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Abstract

Objective     This  study  aimed  to  determine  the  spatiotemporal  distribution  and  epidemiological
characteristics of hospital admissions for carbon monoxide poisoning (COP) in Guangdong, China, from
2013 to 2020.

Methods     Data  on  age-  and  sex-  specific  numbers  of  hospital  admissions  due  to  COP  in  Guangdong
(2013–2020)  were  collected.  Daily  temperatures  were  downloaded  through  the  China  Meteorological
Data Sharing Service System. We analyzed temporal trends through time series decomposition and used
spatial  autocorrelation  analysis  to  detect  spatial  clustering.  The  distributed  lag  nonlinear  model  was
used to quantify the effects of temperature.

Results    There were 48,854 COP admissions over the study period. The sex ratio (male to female) was
1:1.74.  The  concentration  ratios  (M)  ranged  from  0.73–0.82.  The  highest  risk  occurred  in  January
(season index = 3.59). Most cases were concentrated in the northern mountainous areas of Guangdong
with  high-high  clustering.  COP  in  the  study  region  showed  significant  spatial  autocorrelation,  and  the
global  Moran’s I value  of  average  annual  hospital  admission  rates  for  COP  was  0.447  (P <  0.05).  Low
temperatures were associated with high hospital admission rates for COP, with a lag lasting 7 days. With
a lag of 0 days, the effects of low temperatures [5th (12 °C)] on COP were 2.24–3.81, as compared with
the reference temperature [median (24 °C)].

Conclusion    COP in  Guangdong province  showed significant  temporal  and spatial  heterogeneity.  Low
temperature was associated with a high risk of COP, and the influence had a lag lasting 7 days.
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INTRODUCTION

C arbon  monoxide  (CO)  is  a  colorless,
odorless,  and  tasteless  gas  that  is
commonly generated from the incomplete

combustion  of  hydrocarbons[1,2].  Because  CO’s
affinity toward hemoglobin molecules is  nearly 200-
fold greater than that of oxygen, carboxyhemoglobin
forms through the replacement of bound oxygen by
CO[3],  even  when  only  small  volumes  of  CO  are
dissolved  in  the  blood.  When  the  CO/oxygen
concentration  is  0.4  at  50% saturation  of  the  heme
compound,  CO  readily  binds  myoglobin[4].  In  this
process,  carbon  monoxide  poisoning  (COP)  occurs,
together with toxic effects of CO ranging from subtle
cardiovascular  and  respiratory  effects  to
neuropsychiatric  presentations  and  other  systemic
complications,  or  even  fatality[5].  After  acute  COP,
permanent  neurological  sequelae  and  delayed
neurological  sequelae  may  occur,  and  these
symptoms frequently contribute to morbidity[6].

Globally,  the  estimated  incidence  rate  of  COP  is
137 cases per million people, and the mortality rate
is 4.6 deaths per million people. COP remains among
the most common types of acute and fatal poisoning
in  many  countries,  thus  raising  substantial
concerns[7,8].  Previous  researchers  have  found  that
the  epidemiological  features  of  COP  vary  among
countries.  In  the  United  States,  COP  is  responsible
for  an  estimated  21,000  unintentional  nonfire-
related  emergency  department  visits,  2,300
hospitalizations,  and  500  deaths  annually.  The
country  has  observed  a  decreasing  COP  mortality
trend from 1990 to 2017. A similar phenomenon has
also been observed in the United Kingdom and other
developed  countries[2,9-11].  In  contrast,  some
developing countries,  such as Iran,  show a stable or
an increasing trend[12]. Worldwide, more than half of
patients  with  COP  are  men,  who  tend  to  use  CO-
emitting  equipment  more  frequently  than
women[13,14]. Most deaths occur between the ages of
15  and  49  years[15].  In  southern  sub-Saharan  Africa,
the largest proportion of deaths occur among people
< 5 and 15–49 years of age[16]. In China, owing to its
vast land area spanning multiple time zones, rates of
COP  vary  among  regions.  In  Shenyang  city,  north-
east  China,  COP was  responsible  for  11.4% of  acute
poisoning cases from 2012 to 2016[17]. In the central
region  of  China,  such  as  the  representative  city  of
Wuhan,  156  deaths  were  caused  by  COP,  with  an
average  annual  death  rate  of  0.492  per  million
people during 2009–2014[18]. Beyond geography and
economics,  COP  also  exhibits  temporal  variations,

with a high incidence in winter. For example, it peaks
in December in England[19]. These findings have been
used to design strategies for COP prevention tailored
to  many  countries,  and  the  measurement  has
achieved good results.

