
Biomed Environ Sci, 2018; 31(11): 851-854 851 

 
doi: 10.3967/bes2018.113 
*This research was sponsored by the projects with OSP #193942 and #193940. 
1. Department of Recreation, Park, and Tourism Management, The Pennsylvania State University, University Park, 

Pennsylvania, United States of America; 2. Department of Tourism Management, Shenzhen Tourism College of Jinan 
University, Jinan University, Shenzhen 518053, China; 3. Department of Landscape, College of Architecture, Tsinghua 
University, Beijing 100084, China 
 

 

Letter to the Editor 

A Cross-cultural Examination of the Noise-sensitivity 
Scale-short Form: Measurement Invariance Testing 
between the US and Chinese Samples* 

Zachary D Miller1, HUANG Jun Wu2,#, Heather Costigan1, LUO Jing2, DENG Hui Juan2, 

XU Xiao Qing3, B Derrick Taff1, SUN Cheng2, YANG Xi2, WANG Zhong Lei2, 

LIN Dan2, QU Shu Wen2, PAN Bing1, LI Guang Ming2, and Peter Newman1 

Unwanted sound that is unpleasant or disruptive 
to hear, often interpreted as noise, is a widespread 
environmental pollutant. Similar to other 
environmental pollutants, this noise incurs a variety 
of costs to society. Numerous negative health 
impacts are linked to increases in noise exposure, 
such as increased cardiovascular risk[1] and sleep 
disturbance[2]. Research suggests that noise impacts 
cognitive processes[3], mood states[4], and 
recreational experiences[5]. Collectively, this body of 
research demonstrates that noise interferes with 
human health and well-being. 

 Although noise levels may serve as a measure 
for understanding related human costs, they fail to 
account for the variations among individuals 
regarding their sensitivity to noise[6]. This variation, 
called noise sensitivity, is important for 
understanding annoyance among individuals, as it 
often predicts responses to noise exposure levels[6,7]. 
Furthermore, noise sensitivity uniquely predicts a 
variety of negative outcomes related to noise 
exposure, such as annoyance, health degradation, 
quality of life, and mental and cognitive 
performance[8]. Lastly, some studies suggest genetic 
mechanisms to influence noise sensitivity[9]. 

 To measure the concept of noise sensitivity, 
Weinstein developed a Noise Sensitivity Scale 
(NSS)[9]. However, the NSS was extremely 
burdensome for a significant number of studies  
and contained irrelevant items; therefore, a short 
form of the NSS (called NSS-SF) was developed in a 
US sample with national park visitors[10]. The NSS-SF 
was validated in Bulgarian[11] and Chinese 
samples[12].  

 However, a major limitation of noise sensitivity 
research is a lack of cross-validation studies using 
the NSS-SF[6]. For instance, although a significant 
number of studies show sufficient psychometric 
properties within a single sample (i.e., within a 
cultural context), they do not compare how the scale 
functions across samples. One exception to this is a 
research that demonstrated configural and metric 
invariance among gender in a Chinese sample[6]. 
Even with this advancement, this body of research 
still lacks a comparison of how the NSS-SF functions 
across samples from different cultures. Furthermore, 
a significant number of the studies examining 
perceptions of sounds have been University/College 
laboratory-based, and the understanding of these 
concepts is based on fairly homogenous samples. 
Given the advancing global urbanization, and the link 
between parks, natural sounds, and human wellbeing, 
it is vital that we further the understanding of cultural 
perceptions of sounds. The purpose of this manuscript 
is to examine the psychometric properties of the 
NSS-SF in a cross-cultural context with visitors at an 
actual park. To do so, multi-group confirmatory factor 
analysis (CFA) is used to assess metric and configural 
invariance among a sample of Chinese and US visitors 
to urban parks.  

 Visitors to two similar urban parks were 
sampled for this study. The research was approved 
by a university Institutional Review Board (IRB) and 
informed consent was received prior to the subjects 
participating in the study. In China, visitors to an 
ecological park near the Tourism College of Jinan 
University in Shenzhen were intercepted (Jinan 
sample). In the US, visitors to the arboretum near 
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the Pennsylvania State University (Penn State) in 
University Park were intercepted (UP sample). In 
both locations, trained university researchers 
intercepted visitors using a systematic nth technique 
(i.e., every fourth visitor intercepted). If a group of 
visitors was intercepted, the person in the group 
with the most recent birthday (not date of birth) was 
asked to participate in the research to randomize the 
selection and avoid self-selection bias. Both the nth 
and most recent birthday techniques are commonly 
used methods of intercepting surveys in parks

[5,12]
. 

The Jinan sample yielded 323 responses, and the UP 
sample yielded 414 responses.  

