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Abstract

Objective To develop methods for determining a suitable sample size for bioequivalence assessment
of generic topical ophthalmic drugs using crossover design with serial sampling schemes.

Methods

The power functions of the Fieller-type confidence interval and the asymptotic confidence

interval in crossover designs with serial-sampling data are here derived. Simulation studies were
conducted to evaluate the derived power functions.

Results Simulation studies show that two power functions can provide precise power estimates when
normality assumptions are satisfied and yield conservative estimates of power in cases when data are
log-normally distributed. The intra-correlation showed a positive correlation with the power of the
bioequivalence test. When the expected ratio of the AUCs was less than or equal to 1, the power of the
Fieller-type confidence interval was larger than the asymptotic confidence interval. If the expected ratio
of the AUCs was larger than 1, the asymptotic confidence interval had greater power. Sample size can be
calculated through numerical iteration with the derived power functions.

Conclusion The Fieller-type power function and the asymptotic power function can be used to
determine sample sizes of crossover trials for bioequivalence assessment of topical ophthalmic drugs.
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INTRODUCTION

ioequivalence studies have been widely
Badopted to demonstrate that two drug
formulations have comparable
bioavailability. The most commonly used endpoints

in bioequivalence trials are pharmacokinetic (PK)
parametersm. Generally, bioequivalence is assessed

by comparing the area under the concentration-time
curve (AUC) and the maximal concentration (Cmax)[zl.
According to regulatory guidelines,
noncompartmental analysis (NCA) is recommended
to estimate AUC and C.. In @ common NCA analysis,
all of the subjects follow the same sampling regime,
and each subject is sampled at each of a series of
time points and drug plasma concentration time
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profiles. The PK parameters of each individual
subject can be estimated based on the complete
sampling data. Then, an equivalence test is
conducted on the log-transformed PK parameters
using Schuirmann’s two one-sided tests (TOSTS)B].
Finally, bioequivalence can be concluded if the 90%
confidence interval of the ratio of the geometric
mean lies within the prespecified bioequivalence
margin of 0.80 to 1.25.

A research problem has arisen from the
development of generic topical ophthalmic drugs.
Topical ophthalmic drugs usually have low
bioavailabilitym. Due to both rapid tear turnover and
drainage from the ocular surface, formulations have
a short contact time with the surface of the eye and
only a small percentage of drug remains in the
precorneal area after administration®. The quantity
of drug that reaches the aqueous humor (AH) is also
limited because the corneal barrier[G], as well as
systemic absorption across the conjunctiva, restrict
drug absorption into the inner eye[7’8]. Sampling
difficulty is another challenge in ocular drug
developmentm. The AH sample can only be obtained
when the eye is undergoing surgery, such as during
cataract replacement. Sampling from tears may
significantly reduce the amount of medication
remaining in the eye. Due to these limitations,
complete sampling data for each individual subject
are unattainable in pharmacokinetic studies of
topical ophthalmic drugs. In this case, a serial
sampling design could be applied, which has been
commonly used in bioavailability studies using small
animals and for which blood sampling has been
restricted. In a serial sampling design, only one
sample is obtained per subject at one of the
prespecified timepoints and the concentration
time profile of the study formulation is obtained
with multiple subjects sampled at different time
points.

The US Food and Drug Administration (FDA) has
issued several product-specific guidances (PSGs) to
regulate the design issues in the bioequivalence
assessment of topical ophthalmic drugs. Single-dose,
in vivo, sparse-sampling AH studies with PK
endpoints using either a crossover or parallel study
design are recommended in these guidancesm. An
NCA approach based on serial sampling design has
been specified to estimate the AUC from 0 to the last
time point (AUCy,). Ratios of the AUCy,, as well as

Cmax, are required for the bioequivalence assessment.

The bioequivalence test for C.,., can be conducted
using Schuirmann’s TOSTs in the same manner as

that of complete data designs. The bioequivalence
test for the AUC,.;, however, is complicated because
of the serial sampling data.