However,  previous  studies  have  focused
primarily  on  western  or  developed  regions.
Guangdong  province,  in  southern  China,  has  a
different  economy,  climate,  and  cultural
environment from western areas. Consequently, the
aforementioned measures may not be applicable to
Guangdong.  Therefore,  the aim of  this  study was to
analyze  the  characteristics  of  hospital  admission
data for patients with COP in Guangdong province, a
typical subtropical region, from 2013 to 2020, and to
explore feasible preventive intervention measures. 

METHODS
 

Study Area

Guangdong  province  was  selected  as  our  study
site.  Located  in  southern  China,  it  has  an  area  of
approximately  179.8  thousand  square  kilometers,
occupies  approximately  1.87% of  the  country’s  land
area,  and had a  population of  115 million people in
2020.  The  entire  territory  is  located  between
20°09'−25°31'  north  latitude  and  109°45'–117°20'
east  longitude,  and  the  Tropic  of  Cancer  traverses
the  central  part  of  the  province.  Guangdong
province has a subtropical climate characterized by a
uniform temperature  and high humidity.  Summer is
long,  and  winter  is  short.  The  average  annual
temperature is 21.8 °C. Guangdong does not receive
snow  all  year  round.  Except  in  extreme  weather
conditions,  the  temperature  in  Shaoguan  city,  the
northernmost city of Guangdong, can be below 0 °C.
The  economic  development  of  Guangdong  province
varies;  for  example,  the  Pearl  River  Delta  is  an
economically  developed  region,  whereas  northern
and western Guangdong are relatively poor. 

Data Collection

Data  on  cases  of  COP  were  collected  from  the
home  page  data  on  hospital  records  of  admissions
from  January  2013  to  December  2020.  These  data
were obtained from the Guangdong Province health
statistics network direct reporting system, containing
medical  institutions  at  all  levels[20,21].  The  average
temperature  data  for  the  study  period  were
downloaded through the China Meteorological  Data
Sharing Service System[22].

We defined COP according to the code in the 10th
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revision  of  the  International  Classification  of  Diseases
of  T58,  which  indicates  a  diagnosis  of  toxic  effects  of
CO from all sources. If T58 was listed in any diagnosis
(e.g.,  primary  diagnosis,  secondary,  or  tertiary)  field,
we included the hospital admission data in our study.
Multiple  admissions  of  the  same  patient  were
considered to be cases exposed to the same emission
source.  Using  the  encrypted  ID  number  for  each
patient, we deleted duplicate entries.

Demographic  data  included  sex,  age,
employment  information,  treatment  outcome,
medical payment method, and type of exposure. The
employment  information  was  classified  as  civil
servant, professional technology personnel, business
manager,  worker,  farmer,  student,  self-employed,
unemployed, or other. Under the classification rules
for  inpatient  records,  the  treatment  outcome  was
classified  as  discharge  from  hospital  with  doctors’
orders,  referral  to  another  hospital,  referral  to  a
community  health  service  organization,  leaving
against medical advice, death, or other. According to
the  existing  medical  payment  methods  in  China,
medical  payments  were  divided  into  the  following
categories:  basic  medical  insurance  for  urban
employees,  basic  medical  insurance  for  urban
residents,  new  rural  cooperative  medical  care,
poverty  relief,  commercial  medical  insurance,  full
public  expense,  full  fee,  other  social  insurance,  or
other methods. The types of COP were classified into
unintentional, intentional, and unknown types.

We  considered  the  crude  rates  (CR)  for  hospital
admission  rate,  expressed  as  the  number  of  cases
per  100,000  people.  Because  this  study  used  only
anonymous inpatient records and did not involve the
collection,  use,  or  transmittal  of  individually
identifiable  data,  Institutional  Review  Board
approval to conduct this study was unnecessary. We
calculated  age-adjusted  and  sex-adjusted  hospital
admission rates with 95% confidence intervals, using
the 2020 population of China as the reference. 

