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Drugs Using Sparse Sampling Pharmacokinetics Data*
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In  the  development  of  eye  drop  medications,
difficulty  in  sampling  is  a  major  challenge[1].  Drug
concentrations in  the aqueous humor (AH) can only
be  measured  when  the  eye  is  undergoing  surgery,
such  as  cataract  replacement.  Sampling  from  tears
may  significantly  reduce  the  amount  of  medication
remaining in the eye. Owing to limitations caused by
sampling  difficulty,  the  concentration–time  profile
for  each  subject  is  generally  unattainable  when
estimating  the  pharmacokinetics  parameters  for
topical  ophthalmic  drugs.  Instead,  each  subject  can
be  sampled  at  one  of  several  prespecified  sampling
times.

For  the  bioequivalence  assessment  of  topical
ophthalmic  drugs,  some  of  the  U.S.  Food  and  Drug
Administration’s  product-specific  guidances
recommend single-dose, in vivo, sparse-sampling AH
studies  with  pharmacokinetics  (PK)  endpoints  using
either a crossover or parallel study design. Ratios of
the  concentration-time  curve  up  to  the  last
measurable  concentration  (AUC0-t),  and  Cmax are
required  for  the  bioequivalence  assessment.  In
sparse  sampling  design,  a  bioequivalence  test  for
Cmax can be conducted using Schuirmann’s two one-
sided  tests[2] in  the  same  manner  as  complete  data
designs.  However,  a  bioequivalence  test  for  the
AUC0-t,  should  be  considered  for  sparse  sampling
situations.

In  parallel  study  designs  with  sparse  sampling,
the  AUCs  of  follow-on  products  and  reference
products  are  independent  of  each  other.  Several
methods  can  be  applied  to  perform  bioequivalence
assessment in parallel designs with sparse sampling.
Meanwhile,  in  crossover  designs,  both  sparse
sampling  AUC  estimation  and  the  correlation
between  treatments  should  be  determined.  Jaki
et  al.[3] developed  three  Fieller-type  confidence
intervals  for  a  crossover  design  with  a  flexible
sampling  regime.  Jaki’s  method  is  applicable  to  the

case  of  sparse-sampling  design  and  is  the  first
technique to provide a direct estimate of confidence
interval  for  the  ratio  of  AUCs  in  a  crossover  design
with a  batch-sampling regime.  Shen and Machado[4]

developed  a  nonparametric  bootstrap  method  for
bioequivalence  assessment.  Bootstrap  methods  can
be applied in both parallel and crossover designs.

The  drawback  of  the  bootstrap  method  is  its
relatively  cumbersome  study  design,  in  which
batches  of  simulations  are  required  to  estimate  the
sample  size.  However,  the  performance  of  the
Fieller-type  confidence  interval  compared  with  the
bootstrap  method  is  still  unknown  in  crossover
designs with sparse sampling.

In  this  study,  we  propose  a  Fieller-type
confidence  interval  for  the  assessment  of
bioequivalence  using  sparse  sampling  data.  The
proposed  method  simplifies  the  estimation  of  Jaki’s
method. A simulation study is conducted to evaluate
the  customer  risk  (Type  I  error)  and  the  empirical
power  of  the  nonparametric  bootstrap  method[4],
Jaki’s  method[3],  and  our  proposed  method  in
sparse  sampling  crossover  trials.  Furthermore,  we
evaluate  the  performance  of  Jaki’s  method  and  our
proposed  method  based  on  group  sequential
designs.

t1, ⋯, tQ

q = 1, ⋯, Q

Consider  a  two-sequence,  two-period,  two-
treatment crossover study. Subjects are randomized
into  two  sequence  groups:  TR  and  RT  (T  =  test
product;  R  =  reference  product).  Subjects  in  each
sequence are then randomly assigned to Q sampling
time  points  ( ).  The  number  of  subjects  at
each  time  point  is nq.  Each  subject  provides  one
sample  in  each  period.  Let yijkq denote  the  drug
concentration of the ith subject at the qth time point
( ) of period j (j = 1, 2) in sequence k (k = 1,
2).  Subsequently,  using  Bailer’s  algorithm,  the  AUC
from  0  to  the  last  time  point  of  sequence  k  in jth
period is approximated by:
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AUCjk =
Q

∑
q=1

cqμjkq, (1)

where cq is

c1 =
1
2
(t2 − t1) for q = 1,

cq =
1
2
(tq+1 − tq−1) for q = 2, ⋅ ⋅ ⋅ , Q − 1,

cQ = 1
2
(tQ − tQ−1) for q = Q.