For parallel study designs, several methods have
been proposed to estimate the confidence interval
of the ratio of two AUCs with serial sampling data.
Wolfsegger[m] proposed a Fieller-type confidence
interval for the ratio of two AUCs with serial
sampling data to assess bioequivalence. Jaki et al.t
expanded the Fieller-type confidence interval to
address the case of sparse sampling designs with
flexible sampling regimes. In addition to the
Fieller-type confidence interval, Wolfsegger and
Jaki™ derived an asymptotic confidence interval
using the delta method. Jaki et al.™ carried out a
comparison of seven methods for construction of
confidence intervals for ratios of AUCs and
demonstrated that the Fieller-type confidence
interval, asymptotic confidence interval, and
bootstrap-t interval are superior to other methods.
Hua et al.™ generated an excellent summary of
statistical issues regarding bioequivalence
assessment with serial sampling pharmacokinetic
data.

For bioequivalence assessment in crossover
designs with serial sampling data, bootstrap
methods are most frequently used. Shen and
Machado™! developed a nonparametric bootstrap
method for bioequivalence assessment to address
the case of serial sampling. Harigaya et al.™
reviewed studies of  topical ophthalmic
corticosteroid suspensions submitted to the FDA and
showed that bootstrap methods were used in all of
these studies. Bootstrap methods provide a
straightforward way to derive estimates of standard
errors and confidence intervals for complex
estimators and can be applied in both parallel and
crossover designs. The drawback of the bootstrap
method is its relatively cumbersome study design, in
which batches of simulations are needed in order to
estimate sample size. In contrast, parametric
methods have also been proposed. Based on the
work of Wolfsegger and Jaki®™ Jaki et al.l*®
expanded Fieller-type confidence intervals to the
case of crossover design. With the method of Jaki et
al., batch sampling regimes can be considered, which
include serial sampling design as a special case. In a
submitted literature of the authors, a simplified
Fieller-type confidence interval is derived based on
the work of Locke™”. This method provides an
unbiased estimate of the ratios of AUCs and has
greater simplicity than the method of Jaki et al.,
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without a decrease in empirical power or an increase
in Type | errors.

Bioequivalence studies for topical ophthalmic
drugs are often conducted using a large sample
size®™® which is a major challenge in the
development of generics. In this way, adaptive
designs that allow for minimizing the total sample
size or increasing the chances of eventual success
would be preferable. Determination of sample size is
one of the bases of adaptive adjustment. Despite
parametric methods for bioequivalence assessment
in crossover designs with serial sampling data having
been developed, methods for sample size
determination are still limited. Hua et al.™ derived
the power function for parallel designs with serial
sampling data. The question of sample size
determination in crossover designs with serial
sampling data remains open. Moreover, Fieller’s
theorem is based on the normality assumption“a],
while pharmacokinetic data are generally considered
to be log-normally distributed. Thus, the power of
the Fieller-type interval on log normally distributed
data requires further investigation.

In the present study, we derive the power
function of the Fieller-type confidence interval and
the asymptotic confidence interval in crossover
designs with serial sampling data. Simulation studies
are conducted to evaluate the derived power
functions. The impacts of the log-normal distribution,
variance, and intra-correlation on the power of the
Fieller-type confidence interval and the asymptotic
confidence interval are also investigated in the
simulation studies. The remainder of the article is
organized as follows. In the Methods section, we
specify the study design and notation, present the
process of the bioequivalence test using Fieller-type
confidence intervals, and derive the power function.
In the Results section, we describe the simulation
results and present an application of this approach in
a hypothetical example. Finally, we complete this
manuscript with a discussion followed by our
conclusions.

METHODS

Study Design and Notation

In this article, we focus on crossover designs
with  serial sampling schemes. Consider a
two-sequence, two-period, two-treatment crossover
study. Subjects are randomized into two sequence
groups: TR and RT (T = test product; R = reference

product). Subjects in each sequence are then
randomly assigned to Q-sampling time points
(tq, ...,tQ). Let the number of subjects at each time
point be the same and be denoted by n,. Each
subject provides one sample in each period. Let
Yijkq denote the drug concentration of the ith
subject at the gth time point (g = 1,...,Q) [of period j
(=1, 2)in sequence k (k = 1, 2)]. Then, using Bailer’s
algorithm“g], the estimate of the AUC from 0 to the
last time point of sequence k in the jth period is

approximated by:
Q

AUCy, = Z Cqljkq (1)

q=1

where ¢, is equal to:

q
c =%(t2—t1) forg=1,

Cq = %(tqul - tq_l) forg=2, .., Q-1,
Co = %(tQ - tQ_l) forg=Q.