Spatial Analysis

Spatial  autocorrelation  analysis  was  conducted
to  identify  the  spatial  clustering  of  annual  COP
hospitalization  rates  in  all  124  counties  (including
Dongguan  city  and  Zhongshan  city).  The  row
standardized  first-order  contiguity  Queen  neighbors
were used as the criterion for identifying neighbors.
Moran’s I,  ranging  from −1  to  +1,  was  calculated  to
test  the  spatial  autocorrelation  of  all  counties  in
Guangdong  province.  Positive/negative  spatial
autocorrelation  occurred  when  Moran’s I was  close
to  +1/−1,  thus  indicating  that  areas  with  similar

(high-high  or  low-low)/dissimilar  (high-low  or  low-
high)  hospital  admission  rates  of  COP  clustered
together.  Monte  Carlo  randomization  (9,999
permutations) was used to assess the significance of
Moran’s I,  with  a  null  hypothesis  that  the
distribution  of  COP  in  Guangdong  province  was
completely spatially random. Subsequently, we used
local  indicators  of  spatial  association  (LISA;  Local
Moran’s I)  analysis  and  a  Moran  scatter  plot  to
examine  the  spatial  autocorrelation  of  each  county
in  Guangdong  province  and  to  determine  the
locations of the clusters. Moran’s plot showed high-
high  and  low-low  clustering  in  the  upper  right  and
lower  left  quadrants,  respectively.  Statistically
significant  high-high,  low-low,  and  outlier  local
clusters (high-low and low-high) were visualized with
a cluster map with county boundaries.

The  spatially  stratified  heterogeneity  of  average
COP  hospitalization  rates  in  four  regions  of
Guangdong  from  2013  to  2020  was  explored.  The
division of these four regions in Guangdong Province
(eastern  Guangdong,  western Guangdong,  the  Pearl
River Delta, and northern Guangdong) was based on
the  official  classification  of  the  Guangdong
government  according  to  local  geographical  and
human  characteristics.  Spatially  stratified
heterogeneity  was  measured  with  the  GeoDetector
q statistic[23],  which  indicates  the  level  of  spatially
stratified heterogeneity in a range from 0 to 1, with
0  indicating  random  distribution  and  1  indicating
strong heterogeneity between strata. 

Temporal Trend Analysis

A time series is  defined as a set of data ordered
by  time.  Through  time  series  analysis,  data  ordered
by time can reveal a clear description of the features
of  a  series  and  present  the  future  values  of  the
series[24].  According  to  time  series  decomposition
theory,  we  split  the  time  series  into  three  parts:
trend  changes,  periodic  changes,  and  random
changes.  The  simple  mathematical  relationship  of
the model is as follows:

Xt = St × Tt × It (1)

here, St, Tt,  and It represent  seasonal  information,
trend  information,  and  random  fluctuation
information, respectively[25].  Through decomposition
of  the  time  series,  the  seasonal  information  was
collected  to  calculate  seasonal  indices,  and  a
seasonal  index  distribution  chart  and  radar  chart
were  drawn.  Meanwhile,  concentration  ratios  (M)
were calculated. 

Spatial analysis of CO poisoning in Guangdong 945



Distributed Lag Nonlinear Model

The  nonlinear  exposure-response  relationship
between the disease and temperature, as well as the
delayed  effect  of  that  relationship,  was  calculated
via  the  distributed  lag  nonlinear  model  (DLNM),  in
which  relationships  between  predictors  and  lags
were  quantified  on  a  cross-basis[26].  As  in  previous
studies,  the  DLNM  was  used  to  quantify  the
relationships  between  daily  temperature  and  the
hospital  admission  ratio  of  COP[27].  The  model  was
expressed as follows:

Log [E (Yt)] = α+βTempt,l +NS (Timet,
7

year )+ γDowt (2)

β

where E denotes  the  mathematical  expectation; Yt
denotes the hospital admission ratio of COP at day t; α
denotes  a  constant  term;  denotes  the  vector  of
temperature  history  in  the  study  period;  and  Tempt,  l
denotes  the  matrix  for  quantifying  the  nonlinear  lag
effects  of  the  mean  temperatures,  in  which l denotes
the  lag  time.  Temperature  trends  were  modeled  by  a
natural spline function with a degree of freedom (df) of
7  per  year.  Day  of  the  week,  denoted  by  the  variable
DOW,  was  included  to  adjust  for  weekly  patterns.
Relative  risk  (RR)  values  for  different  temperatures
were  obtained  on  the  basis  of  the  median  daily
temperature.  To  capture  the  overall  temperature
effects, l was set to 21 days. The df was determined by
Akaike’s  information  criterion.  To  assess  the
robustness  of  the  model,  sensitivity  analyses  were
performed by testing different df values. 