(2)

The AUCjk can be estimated by:

ÂUCjk =
Q

∑
q=1

cqȳjkq, (3)

ȳjkq =
1
nq

∑nq
i=1 yijkq

ÂUCjk

with .  Subjects  at  different  time
points are independent; no covariance terms appear
in the variance of , which is estimated by:

ŝ2 (ÂUCjk) = σ̂2
jk =

Q

∑
q=1

c2q ŝ
2
jkq

nq
, (4)

ŝ2jkq=
1

nq − 1
∑nq

i=1
(yijkq − ȳjkq)with .  For  simplicity,

we will use the notations as listed in Table 1 for the
AUCs in each sequence and period.

To  assess  the  bioequivalence  between  two
products,  we  denote  the  AUCs  of  the  test  product
and reference product  by κ and λ,  respectively,  and
define  the  ratio  of  the  two  AUCs  as θ = κ/λ.  We
assumed no carry-over effect, as the washout period
is  sufficiently  long.  Bioequivalence  would  be
established  if  the  90% confidence  interval  of θ lies
within 0.80, 1.25, which is the bioequivalence margin
frequently recommended by regulatory authorities.

Based  on  the  study  of  Locke[5],  we  derive  the
estimators  of κ and λ,  which  include  the  individual
drug effect and the mean of the fixed period effects,
referred to as ‘method 2,’ as follows:

ÂUCT2 = κ̂2 =
â + d̂
2

(5)

and

ÂUCR2 = λ̂2 =
b̂ + ĉ
2

. (6)

The standard errors are then given by:

s2 (ÂUCT2) = ξ̂
2

κ2 = 1
4
(σ̂2

a + σ̂2
d ) (7)

and

s2 (ÂUCR2) = ξ̂
2

λ2 = 1
4
(σ̂2

b + σ̂2
c ) . (8)

κ̂2 λ̂2The covariance of and can be estimated as

ξ̂κ2 ,λ2 = 1
4
(σ̂a,b + σ̂c,d) . (9)

The  derivation  of  method  2  is  given  in  File  S1
(available  in www.besjournal.com).  Fieller’s
theorem[6] provides  a  general  procedure  for  the
estimation  of  confidence  intervals  for  parameter
ratios. Assuming that the data of each sequence and
period are normally distributed, we can calculate:

A = λ̂
2
− z2α/2 ξ̂2λ ,

B = z2α/2 ξ̂κ,λ − λ̂κ̂,

C = κ̂2 − z2α/2 ξ̂2κ ,
(10)

where zα/2 denotes the 100 (1-α) percentile of the t-
distribution.  Additionally,  Fieller-type  confidence
intervals  can  be  constructed  using t-quantiles,  and
degrees  of  freedom  can  be  calculated  using  the
Satterthwaite  approximation.  Please  refer  to  Jaki’s
research[3,7] for a detailed calculation process.

The lower  limit θL and the upper  limit θU of  the
Fieller-type confidence interval are

θL = [−B − (B2 − AC)1/2] /A (11)

and

θU = [−B + (B2 − AC)1/2] /A, (12)

λ̂
2/ξ̂2λ > t2α/2 κ̂2/ξ̂2κ > t2α/2

respectively.  As discussed by Fieller[5,6],  obtaining an
interpretable  confidence  interval  requires  that  both

and are  satisfied.  In  other
words, both κ and λ should be statistically significant

Table 1. Notations of AUCs in each sequence
and period

Sequence Period 1 (j = 1) Period 2 (j = 2)

Sequence TR (k = 1) â b̂
Sequence RT (k = 2) ĉ d̂
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compared  with  0  to  construct  a  Fieller-type
confidence  interval  that  contains  no  negative
values.