The AUCj, can be estimated by:
Q

AT = ) CqFpeq @)
q=1
with Jj.q = niqZ:lqu Yijkq- Since subjects at different
time points are independent, there are no
covariance terms involved in the variance of mjk,
which is estimated by:

282
c- S
q°jkq

(3)
q

Q
s“z(mjk) =64 = Z

q=1

n

L Z:lqu(yi]-kq—j_/jkq). For simplicity,
we will use notations for the AUCs in each sequence
and period as listed in Table 1.

To assess the bioequivalence between two
products, we denote the AUCs of the test product
and reference product by k and A, respectively, and
define the ratio of the two AUCs as 8 = k/A. We
assume that there is no carry-over effect, as the
washout period is long enough.

. A2 —
with 87, = —

Table 1. Notations of AUCs in Each Sequence

and Period
Sequence Period1(j=1) Period 2 (j=2)
Sequence TR (k= 1) a b
Sequence RT (k = 2) ¢ d
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Bioequivalence Assessment

As specified by FDA guidance documents, the
ratio of AUCy, from the test product to the AUCy,
from the reference product is used to assess
bioequivalence. Bioequivalence can be claimed if the
ratios of AUCs lie within the prespecified
equivalence range (6;, 6,), which is frequently set
to be (0.80, 1.25) as recommended by regulatory
authorities. The hypotheses for the bioequivalence
test of two AUCs can be stated as:

u AUCT - AUCT g .
0 quck = 1O qucr =2 @
AUCT

H.:0, < m <6, (5)

Based on the work of Locke[m, the estimators of k
and A are given by:

. a+d
AUCT =R = > (6)
and
. . b+e
AUCR =1 = (7)
The standard errors are then given by:
I - 1
s2(AUCT) = &2 = Z(&,f +62) (8)
and
s2(AUCR) = & = —(ab +62) (9)
The covariance of & and A can be estimated as:
- 1, R
EK,A = Z (Ua,b + Gc,cl) (10)

Note that in the context of crossover designs, K
and A include the individual drug effect and the
mean of the fixed period effects and are not
unbiased estimators of the individual effects of T and
R if the period effects are accounted for®, Thus, it is
necessary to make an assumption that the mean
period effect is 0, which is a reasonable model
assumption in crossover trials. With this assumption,
the parameter of interest § = R/ is an unbiased
estimator of the ratio of the individual effects of T
and R.

Using Fieller’s method, a confidence interval for
the parameter of interest 6 is derived from the
statistic:

-6

[ rorg 208,
The statistic T has a central t distribution. The
corresponding degree of freedom can be obtained
using the Satterthwaite approximation[16’21], which
gives:

(11)

a 201\ 2

A (&2 +925i,%) (12)
&/(ng—1) +6+83/(ng — 1)
Hence, by resolving the following equation about T:

{612 <2} (13)
a (1-2a) x 100% confidence interval for 8 can be
obtained. The two roots of this quadratic are the
lower and upper limits of the Fieller-type confidence
interval for 6, which are given by:

V=

6, = [-B - (B2 — AC)Y/?]/A (14)
and
8y = [-B + (B — AC)'/?]/A (15)
where
A=12—-t2; E}
- t "E;c/l
C = a[ﬁf}c
We reject H, at the a IeveI of significance if 6, <
6, and 6, < 0. As discussed by FieIIer[u’lg’zz],
obtaining an interpretable confidence interval

requires that A2/ > t2,, and R?/&Z >tZ,, are
both satisfied. In other words, both ¥ and A
should be statistically significant compared to 0 in
order to construct a Fieller-type confidence interval
that contains no negative values.