RESULTS
 

Demographic  Characteristics  of  CO  Poisoned
Patients

A  total  of  48,854  cases  of  COP  were  recorded
from  January  1,  2013  to  December  31,  2020  in
Guangdong province, China.

As shown in Table 1, the highest CRs (10.83/105)
were found in the age group of 0−14 years of age in
2018, and CRs in the age group of 0−14 years of age
were  higher  than  those  in  the  other  age  groups  in
2013−2020. Of these patients, 17,816 (36.47%) were
male,  and  31,038  (63.53%)  were  female.  The  sex
ratio  (male  to  female)  was  1:1.74.  The  CRs  and
standardized  rates  in  females  were  always  higher
than  those  in  males  in  2013–2020.  As  shown  in
Figure  1,  patients  between  10  and  19  years  of  age
accounted for the largest proportion (approximately
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29.42%)  of  patients  with  COP,  whereas  patients
20−29 years of age were the second most populous
age group, at approximately 26.18%. With regard to
the  distribution  of  age  and  sex,  we  observed  two
peaks of inpatient number in females, at 10−14 years
of  age  and  20−24  years  of  age.  However,  the
inpatient number in males showed only one peak, in
the 10–14 age group.

Among these COP cases, students (10,981 cases),
farmers  (9,524  cases),  and  unemployed  people

(8,723  cases)  were  the  main  populations  among
patients with COP, accounting for 22.5%, 19.5%, and
17.9%, respectively. The most used medical payment
method  was  payment  of  full  medical  fees
(approximately  37.6%).  Most  COP  outcomes  were
discharge  from the  hospital  with  doctors’ orders,  at
74.4%.  Leaving  against  medical  advice  was  the
second  most  common  outcome  (11,515  cases,
23.6%).  Of  note,  unintentional  COP  accounted  for
the  majority  of  cases  (88.1%),  and  intentional  COP
and  COP  due  to  unknown  reasons  accounted  for
3.2% and 8.6%, respectively. 

Spatial Distribution Characteristics of COP

As shown in Figure 2, the high hospital admission
rates  for  COP  were  concentrated  in  the  northern
areas  of  cities  in  Guangdong  province,  such  as
Shaoguan  and  Meizhou.  Meanwhile,  the  areas  with
low  hospital  admission  rates  were  mainly
concentrated  in  two  types  of  cities:  well-developed
cities,  such  as  Guangzhou  and  Shenzhen,  and  cities
in  the  south  of  Guangdong,  such  as  Zhanjiang.  The
three counties with the highest COP annual hospital
admission rates were Jiaoling (33.01/105), Wengyuan
(32.57/105),  and  Lianshan  (31.57/105).  The  counties
with the lowest COP annual hospital admission rates
were  Longhua  (0.02/105),  Pingshan  (0.03/105),  and
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Guangming (0.09/105). 

Spatial Analysis of COP Hospital Admission Rates

The  counties  with  high  COP  hospital  admission
rates  tended  to  be  adjacent  to  districts  with  high
COP hospital admission rates, and the counties with
low  COP  hospital  admission  rates  tended  to  be
adjacent to districts with low COP hospital admission
rates,  according  to  global  Moran’s I values  ranging
from  0.23−0.53  (all P-values  <  0.05).  The  global
Moran’s I value of average annual hospital admission
rates for COP was 0.447. In LISA analysis, 14 counties
showed  significant  high-high  spatial  clustering,  and
20  counties  showed  significant  low-low  spatial
clustering in the 8-year period. The high-high spatial
clustering area was mainly concentrated around the
cities  of  Shaoguan  and  Qingyuan,  with  average

annual  hospital  admission  rates  of  19.65/105 and
14.82/105,  respectively.  Foshan,  Guangzhou,
Dongguan,  and  Shenzhen,  around  the  Pearl  River
Delta were the areas with low-low spatial clustering,
with  average  annual  hospital  admission  rates  of
4.21/105,  2.51/105,  5.18/105,  and  0.70/105,
respectively  (Supplementary  Figure  S1,  available  in
www.besjournal.com).  The  overall  classification  of
Guangdong’s  COP  risk  from  2013  to  2020  was  non-
homogeneous,  and  the q value  was  0.38  according
to GeoDetector. 