 A self-administered questionnaire was 
presented to respondents via a paper survey. The 
NSS-SF included five items (Table 1). Responses were 
recorded on a 6-point Likert-scale. The only anchor 
numbers that were labeled were 1 (strongly disagree) 
and 6 (strongly agree). The scale items were translated 
into Chinese (Mandarin) for administration to the Jinan 
sample. For Chinese translations, please contact the 
corresponding author.  

 We used AMOS and SPSS to analyze the data. 
Data cleaning established that some cases contained 
missing data points. An MCAR test indicated that 
there was no pattern in the missing data (χ

2 
= 7.755, 

df = 8, P = 0.458). Because maximum likelihood 
estimation commonly used in CFA procedures 
requires no missing data in AMOS, we deleted, 
listwise, any cases with missing data. This left a final 
sample size of n = 312 for the Jinan sample and n = 
397 for the UP sample.  

 CFA with maximum likelihood estimation was 
used to examine the data. CFA is designed to confirm 
an explicitly specified measurement model. To 
assess how well the data fits the specified model, 
several fit statistics are used

[6,13]
. These included 

both relative and absolute fit statistics. Although χ
2  

is reported, it is likely to be significant even with a 
good fitting model. Therefore, we relied on other fit 
statistics to assess the model. These include the 
compare fitting indices (CFI), Non-normed fitting 
indices (TLI), approximate root mean square error 
(RMSEA) (and the associated P-close test), and the 
SRMR. For CFI and TLI, values > 0.90 indicate an 
acceptable fit, with values > 0.95 indicating a good fit. 
For RMSEA, values should be < 0.10, with < 0.05 
considered a good fit. Along with the RMSEA is an 
associated P-close test, where P-close > 0.05 
indicates a close-fitting model. The SRMR value 
should also be < 0.08. In addition to satisfactory fit 
statistics, standardized factor loadings should be > 
0.30, with > 0.60 considered 'high'. Lastly, reliability 
is assessed by Cronbach's α, which should be > 0.65. 

CFA analyses began with specifying and testing 
separate models from the UP and Jinan data. After 
confirming these initial models, configural invariance 
was tested using a multi-group model. Configural 
invariance tests if the structure of the model is 
similar among multiple groups, in this case, the 
samples from UP and Jinan. If configural invariance is 
confirmed through satisfactory fit indices, the next 
step is conducting metric invariance tests. Metric 
invariance is a multi-step process that examines the 
congruency of the measures among the groups

[6]
. 

First, an unconstrained model is compared to a 
model where the factor loadings are constrained to 
be equal among the groups. If there is no significant 
χ

2 
difference, then the scale shows factor loading 

invariance among the two samples (i.e., the factor 
loadings are equal between the groups). If factor 
loading invariance is confirmed, additional constraints, 
such as covariance constraints, are placed on the 
model. If there is no significant χ

2 
difference with 

these additional constraints, it can be said that the 
scale is invariant between the two samples.  

Table 1. Descriptive Statistics for the NSS-SF 

Item 

Jinan Ecological Park 
(N = 312) 

University Park Arboretum 
(N = 397) 

Mean ± SD1 
Standardized 

loading 
Mean ± SD1 

Standardized 
loading 

NOISE_SENS_1: I am sensitive to noise 4.41 ± 1.39 0.68 4.11 ± 1.45 0.74 

NOISE_SENS_2: I find it hard to relax in places that are noisy 4.50 ± 1.37 0.85 4.67 ± 1.24 0.83 

NOISE_SENS_3: I get mad at people who make noise that 
keeps me from falling asleep or getting work done 

4.42 ± 1.35 0.54 4.61 ± 1.34 0.57 

NOISE_SENS_4: I get annoyed when my neighbors are noisy 3.91 ± 1.37 0.43 4.30 ± 1.32 0.56 

NOISE_SENS_5_RECO: I get used to most noises without 
difficulty* 

4.43 ± 1.34 0.32 3.74 ± 1.20 0.33 

Note. 
1
Measured on a Likert-type scale where 1 = strongly disagree and 6 = strongly agree. 

*
Item is reverse 

coded.
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The descriptive statistics for items used in all 
CFA procedures are in Table 1. An initial CFA model 
was built and tested using the UP data. The fit 
statistics indicated that this initial model could be 
improved (χ2 = 60.656, df = 5, P < 0.001; CFI = 0.898; 
TLI = 0.796; RMSEA = 0.168, P-close < 0.001; SRMR = 
0.054). The modification indices suggested that 
covarying the disturbance terms of two measures 
(NOISE_SENS_3: I get mad at people who make noise 
that keeps me from falling asleep or getting work 
done, NOISE_SENS_4: I get annoyed when my 
neighbors are noisy) could improve the model fit. 
When examining the two items, we observed that 
they both directly relate to a home environment. 
From this, we considered this covariance 
theoretically sound and re-specified the model with 
the covaried error terms (Figure 1). Fit statistics for 
this model, referred to as University Park 
unconstrained, indicated an excellent fit (Table 2). 
Subsequently, we ran the same model using only the 
data from the Jinan sample. This model, referred to 
as Jinan unconstrained, also indicated excellent fit 
(Table 2). Cronbach’s α was also sufficient (Jinan α = 
0.73; UP α = 0.77).  