Sample-size Determination

As presented by Hauschke et al.” and Berger et

al.[“], a likelihood ratio test proposed by
Sasabuchilzs], referred to as the T,/T, test, can always
lead to the same decision on bioequivalence with
the Fieller-type confidence interval. In this way, the
power of the Fieller-type confidence interval can be
analyzed using the power function of the T;/T, test.
Hua et al.™ demonstrated the power function of
the T,/T, test for parallel designs with serial sampling
data. With a modification on the work of Hauschke
et aI.[B], the power function of the T,/T, test can be
applied to address the case of crossover designs with
serial sampling data.

The statistics of the T,/T, test in the crossover
design with serial-sampling data are given by:

K—H/'l

\/f,% + 0262~ 20,6,

Bioequivalence can be concluded if and only if
T, >ty and T, <—t,3 . Hence, when the
variances of AUCs of the test product and reference
are equal, the power of crossover design, referred to
as ‘Fieller-type power,’ is given by:

1-8=Pr(Ty>t, and To<-t,,| 1 <k/A< 0, &, &
kA, p) (17)

=12 (16)
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where p is the correlation coefficient between T;
and T,. Note that in a Ty/T, test, two statistics T;
and T, are correlated. The random vector (T./T,)
follows a bivariate non-central t-distribution with
non-centrality parameters ¢,, ¢,, and correlation

coefficient p, which are given by:
K — 9[/’1

¢ =
Jé+oréi-2040
E240.,0,85 - &6, +6,)

6+ 0268 - 20,6006 + 0365 - 20,6,)
The parameters ¢, and ¢, are related to ng, which is
the number of subjects per timepoint of each
sequence. In this way, for a specific power level, the
sample size n, can be calculated numerically using
Owen’ Q function, as:

1= B = Q( ~tew #1,92,) = Qtar ~tap 91, 92.p) (20)
The details regarding Owen’ Q function are
described in Supplementary in File S1 (available in
www.besjournal.com). If the two AUCs have equal
variances, the non-centrality parameters ¢, and ¢,
can be simplified by applying the pooled variance &2
as a substitute of &2 and E/%, as follows:

1=1.2 (18)

p(Ty, T;) = (19)

9 - 9[
o = =12 (21)
2 _ A
v, 1+ HLn 20,7
q

where CVj is the coefficient of variance of AUC of
the reference product and 7 = §,;/£2. Then, the
sample size of each timepoint in each sequence n,
can be calculated with 9, #, and CV.

As presented by Hirschberg et aI.[ZG], the
asymptotic confidence interval is a common
alternative of the Fieller-type confidence interval.
The asymptotic confidence interval uses a delta
method to obtain an approximate variance of the
parameter of interest, 8, which here we refer to as
0. Thus, the asymptotic confidence interval is given
by:

(0 = Z1-060,0 + Zy_,5) (22)
where

&2 + 628 — 265,

]2
With an assumption of equal variance, the &5 can
be simplified as:

Og =

_ [1+6%2-207
Gy =V |—— =7 (23)
Nq
Bioequivalence can be concluded if 8 —
Zy_q6p > 6, and O + Z,_,64 < 6,. In this way, the

power of the asymptotic confidence-interval method,
referred to as ‘asymptotic power,” can be derived
based on a two-one sided test””, which is given by:

-6, 6-e,
1—ﬁ:¢( 5 —ZH,>+¢( 5 —ZH,>—1 (24)
0 0
Analogously, n, can be obtained by iterating the

power function. An R program for sample-size
estimation is provided in Suppelementary File S1.