To  evaluate  the  performance  of  the  proposed
approach, we simulated two-treatment,  two-period,
two-sequence  crossover  trials  (TR/RT).  We
considered  the  sampling  time  and  drug
concentration  based  on  the  outcome  of  a
pharmacokinetics  study  of  an  azithromycin
eyedrop[8].  In  each  period,  210  subjects  were
randomly  assigned  to  seven  sampling  time  points
(0.17, 0.5, 2, 4, 8, 12, and 24 h after dosing) nested in
each  sequence.  Each  subject  was  sampled  at  the
same  time  point  in  each  period.  Thus, nq =  30.  The
drug  concentrations  corresponding  to  each  time
point  were  165,  50,  25,  10,  5,  1.5,  and  0.5  μg/g  of
tears.  The  period  effect  was  set  as  absent.
Simulation  data  for  each  time  point  were  obtained
from multivariate log-normal distributions.

Two  levels  of  within-subject  variability  (WSV)
and  between-subject  variability  (BSV)  were
considered  in  the  simulation  study.  Intrasubject
coefficient  variances  (CVs)  were  assumed  to  be
0.5  and  0.8  for  low  and  high  variabilities,
respectively.  The  Intersubject  CVs  were  assumed
to  be  1.2  and  1.5  for  low  and  high  variabilities,
respectively.  In  these  scenarios,  the  correlations
between  T  and  R  in  each  sequence  ranged  from
0.64  to  0.84  for  different  combinations  of  WSV
and  BSV.  For  each  scenario,  1,000  simulation
trials  were  performed.  All  simulations  were
executed  using  the  SAS  9.4  software.  For
simplicity,  we  designate  our  proposed  approach

‘method 1’ and Jaki’s approach �‘method 2’.
Table  2 lists  the  Type  I  errors  of  the

bioequivalence tests for each side of the equivalence
margin  as  well  as  for  different  intrasubject  and
intersubject  CV  combinations.  In  all  scenarios,  the
Type  I  errors  of  methods  1  and  2  were  similar.  The
Type  I  errors  of  both  methods  1  and  2  were  lower
than those of the bootstrap method and the nominal
level of 5%. On both sides of the equivalence margin,
the  Type  I  errors  of  the  bootstrap  method  were
inflated.

The  empirical  power  estimates  for θ ranging
from  0.95  to  1.05  are  presented  in Table  3.  In
scenarios  1  and  2,  the  empirical  power  values  of
methods  1  and  2  were  similar  to  those  of  the
bootstrap  method.  When  the  intrasubject  CVs
increased,  as  in  scenarios  3  and  4,  the  empirical
power values of methods 1 and 2 were slightly lower
than  those  of  the  bootstrap  method.  It  was  clear
that  the  empirical  power  of  all  methods  was  highly
affected  by  the  correlation  between  periods.  As
demonstrated by scenarios 2 and 3, when the overall
variances were similar, with the correlation between
periods  ranging  from  0.84  to  0.64,  the  empirical
power  decreased  considerably.  In  group  sequential
designs,  the  empirical  power  values  of  methods  1
and 2 were similar in all scenarios.

In  summary,  the  proposed  method  provides
estimations  for  AUC  ratios  and  the  corresponding
confidence  intervals  in  accordance  with  the
guidelines  of  regulatory  authorities.  The  AUC
estimators  and  associated  standard  errors  were
more  straightforward  in  the  proposed  method.  Our

Table 2. Type I errors of the bioequivalence tests on the ratio of AUCs using the (0.80, 1.25) equivalence margin

AUCT/AUCR Intrasubject CV Intersubject CV Method 1 Method 2 Bootstrap
O'Brien-Fleming Pocock

Method 1 Method 2 Method 1 Method 2

Scenario 1

　0.80 0.5 1.2 0.048 0.050 0.054 0.047 0.052 0.032 0.037

　1.25 0.5 1.2 0.047 0.048 0.060 0.045 0.051 0.045 0.042

Scenario 2

　0.80 0.5 1.5 0.049 0.047 0.056 0.046 0.044 0.042 0.038

　1.25 0.5 1.5 0.049 0.049 0.059 0.053 0.050 0.034 0.036

Scenario 3

　0.80 0.8 1.2 0.044 0.041 0.058 0.042 0.039 0.026 0.023

　1.25 0.8 1.2 0.053 0.054 0.061 0.049 0.052 0.025 0.029

Scenario 4

　0.80 0.8 1.5 0.040 0.038 0.048 0.035 0.038 0.014 0.020

　1.25 0.8 1.5 0.043 0.039 0.050 0.038 0.038 0.014 0.018
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method  is  conservative  compared  with  the
bootstrap  method,  as  its  empirical  power  is  slightly
lower  than  that  of  the  bootstrap  method  and  no
Type I error inflation is shown. Moreover, simulation
analysis  demonstrated  that  our  technique  is  highly
suitable  for  log-normal  data.  Thus,  our  method  is
applicable to either primary or sensitivity analyses in
the bioequivalence assessment of topical ophthalmic
drugs.