Time Distribution Characteristic Analysis of COP

As shown in Figure 3, the trend characteristics of
the  time  series  remained  stable  from  2013  to  2015
and remained steady after a rapid increase in 2016.
On  the  basis  of  the  seasonal  information  and
random  fluctuation  information  of  the  time  series
indicated  in  the  chart,  the  hospital  admission  rates
for  COP  in  Guangdong  province  showed  significant
periodicity and white noise in random fluctuation.

By summarizing the number of COP cases in each
year, we drew a season index distribution chart and
a radar chart to visualize the monthly changes in the
number  of  COP  cases  more  clearly.  As  shown  in
Figure  4,  the  months  with  larger  seasonal  indices
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Figure 3. Seasonal  decomposition  of  time
series  in  carbon  monoxide  poisoning  (COP)  in
Guangdong, China, 2013–2020.
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were  January  and  February,  followed by  December;
this time period is the peak period of COP. The time
period  from  April  to  November  had  a  smaller
seasonal index, and displayed a trough in COP cases.
A  single  peak  was  observed  in  the  seasonal
distribution  for  the  year,  which  spanned  December
to  February,  with  the  largest  number  of  cases  in
January.  The  concentration  ratios  (M)  ranged  from
0.73 to 0.82. 

Association between Temperatures and COP

The  patterns  of  four  regions  in  Guangdong
province  (eastern  Guangdong,  western  Guangdong,
the Pearl  River  Delta,  and northern Guangdong)  are
presented  by  three-dimensional  plots  of  the RR

according  to  mean  temperature  (Figure  5).  The RRs
versus mean temperature effects with a lag of 3 days
are  shown  in Figure  6.  Low  temperature  was
associated with high risk of COP, with a lag lasting 7
days.

The  estimated  effects  of  mean  temperature  on
the hospital admission rates for COP were nonlinear,
with  higher  relative  risks  at  colder  temperatures.
With a lag of 0 days, the effects of low temperatures
[extreme  minimum  (2  °C)  and  5th  (12  °C)]  on  COP
were  5.98  (95% CI:  4.91–7.30)  and  3.26  (95% CI:
3.06–3.47),  respectively,  as  compared  with  the
reference  temperature  [median  (24  °C)]  in  eastern
Guangdong.  Similarly,  in  western  Guangdong,  the
Pearl  River  Delta  and  northern  Guangdong,  the
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effects  of  low  temperatures  [extreme  minimum
(2  °C)]  on  COP  were  7.26  (95% CI:  6.14–8.57),  3.83
(95% CI:  3.57–4.11),  and  4.37  (95% CI:  4.06–4.69),
respectively.  The  effects  of  low  temperatures  [5th
(12  °C)]  on  COP  were  3.81  (95% CI:  3.61–4.01),  2.4
(95% CI:  2.33–2.48),  and  2.24  (95% CI:  2.15–2.34),
respectively.

With  a  lag  of  3  days,  the  effects  of  low
temperatures  [extreme  minimum  (2  °C)  and  5th
(12  °C)]  on  COP  were  2.06  (95% CI:  1.89–2.24)  and
1.7  (95% CI:  1.66–1.74),  respectively,  in  eastern
Guangdong,  compared  with  reference  temperature.
Similarly,  in  western  Guangdong,  the  Pearl  River
Delta,  and  northern  Guangdong,  the  effects  of  low
temperatures  [extreme  minimum  (2  °C)]  on  COP
were  2.36  (95% CI:  2.19–2.54),  2.09  (95% CI:
2.03–2.15), and 1.74 (95% CI: 1.7–1.79), respectively.
The effects of low temperatures [5th (12 °C)] on COP
were  1.66  (95% CI:  1.63–1.69),  1.49  (95% CI:
1.48–1.51),  and  1.40  (95% CI:  1.38–1.42),
respectively.