RESULTS

Simulation Study

The primary objective of simulation studies is to
evaluate the performance of the derived power
functions with log-normal-distributed data and
normal-distributed data. The secondary objective is
to investigate the impact of variance and
intra-correlation on power. In this work, we focus on
two-treatment, two-period, two-sequence crossover
trials (TR/RT) with a serial sampling design. We
consider sampling timepoints and the
concentration-time profile of drug based on the
outcome of a pharmacokinetic study of an
azithromycin eyedropm]. In each period, subjects
were randomly assigned to seven sampling time
points (0.17, 0.5, 2, 4, 8, 12, and 24 h after dosing)
nested in each sequence. A tear sample of each
subject was collected at the same time point in each
period. Drug concentrations at each time point were
assumed to be 165, 50, 25, 10, 5, 1.5, and 0.5 pg/g of
tears. The between-period correlation r, which was
the correlation between the first-period and the
second-period observations in one individual subject,
was accounted for when generating data. For
simplicity, we considered coefficient of variances
(CVs) to be equal among all of the sampling time
points in both sequences. Moreover, we assumed
that the between-period correlations of each time
points were equal. The -carry-over effect was
assumed to be absent since the washout time
between two periods was adequate. The
equivalence margins were 0.80 and 1.25. We set 6
varying from 0.80 to 1.25. For each scenario, 5,000
simulation runs were performed. All of the
simulations were executed using SAS 9.4 software.

Table 2 presents the type | errors and empirical
power of the bioequivalence tests with
log-normal-distributed data and normally distributed
data, as well as the power function value of the
Fieller-type interval and the asymptotic interval at
each side of the equivalence margin. In all of the
scenarios, the function values of the Fieller-type
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interval and asymptotic interval were less than or
equal to the nominal type | error (i.e., 5%). The type |
errors of the Fieller-type confidence interval with
log-normal distribution data were lower than those
in the case of normal distribution data, as well as
that of the power function value. For
log-normal-distribution data, the type | errors of
the bioequivalence test of the lower equivalence
margin was lower than that of the test of the upper
margin.

The log-normal distribution showed no effect in
decreasing the power of the bioequivalence test
using the Fieller-type confidence interval. We
observed that with the increase of sample size, the
difference of empirical power between different
data distributions decreased. The power function
values of the Fieller-type confidence intervals and
asymptotic confidence interval were close to the
empirical power drawn from normal distribution
data and were lower than the empirical power
drawn from log-normal distribution data. When the
ratio of two AUCs was close to 1, the difference
between the Fieller-type power and asymptotic
power appeared to be minor.

We also investigated the impact of variance and
intra-correlation on the power of the Fieller-type

confidence interval. Figure 1 presents the smoothed
power curves with the CVs ranging from 0.8 to 1.6.
The empirical power curves were drawn from
log-normal-distribution data. The power of the
Fieller-type confidence interval increased with the
decrease of the CVs. The difference between
empirical power and power function values became
diminished significantly when the CVs of AUCs
decreased from 1.2 to 0.6. The intra-correlation of
AUCs had a positive correlation with the power of
the bioequivalence test, as shown in Figure 2. The
increase of intra-correlation did not cause an
increase of difference between empirical power and
power-function values. In all scenarios, the
difference became minor when the values of the
power function were larger than 80%.

We observed that in all of the scenarios,
Fieller-type power and asymptotic power were lower
than the corresponding empirical power drawn from
log-normal data. Thus, both the Fieller-type power
function and asymptotic power function provided
conservative estimations of the power of the
bioequivalence test. When the ratios of two AUCs
were larger than or equal to 1, asymptotic power was
larger than the Fieller-type power. However, this trend
was inversed when the ratio was less than 1.

Table 2. Type | Errors and Empirical Power of the Fieller-type Confidence Interval Based on Log-normal
Data and Normal Data, and Function Values of Fieller-type Power and Asymptotic Power with
CvV=12andr=0.6

Type-l Error Power
Sample Size per Timepoints
Ratio =0.80 Ratio =1.25 Ratio = 0.95 Ratio =1.00 Ratio =1.05

20

Log-normal Fieller EP 3.46 4.40 73.30 85.50 78.50

Normal Fieller EP 4.94 5.08 69.08 81.28 73.84

Fieller-type power 4.99 5.00 67.70 79.89 73.37

Log-normal asymptotic EP 3.56 6.04 70.64 84.36 80.04

Normal asymptotic EP 4.20 6.52 67.08 81.60 77.36

Asymptotic power 5.00 4.98 65.87 81.10 78.63
30

Log-normal Fieller EP 3.10 4.50 88.92 95.58 91.04

Normal Fieller EP 5.34 4.78 84.86 95.82 88.80

Fieller-type power 5.00 5.00 84.89 94.84 88.81

Log-normal asymptotic EP 3.20 5.84 87.22 95.04 91.82

Normal asymptotic EP 4.76 5.84 83.42 96.16 90.66

Asymptotic power 5.00 5.00 81.55 94.59 93.48

Note. EP: Empirical power.
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Experimental Example

In this work, we present a hypothetical example
in order to demonstrate bioequivalence assessment
and power analysis of the Fieller-type confidence
interval, as well as sample size determination. In this
example, we supposed that a two-sequence, two-
period, two-treatment crossover study was conduc-
ted to evaluate the bioequivalence of a follow-up
azithromycin eye drop product to a reference product.