Both  our  method  and  Jaki’s  method  first
estimate  AUCs  and  the  corresponding  standard
errors  for  each  sequence  and  period,  and  then
construct  the  confidence  intervals  using  Fieller’s
theorem.  The  difference  between  these  two
methods is attributed to the estimators of κ and λ,
that is, the AUC estimators of the follow-on product
and  reference  product,  respectively.  Theoretically,
Jaki’s  estimators  include  the  individual  drug  effect
and  fixed  effect  of  the  first  period  as  a  nuisance
effect[3,9].  Our  estimators  include  the  individual
drug effect and the mean of the fixed effects for all
periods.  If  we  assumed  no  period  effects,  the
expectations  of  the  two  estimators  would  be
identical.  Our  method  is  significantly  simpler  than
Jaki’s  method,  without  a  decrease  in  empirical
power  or  an  increase  in  Type  I  error.  Neither  of
these  two  methods  provides  direct  estimators  of

the individual drug effect, i.e., the 'pure' treatment
effect, owing to the nuisance effect. This is because
in a crossover design, individual drug effects cannot
be estimated if the period effects are considered[10].
Fortunately,  the  'pure'  treatment  effect  does  not
need  to  be  separated  in  bioequivalence
assessment.  For  instance,  in  a  parallel  design,
bioequivalence  is  assessed  using  the  AUCs  of  each
group,  without  considering  the  separation  of  the
direct  drug  effect  from  the  peculiarities  of  the
period.  Similarly,  the  estimators κ and λ are  the
parameters of interest when estimating the effects
of a product.

In  vivo bioequivalence  studies  for  topical
ophthalmic  drugs  are  often conducted using  a  large
sample  size  to  achieve  sufficient  empirical  power.
Our  investigation  demonstrated  that  the  empirical
power  levels  of  our  method  and  Jaki’s  method  in  a
group  sequential  design  using  O'Brien–Fleming
boundaries  are  both  similar  to  that  of  the  fixed
sample  size  design.  Thus,  group  sequential  designs
can  be  utilized  to  reduce  sample  size  by  permitting
early stopping.

Well-developed  study  designs  will  considerably
accelerate  the  development  of  drugs.  Fieller-type
confidence  interval  approaches  (our  proposed
method and Jaki’s method) provide greater flexibility

Table 3. Empirical power values of the bioequivalence tests on the ratio of AUCs using the (0.8, 1.25)
equivalence margin

AUCT/AUCR Intrasubject CV Intersubject CV Method 1 Method 2 Bootstrap
O'Brien-Fleming Pocock

Method 1 Method 2 Method 1 Method 2

Scenario 1

　0.95 0.5 1.2 0.888 0.890 0.890 0.889 0.890 0.861 0.851

　1.00 0.5 1.2 0.946 0.942 0.945 0.946 0.942 0.917 0.904

　1.05 0.5 1.2 0.869 0.862 0.871 0.873 0.876 0.843 0.832

Scenario 2

　0.95 0.5 1.5 0.830 0.819 0.838 0.832 0.823 0.784 0.775

　1.00 0.5 1.5 0.892 0.891 0.892 0.894 0.890 0.857 0.862

　1.05 0.5 1.5 0.820 0.809 0.819 0.820 0.812 0.770 0.754

Scenario 3

　0.95 0.8 1.2 0.491 0.491 0.513 0.473 0.473 0.341 0.352

　1.00 0.8 1.2 0.564 0.552 0.585 0.548 0.540 0.406 0.402

　1.05 0.8 1.2 0.523 0.505 0.544 0.497 0.500 0.377 0.370

Scenario 4

　0.95 0.8 1.5 0.391 0.380 0.418 0.365 0.369 0.256 0.249

　1.00 0.8 1.5 0.459 0.439 0.485 0.433 0.421 0.291 0.273

　1.05 0.8 1.5 0.415 0.402 0.449 0.383 0.384 0.258 0.260
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in  the  study  designs  of  sparse  sampling  crossovers.
Based  on  parametric  methods  such  as  the  Fieller-
type  confidence  interval,  other  methodologies,
including scaled average bioequivalence and sample
size  re-estimation,  can  be  considered.  Furthermore,
Fieller-type  confidence  interval  approaches  can  be
applied  to  bioequivalence  studies  with
pharmacodynamic endpoints.
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　　File S1. The derivation of the proposed approach
　　The general model of crossover trials with sparse sampling data is given as:

