sequences 
can exist in the LF dataset, lead to unreliable 
prediction models[5]. The LFNR sub-dataset contains 
7,824 LBEs and 7,853 non-LBEs of a fixed length 
(20-mer). It was created after an 80% non-redundant 
process on the LF sub-dataset. The LV, LVNR, and LC 
sub-datasets do not have a fixed length, whereas 
most LBE prediction methods require patterns of a 
fixed length. Furthermore, the LV and LC 
sub-datasets do not have redundancy reduction 
processes. Given the above considerations, the LFNR 

sub-dataset is used for building our LBE prediction 
model. 

The LFNR sub-dataset was randomly partitioned 
into 10 equal-sized subsets: 8 subsets were used as a 
training set to train the model, 1 subset was used as 
a validation set to select the best model, and the 
remaining 1 subset was used as an independent 
testing set. This train-validate-test process was 
repeated 10 times; each of the 10 LFNR subsets was 
used exactly once as the independent testing set. 
The 10 results from the independent testing set 
were averaged to produce the final estimation. 

The dipeptide composition features derived 
from the primary protein sequence were used to 
characterize and differentiate LBEs from non-LBEs. 
The dipeptide composition provides the global 
information on the LBE sequences in the form of a 
400 D (20×20) fixed-length vector. This vector 
encapsulates the information about the fractions of 
two consecutive amino acids. The dipeptide 
composition of each sequence was calculated using 
the following Equation: 

Fraction of dipeptide ( ) =

Total number of dipeptide ( )

Total number of all possible dipeptides

i

i      (1) 

where dipeptide (i) is one dipeptide i out of 400 
dipeptides. 

A DNN is an artificial neural network with 
several layers of hidden nodes between the input 
and output layers. As a feed-forward architecture, a 
standard DNN can be computed as follows: 

          (2) 

where hl+1 is the vector of inputs to the l+1 layer and 
σ is the activation function. L is the total number of 
hidden layers, hl is the output vector of the hidden 
layer l, and wl and bl are the weight matrix and bias 
vector of layer l, respectively. 

A DMN is a modification of a DNN architecture 
where the maxout activation function is used for σ in 
Equation 1. In a DMN, each hidden node takes the 
maximum value over the k nodes of a group. The 
output of the hidden node i of layer l+1 can be 
computed as follows: 

                (3) 

where the values of z(l+1)
ij are the lineal 

pre-activation values from the layer l: 

                    (4) 
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The max-pooling operation is applied over the 
z(l+1)  vector.  DMNs reduce the number of 
parameters compared with DNNs, as the weight 
matrix W(l) of each layer in the DMN is 1/k of the size 
of its equivalent DNN weight matrix. An illustration 
of a DMN with 2 hidden layers and a group size of 
k=3 is shown in Figure 1. 

The trained DMN-LBE consists of an input layer, 
two maxout hidden layers, and a softmax output 
layer. The two maxout hidden layers have 1000 and 
500 randomly initialized nodes with a group size k of 
100 and 5, respectively. The final softmax layer has 
two classes corresponding to LBE or non-LBE. 

The DMN was trained using the back 
propagation (BP) algorithm and stochastic gradient 
descent (SGD) algorithm with dropout. Dropout 
prevents overfitting by randomly omitting a fraction 
of nodes for each training; a dropout rate of 0.5 was 
used. Hyperparameters were determined on the 
validation set. DMN-LBE uses a learning rate of 0.001, 
a momentum rate that increases linearly from 0.5 to 
0.99 for the first 10 epochs and then remains at 0.99, 
a weight decay of 0.00005 and a minibatch size of 
100. The validation set was evaluated at each epoch 
of the 1000 total training epochs to select the best 
model using the optimized training epoch that 
maximizes the classification accuracy of the 
validation set. 

We used Pylearn2[6] to implement the model 
and exploited GPU to accelerate computation using 
NVIDIA Titan Black card. 

The sensitivity (Sn), specificity (Sp), accuracy 
(Acc) and Matthew’s correlation coefficient (MCC) of 
 

 

Figure 1. A deep maxout network with 2 
hidden layers and a group size of k=3. The 
hidden nodes in blue perform the max 
operation. 

 

the method’s performance were calculated using the 
following equations: 

 

                    (5) 

                    (6) 

           (7) 

 (8) 
 
where TP, TN, FP, and FN represent the numbers of 
true positive, true negative, false positive, and false 
negative cases, respectively. 

The model was trained and tested on the LFNR 
dataset, which consists of 7824 experimentally 
verified LBEs and 7853 experimentally verified 
non-LBEs (20-mer). Based on the dipeptide 
composition features, the trained DMN-LBE model 
had a sensitivity of 68.72, a specificity of 67.94, an 
accuracy of 68.33 and an AUC of 0.743 using 10-fold 
cross-validation. 

For comparison, the published models of 
ABCpred[7], AAP[5,8] and BCPred[5] servers were 
applied to the same LFNR dataset (Implementation 
of AAP method can be found at: 
http://ailab.ist.psu.edu/bcpreds/predict.html). The 
obtained accuracies were 52.33%, 60.20% and 
54.29%, and AUCs were 0.533, 0.535 and 0.561, 
respectively. The performances of ABCpred, AAP and 
BCPred were significantly inferior compared to the 
current DMN-LBE model (accuracy=68.33%, 
AUC=0.743). The poor performance of these 
published models is due to the use of small datasets. 
We compare the DMN-LBE model with two recently 
developed large dataset models: the EPMLR[9] and 
LBtope models[10]. Using the same LFNR dataset, the 
EPMLR model achieved an accuracy of 58.45% and 
an AUC of 0.616. The LBtope model achieved 
accuracy of 64.86% and AUC of 0.688. The DMN-LBE 
model out-performed both the EPMLR model and 
LBtope model, by improving 9.83% accuracy and 
12.7% AUC relative compared to the EPMLR model 
and 3.47% accuracy and 5.5% AUC compared to the 
LBtope model. 

A detailed comparison of the DMN-LBE model 
with other reported models are presented in Table 1. 
The ROC plots for performances of ABCpred, AAP, 
BCPred, EPMLR, Lbtope, and DMN-LBE are shown in 
Figure 2. 
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Table 1. Performance of Different Methods on the LFNR Dataset 

Method Sensitivity Specificity Accuracy MCC AUC (95% CI) 

ABCpred 57.40 47.28 52.33 0.05 0.533 (0.524-0.542) 

AAP 65.94 54.48 60.20 0.21 0.535 (0.527-0.544) 

BCPred 67.24 41.39 54.29 0.09 0.561 (0.552-0.570) 

EPMLR 60.76 56.14 58.45 0.17 0.616 (0.608-0.625) 

LBtope 65.88 63.97 64.86 0.30 0.688 (0.680-0.696) 

DMN-LBE 68.72 67.94 68.33 0.37 0.743 (0.739-0.755) 

 

 

Figure 2. ROC curves for ABCpred, AAP, 
BCPred, EPMLR, Lbtope, and DMN-LBE. 

In conclusion, we reported an improved LBE 
prediction model named DMN-LBE. This model is 
based on a deep architecture of DMN with dropout 
training technique. When applied to a large, 
non-redundant and experimentally verified dataset, 
the model achieved an AUC of 0.743, the best 
performing model in the field. We implemented our 
classification model as a free, user-friendly web 
server that is available at http://www. 
bioinfo.tsinghua.edu.cn/epitope/DMNLBE/ . 
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