100+
90
80
704
60
504
40+
30+
204
104
0

Fieller EP

—— — Asymptotic EP
""" Fieeler-type power
— — — Asymptiotic power

Power

ype | error of 5%

T T T T T T T T T T
0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
AUCT/AUCH

Figure 1. Empirical power curves of
Fieller-type confidence interval based on
log-normal data and the function values of
Fieller-type power and asymptotic power
with different CVs. The intra-correlation was
r=0.6.

100

Fieller EP

—— — Asymptotic EP
------ Fieeler-type power
— — — Asymptiotic power
© r=02

o (=04
4 r=06
° r=08

Power
(%
=
1

I
;,"/ Type | error of 5%

T T T T T T T T T T
0.80 0.850.90 0.95 1.001.05 1.10 1.15 1.20 1.25
AUC/AUC?

Figure 2. Empirical power curves of
Fieller-type confidence interval based on
log-normal data and the function values of
Fieller-type power and asymptotic power
with  different intra-correlations.  The
coefficient of variance was CV =1.2.

The example data were constructed by selecting
historical data from different trials conducted by the
authors. All of these trials had ethical approvals. In
these trials, a single dose of test or reference
product (azithromycin eyedrop, 25 mg/2.5 mL) was
instilled into each eye of each subject. An identical
serial sampling regime was applied in these trials:
tears were sampled at 0.17, 0.5, 2, 4, 8, 12, 24, and
36 hours after dosing. Sample methods, analytical
methods, as well as demographics of subjects were
also identical in these trials.

We consider this hypothetical example as a pilot
study, in which six subjects were selected for each
time point nested in each sequence. Table 3
presents the estimated AUCs for each sequence and
period. The ratio AUC'/AUC" yielded 0.9142, the 90%
Fieller-type confidence interval was (0.68851,
1.2628), and the 90% asymptotic confidence interval
was (0.64602, 1.1823). The sample size was
calculated using the R code given in Supplementary
File S1. A total of 704 subjects (44 per timepoint in
each sequence) were needed to achieve 80% power
for a Fieller-type confidence interval.

DISCUSSION

In the development of generic topical
ophthalmic drugs, serial sampling is the most
common sampling scheme due to the limitations of
low bioavailability and difficulties in sampling.
Although parametric methods for bioequivalence
assessment in crossover designs with serial sampling
data have been developed[14’16], methods for
sample-size determination are still limited. In this
paper, we derived the power function of the
Fieller-type confidence interval and the power
function of the asymptotic confidence interval in
crossover designs with serial sampling data.
Simulation studies revealed that both the
Fieller-type power function and the asymptotic
power function could provide a reliable estimate for
the power of bioequivalence assessment when
normality assumptions were satisfied, as the
values of both power functions were very close to
the corresponding empirical power drawn from normal

Table 3. AUC Estimates for Each Sequence and

Period
Sequence Period 1 Period 2
Sequence (TR) 96022.94 104076.84
Sequence (RT) 147931.16 141684.28
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data. Moreover, both the Fieller-type power
function and the asymptotic power function would
yield a conservative estimate of power in cases when
the study data were log-normally distributed. Both
of the two power functions could be applied in
power analysis for bioequivalence assessment.