With  a  lag  of  7  days,  the  effects  of  low
temperatures  [extreme  minimum  (2  °C)  and  5th
(12  °C)]  on  COP  were  1.01  (95% CI:  0.91–1.11)  and

1.11  (95% CI:  1.08–1.13),  respectively,  in  eastern
Guangdong  as  compared  with  the  reference
temperature.  Similarly,  in  western  Guangdong,  the
Pearl  River  Delta,  and  northern  Guangdong,  the
effects  of  low  temperatures  (extreme  minimum
[2  °C])  on  COP  were  1.11  (95% CI:  1.02–1.21),  1.22
(95% CI:  1.18–1.26),  and  1.07  (95% CI:  1.04–1.11),
respectively.  The  effects  of  low  temperatures  (5th
[12  °C])  on  COP  were  1.04  (95% CI:  1.02–1.06),  1.1
(95% CI:  1.09–1.11),  and  1.05  (95% CI:  1.04–1.07),
respectively. 

DISCUSSION

In  our  study,  epidemiological  characteristics  of
COP in Guangdong province from 2013 to 2020 were
analyzed. We found that females were more likely to
have COP than males, and the largest number of sick
people  in  Guangdong  was  mainly  concentrated  in
the  10–14  and  20–24  year  age  groups,  thus
indicating  a  low  average  age  for  COP.  COP  also
showed  significant  spatiotemporal  heterogeneity,
occurring  frequently  in  the  cold  season,  with  most
cases  concentrated  in  high  latitudes  with  high-high
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clustering. Low temperatures were associated with a
high risk of COP.

From  a  global  perspective,  more  than  half  of
patients  with  COP  were  male.  Men  are  considered
more vulnerable to COP[11,19,28] because they tend to
have a greater rate of use of combustion appliances
inappropriately  or  without  appropriate  ventilation.
In contrast, our study illustrated that the number of
COP cases among women was much higher than that
among  men.  Furthermore,  COP  occurred  mainly  in
the age groups of 0−14 and 20−39 years. Compared
with  the  mean  age  of  patients  with  COP
(approximately  40  years  of  age)  in  other  countries
and  regions[29],  the  age  of  patients  in  Guangdong
province tended to be younger, with a median of 24
years.  This  result  was  similar  to  those  in  another
report[30].  Young  adult  women  and  children  were
most vulnerable to COP in Guangdong province. The
differences may be associated with local lifestyle and
sources  of  CO  exposure.  Guangdong  province  is
located  in  southern  China,  and  there  is  moderate
average  temperature  throughout  the  year.  Unlike
temperate  zones  such  as  the  United  States  and
northern  China,  people  in  Guangdong  Province
seldom  burn  coal  to  keep  warm  when  the
temperature  drops  in  winter[8,31].  Gas  water  heaters
have  become  the  major  source  of  exposure  to
COP[18,32]. We surmised that women and children are
more  likely  to  contract  COP  from  improper  use  of
water  heaters,  such  as  through  showering  for  too
long  or  having  insufficient  ventilation[19,33].  In
addition,  among the  COP population,  nearly  40% of
people  belonged  to  impoverished  groups  such  as
farmers and unemployed people. Therefore, poverty
may  be  a  main  cause  of  COP,  in  agreement  with
findings  from  previous  studies[19,34].  Moreover,  COP
may  increase  the  burden  on  poor  people  and
exacerbate  poverty  among  this  group,  which  tends
to  lack  insurance  and  access  to  first-aid  services[35].
Further  studies  are  needed  to  confirm  these
assumptions.

Through  the  time  series,  we  found  that  the
overall  trend of the hospital  admission rates of COP
was  relatively  stable,  in  contrast  to  the  downward
trend  in  developed  countries[28,36].  This  finding
reflected  the  significant  seasonality  and  periodicity
according  to  the  decomposing  time  series  and
season index chart.  The concentration ratios ranged
from 0.73 to 0.82. COP occurred primarily in the cold
season  (January,  February,  and  December)  in
Guangdong,  in  agreement  with  reports  in  other
regions[19,37].  Interestingly,  the  peak  hospital
admission rates were observed in 2018, which were