AUCjk=μ+Pj + F(j,k) + ejk (1)
where
　　μ is the overall mean;

Pj　　  is the fixed effect of jth period, where j = 1, 2;
F(j,k)　　  is the fixed effect of the formulation in the kth sequence at jth period, where k = 1, 2. Thus,

F(j,k) = { FT if k = j
FR if k ≠ j

k = 1,2; j = 1,2 . (2)

ejk AUCjkis the random error of . (AUC11,AUC21)′
ϕ1 Σ1

Note  that  the  AUCs  of  sequence  TR  at  period  1  and  period  2, ,  follow  a  bivariate  normal
distribution with mean vector and covariance , where

ϕ1 = [ μ + FT + P1

μ + FR + P2
] and Σ1 = [ σ2

T + σ2
S σ2

S

σ2
S σ2

R + σ2
S
] . (3)

σ2
T σ2

R FT FR σ2
SWhere and intra-subject variance of and , respectively, and is the inter-subject variance.

ϕ2 Σ2 (AUC12,AUC22)′Similarly,  the  mean vector and  covariance  vector of  the  AUCs  of  sequence  RT, ,  are
given by

ϕ2 = [ μ + FR + P1

μ + FT + P2
] and Σ2 = [ σ2

R + σ2
S σ2

S

σ2
S σ2

T + σ2
S
] . (4)

θ = κ/λ = (μ + FT) / (μ + FR)Recall  the  notations  of  AUCs  in  each  sequence  and  period  in  Table  I,  let  the  ratio  of  AUCs
, define

Uk = { (a − θb) /2,(d − θc) /2, k = 1
k = 2

. (5)

U1 (P1 − θP2) /2 σ2
θ/4 U2(P2 − θP1) /2 σ2

θ/4
U1 U2

Then follows a normal distribution with mean and variance , where and follows a normal
distribution with mean  and variance . Since samples from sequence TR(k = 1) and RT(k = 2) are
independent, parameters and are normally distributed with equal variance. Then confidence interval for θ
can be obtained based on an unpaired two-sample statistic, that is:

σ2
θ = (σ2

T + σ2
S ) − 2θσ2

S + θ2 (σ2
R + σ2

S ) . (6)

T =
Û1 + Û2

SU
(7)

where

Û1 + Û2 =
1
2
(â − θb̂) + 1

2
(d̂ − θĉ) = 1

2
(â + d̂) − θ

2
(b̂ + ĉ) (8)

and

S2U =1
4
(σ̂2

a + θ2σ̂2
b − 2θσ̂a,b) + 1

4
(σ̂2

d + θ2σ̂2
c − 2θσ̂c,d) = 1

4
(σ̂2

a + σ̂2
d ) + θ2

4
(σ̂2

b + σ̂2
c )−

θ
2
(σ̂a,b + σ̂c,d) . (9)

Then, the T statistics can be reformulated as

T = κ̂ − θλ̂√
ξ̂
2

κ + θ2 ξ̂
2

λ − 2θξ̂κ,λ

(10)

κ̂ λ̂ AUCT AUCRwhere and are the point estimate of and , respectively.

ÂUCT = κ̂ = â + d̂
2

ÂUCR = λ̂ = b̂ + ĉ
2

(11)

κ̂ λ̂The variances of and are given by:
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s2 (ÂUCT) = ξ̂
2

κ =
1
4
(σ̂2

a + σ̂2
d )

s2 (ÂUCR) = ξ̂
2

λ =
1
4
(σ̂2

b + σ̂2
c ) (12)

κ̂ λ̂The covariance of and can be estimated as

ξ̂κ2 ,λ2 = 1
4
(σ̂a,b + σ̂c,d) . (13)
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