Our derived power functions provide a simple
way for determination of sample size in
bioequivalence assessment using crossover design
with serial sampling data. In current practice,
bootstrap methods are most frequently used in
bioequivalence assessment of generic topical
ophthalmic drugsm. The sample size determination
for bootstrap methods is a time-consuming process
since it is carried out through batches of simulation
studies. Through numerical iteration methods, the
sample size for the Fieller-type confidence interval
and the asymptotic confidence interval can be
determined by the Fieller-type power function and
the asymptotic power function, respectively. We
recommend the use of the Fieller-type power if the
expected ratio of AUCs is less than or equal to 1
since, in such case, the power of the Fieller-type
confidence interval is larger than the asymptotic
confidence interval. If the expected ratio of AUCs is
larger than 1, the asymptotic confidence interval
should be used since it has larger power. In practice,
it might be difficult to make assumptions on the
expected ratio of AUCs, especially withouta
previous pilot study. We consider that Fieller-type
power could be preferable when the information on
the test product is limited because the Fieller-type
interval shows more robustness than the asymptotic
interval in some extreme cases, such as when the
variance of reference drug is too large, as suggested
by Hirschberg et al.”® Also, it would be reasonable
to assume that the relative bioavailability, e.g., the
ratio of AUCs, is less than 1 in study design. To avoid
a waste of resources due to the overestimate of
sample size, we suggest that the nominal power
should be at least 80% since the difference between
empirical power and power function value would be
minor due to log normality.

In vivo bioequivalence studies for topical
ophthalmic drugs are often conducted using a large
sample size. Harigaya et al.™ reviewed six
bioequivalence studies of topical ophthalmic
corticosteroid suspensions submitted to the FDA and
showed that the numbers of subjects in each time
point are around 70. Shen and Machado™
illustrated a bioequivalence study of Tobradex AF
suspension and TOBRADEX ophthalmic suspension,

in which 987 subjects (at least 75 patients per
timepoint) were enrolled to establish bioequivalence.
This is because, in a serial sampling design, each
subject must be involved in only one time point, and
the AUC would be a linear combination of the
average concentration of each time point.
Correspondingly, the variance of the AUC would be a
weighted sum of the variance of each time point,
and the sample size needed to demonstrate
bioequivalence would be consequently large. Thus,
adaptive designs that allow early stopping or sample
size reestimation would be preferable because of
their advantage with respect to resource-saving or
increasing the chances of eventual success. Based on
our derived power functions, the conditional power
function® and conditional target powerBO], which
are essential to adaptive adjustment, can be derived.
With the power function of bioequivalence tests for
the crossover trials with serial sampling design,
adaptive designs-such as adaptive sample size
sequential methods®” and multiple-stage adaptive
designs[32'34]-could be further considered in the
context of serial sampling design.

CONCLUSIONS

The Fieller-type power function and the
asymptotic power function can provide precise
power estimates when normality assumptions are
satisfied, and they may yield conservative estimates
of power in cases when data are log-normally
distributed. With these power functions, the sample
size needed for bioequivalence assessment using
crossover design with serial sampling data can be
determined through numerical iteration methods.
Adaptive sample size sequential methods and
multiple-stage adaptive designs for crossover
designs with serial sampling schemes could be
cultivated further based on the derived power
functions.

Supplementary File S1: Owen’s Q function.

In this paper, we use Owen’s Q function to
calculate the cumulative density of a bivariate
non-central t-distribution. The structure of Owen’s Q
function is shown below:

ot ) = V2T ® (t1x
112,01, P2,P) = F(V{Z)Z(“_Z)/Z o 2 o
2X

kv~ <p2,p) x"719' (x)dx, (25)
(Dz(x!}]!p)

B Znﬁf_l f_yoo P <_

u? — 2puv +v? 4
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1 2
@' (x) Z\/T_EEXP <_x7> (26)

where v is the degrees of freedom obtained using
Satterthwaite approximation, @1, ©, are
non-centrality parameters, and p is correlation
coefficient.
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Suppelementary File 1. pgrograms