accompanied  by  extreme  low  temperatures  in
winter.  We  speculated  that  this  finding  might  have
been associated with the extremely cold weather in
that  year,  as  described  in  previous  studies[38-41].  In
cold  weather,  people  may  reduce  air  circulation  to
maintain  the  indoor  temperature,  and  poor
ventilation  might  explain  why  some  heaters  for
washing  were  used  throughout  the  year,  yet
accidental  poisoning  was  frequent  in  the  cold
season.  This  study  indicated  that  low  temperatures
were  associated  with  high  hospital  admission  rates
for  COP,  with  a  lag  lasting  7  days.  With  a  lag  of  0
days,  the  effects  of  low  temperatures  [extreme
minimum  (2  °C)  and  5th  (12  °C)]  on  COP  were
3.83−7.26  and  2.24−3.81,  as  compared  with  the
reference  temperature  [median  (24  °C)].  Similar
results  have  also  been  found  in  the  other  regions.
For  instance,  Du  has  found  that  temperature  is
inversely correlated with the incidence of acute COP
(R2 =  −0.467)  in  Beijing[30].  Shie  has  found  that  the
odds ratio for unintentional COP incidence increased
2.15 times, whereas the daily maximum temperature
was lower than 18.4 °C, compared to the odds ratio
when  the  temperature  exceeded  27.1  °C[40].
Furthermore, a 1 °C temperature increase had been
found  to  result  in  a  10% decrease  in  acute  COP
incidence  in  Taiwan,  China[42].  Interestingly,  our
study  indicated  that  in  the  first  few  days  of  low
temperatures, people at lower latitudes had a higher
risk  than  people  at  higher  latitudes.  We  surmised
that  this  phenomenon  might  have  been  associated
with  people  at  high  latitudes  being  better  able  to
adapt  to  low  temperatures[43];  therefore,  the
population does not rapidly use CO exposure sources
after  the  arrival  of  extremely  cold  weather,  in
contrast to people at low latitudes.

In  our  study,  the  hospital  admission  rates
showed a positive correlation within regions through
Moran’s I, and the distribution of COP in Guangdong
province  was  not  random  and  showed  clear  spatial
clusters.  Northern  Guangdong  province  had  high
hospital admission rates, and cities such as Shaoguan
and Qingyuan displayed high-high  spatial  clustering.
In  contrast,  the  Pearl  River  Delta  and  the
southernmost part of Guangdong province displayed
low-low  spatial  clustering.  In  fact,  we  assumed  that
latitude  contributed  to  the  difference  in  hospital
admission  rates  between  northern  and  southern
Guangdong  province.  For  example,  the  city  of
Shaoguan  may  experience  snow  because  it  is  at
higher  latitude  than  other  areas  with  lower  annual
temperatures.  Latitude  was  not  the  only  factor
affecting  rates  of  COP;  the  degree  of  economic
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development  may  also  be  a  contributor.  For
example,  the  Pearl  River  Delta  which  is  the  most
economically developed area in Guangdong Province
had  low  hospitalization  rates.  Poorer  areas,  such  as
Shaoguan  and  Qingyuan,  which  have  the  lowest
GDP,  were  found  to  have  higher  hospital  admission
rates.  These  findings  are  similar  to  those  of  several
studies  showing  more  deaths  due  to  COP  in  areas
with low, low-middle, and middle sociodemographic
index  scores  (SDI),  and  fewer  deaths  in  areas  with
high-middle and high SDI scores[15].  Deprivation may
be a factor underlying the distribution of COP. Areas
with low socioeconomic status, particularly deprived
areas,  were  at  higher  risk  of  COP[44].  Weather
warnings could be issued to remind the public to be
aware of the elevated risk of COP in underdeveloped
areas and to take preventive measures.

Our study had several  limitations. First,  the data
source  of  our  study  did  not  provide  detailed
information  about  the  characteristics  of  clinical
patients.  We  only  analyzed  certain  demographic
variables from a macro perspective, but were unable
to  perform  a  more  detailed  analysis.  Second,  we
could not obtain the specific reasons for the rates of
COP;  therefore,  we  could  only  speculate  about
possible  factors,  on  the  basis  of  the  current
epidemiological characteristics. 

CONCLUSION

COP  in  Guangdong  province  showed  significant
temporal and spatial heterogeneity. The highest risk
occurred in winter. Most cases were concentrated in
the northern mountainous areas of Guangdong. Low
temperatures were associated with high risk of COP,
with a lag lasting 7 days. The study shed light on the
precise  control  of  related  public  health  preventive
measures  for  a  specific  population,  season,  and
geographic region. 
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