 To test configural invariance, a multi-group CFA 
was specified (Table 2, multi-group unconstrained) 

using both Jinan and UP data. This model 
simultaneously compares the two groups[8]. The 
excellent fit statistics from this model indicated 
configural invariance between the two samples 
(Table 2). 

 Metric invariance was assessed in two additional 
multi-group models. The first model compares an 
unconstrained multi-group model (Table 2, 
multi-group unconstrained) to one where the factor 
loadings are constrained to be equal across the Jinan 
and UP models (Table 2, multi-group constrained 
factor loadings). An χ2 difference test showed no 
significant differences between the constrained and 
unconstrained models (χ2 = 5.72, df = 4, P < 0.221). 
Therefore, we can conclude that factor loadings are 
invariant between Jinan and UP samples. We also 
compared a model that constrained the covariance to 
be equal in addition to the equality of factor loadings 
constraint (Table 2, multi-group constrained 
covariances) against the unconstrained multi-group 
model (Table 2, multi-group unconstrained). An χ2 
difference test showed no significant differences 
between these models (χ2 = 5.72, df = 5, P < 0.334). 
The interpretation of this is that there are no 
differences in factor loadings or covariances between 
the Jinan and UP samples. 

Table 2. Model Fit and Measurement Invariance Testing across Groups 

Model χ2 df P-value CFI TLI RMSEA P-close SRMR 

1: University Park unconstrained 7.34 4 0.119 0.994 0.985 0.046 0.476 0.025 

2: Jinan unconstrained 7.55 4 0.108 0.991 0.977 0.053 0.385 0.032 

3: Multi-group unconstrained 14.90 8 0.061 0.993 0.981 0.035 0.796 0.032 

4: Multi-group constrained factor loadings 20.62 12 0.056 0.991 0.985 0.032 0.899 0.039 

5: Multi-group constrained covariances 20.62 13 0.081 0.992 0.987 0.029 0.939 0.039 

 

 

Figure 1. Re-specified CFA model for the noise sensitivity scale. 
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Noise sensitivity, an individual’s unique 
response to noise, is a critical aspect for 
understanding the effects of sound pollution on 
human health and well-being. The NSS-SF emerged 
as a way to capture this individual variance, and was 
validated in several samples, including samples from 
the US[10], Bulgaria[11], and China[12]. Recent research 
applied configural and metric invariance testing of 
gender for the NSS-SF scale in a Chinese sample[6]. 
However, no cross-cultural comparisons of 
configural and metric invariance had ever been 
conducted for NSS-SF. The results from this current 
research provides further evidence that the NSS-SF is 
a robust and cross-culturally valid scale in that it 
demonstrated both configural and metrical 
invariance across samples from the US and China.  

This is only the second study to implement 
configural and metric invariance testing for the 
NSS-SF. We encourage future use of these methods. 
For instance, a majority of research using the NSS-SF 
have been conducted in labs; however, this current 
research was conducted in the field. Examining if 
NSS-SF functions the same across lab and field 
samples is of critical importance. Evidence from this 
study indicates there may be some differences 
between field and lab samples. For instance, it was 
unique that the covariance of the two error terms 
associated more directly with a home environment. 
This indicates that perhaps there may be contextual 
differences of noise sensitivity as measured by the 
NSS-SF. As very few studies have examined 
configural and metric invariance in the NSS-SF, any 
new insights are welcome. 

A few limitations and directions for future 
research should be noted. First, the samples in this 
study were obtained through local urban parks. It is 
unknown how these results would generalize to 
other populations, such as visitors to national parks. 
Further investigation of this is warranted. 
Additionally, the covariance between the two error 
terms in the models (e3 and e4) was a novel 
occurrence in the NSS-SF. In the future, researchers 
may wish to refine NSS-SF for different populations, 
such as urban park users, wilderness users, and 
those around homes. Lastly, the relatively low factor 
loading of NOISE_SENS_5_RECO indicates that there 
may be some additional improvement needed in the 
NSS-SF. However, even with these limitations, we 
are of the opinion that the results from this study 
add meaningful contributions to our understanding 
of noise sensitivity.  

 This is the first study to use configural and 
metric invariance testing to assess how the NSS-SF 
functions across cultures. The research found that 
the NSS-SF demonstrated configural and metric 
invariance across a sample of Chinese and US visitors 
to urban parks. This adds to a greater body of 
evidence that the NSS-SF is a rigorous instrument for 
measuring noise sensitivity. Researchers should 
continue to use similar methods when exploring 
NSS-SF in a cross-cultural context. 
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