Program 1
R program for calculating the power of the Fieller-type confidence interval and the asymptotic confidence
interval

power.serialsample <- function(auc=1,var.auc=1,cov.auc=1,ng=1)
{

t.auc<-auc[1];

r.auc<-auc[2];

t.aucse2<-var.auc[1]/nq;

r.aucse2<-var.auc[2]/nq;

cov.aucse<-cov.auc/ng;

feiller.t1<-(t.auc-0.80*r.auc)/sqrt(t.aucse2+0.8072*r.aucse2-2*0.80* cov.aucse);

feiller.t2<-(t.auc-1.25*r.auc)/sqrt(t.aucse2+1.252*r.aucse2-2*1.25*cov.aucse);

corr.tlt2<-
(t.aucse2+0.80*1.25*r.aucse2-(0.80+1.25)*cov.aucse)/sqrt((t.aucse2+0.8072*r.aucse2-2*0.80*cov.aucse)*(t.au
cse2+1.2572%r.aucse2-2*1.25*cov.aucse));

theta<-t.auc/r.auc;

df=(t.aucse2+theta”2*r.aucse2)*2/(t.aucse2”2/(2*ng-2)+theta”4*r.aucse2*2/(2*ng-2));

asy.se<-sqrt((t.aucse2+theta”2*r.aucse2-2*theta*cov.aucse)/r.auc”2);

asy.t1=(theta-0.80)/asy.se;

asy.t2=(theta-1.25)/asy.se;

powerasy.lower<-1-pt(qt(0.95,df),df,asy.t1);

powerasy.upper<-pt(-1*qt(0.95,df),df,asy.t2);

asy.power<-powerasy.upper+powerasy.lower-1;

library(mvtnorm)

delta<-c(feiller.t1,feiller.t2);

df<-as.integer(df);

rho<-corr.t1t2;

corr<-diag(2);

corr[1,2]<-corr[2,1]<-rho;

upper<-c(Inf,0);

upper[2]<- -qt(1-0.05,df);
power<-pmvt(upper=upper,delta=delta,corr=corr,df=df);
upper[1]<- qt(1-0.05,df);

power<- power-pmvt(upper=upper,delta=delta,corr=corr,df=df);
fieller.power<-power;

result<-data.frame(feiller.t1,feiller.t2,corr.t1t2,theta,df,asy.t1,asy.t2,asy.se,fieller.power,asy.power);

return(result[c("fieller.power","asy.power")])

Program 2
R program for calculating the sample size per timepoint for bioequivalence using the Fieller-type
confidence interval or the asymptotic confidence interval

npergroup.serialsample <- function(auc=1,var.auc=1,cov.auc=1,target.power=0.8,ci.method="fieller")

{
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ng<-5;
if (!(tolower(ci.method) %in% c("fieller","asymptotic"))){
warning("Method unkown. Will use the lower one the Fieller-type power and the Asymptotic
power\n", call.=FALSE, immediate.=TRUE)
}

method.list<-c("Fieller-type power"," Asymptotic power");
repeat{

if (tolower(ci.method)=="fieller"){
method.flag=1;
calc.power<-power.serialsample(auc=auc,var.auc=var.auc,cov.auc=cov.auc,nq=nq)[method.flag];
power.method<-method.list[1];

}

if (tolower(ci.method)=="asymptotic"){
method.flag=2;
calc.power<-power.serialsample(auc=auc,var.auc=var.auc,cov.auc=cov.auc,nq=nq)[method.flag];
power.method<-method.list[2];

}

if (!(tolower(ci.method) %in% c("fieller","asymptotic"))){
calc.power<-power.serialsample(auc=auc,var.auc=var.auc,cov.auc=cov.auc,ngq=nq);
method.flag=which.min(calc.power);
calc.power<-calc.power[which.min(calc.power)];
power.method<-method.list[method.flag];

}

ng<-nq+1;

if(calc.power[1]>=0.8){
npergroup<-ng-1;
target.power<-calc.power;
names(target.power)<-"Power";
break

}

}

result<-data.frame(power.method,target.power,npergroup);
return(result)

}

pl<-npergroup.serialsample(auc=c(118853.61,126004.00),var.auc=c(1489997446.5,3109615770.9),cov.auc
=815789682.12,target.power=0.8,ci.method="fieller")

p2<-npergroup.serialsample(auc=c(118853.61,126004.00),var.auc=c(1489997446.5,3109615770.9),cov.auc
=815789682.12,target.power=0.8,ci.method="asymptotic")





