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Scarlet fever (SF) is a common communicable
disease that results from group A Streptococcus
(GAS) infections™. SF accounted for the global loss of
life among children 5-15 years of age in the 18th and
19th centuries™. A rapid reduction in SF morbidity
and mortality occurred due to the scale-up of
effective antibiotics and improvements in sanitation
and nutrition®. The unexpected increase in the
incidence of SF has attracted a renewed interest in
infectious diseases”. Because the triggers that cause
SF outbreaks are not fully understood and there is a
scarcity of available vaccines protecting susceptible
populations from  GAS infections, effective
prevention and control plans are required to stop
the continued spread of SF.

Time series analysis assists in the development of
hypotheses to explain the temporal patterns of
different diseases and to analyze the spread,
therefore, facilitating the creation of a quality
forecasting system. The seasonal autoregressive
integrated moving average (SARIMA) model has
been widely applied to estimate the epidemiological
patterns of contagious diseases because this model
has a simple structure, fast applicability, and a
relatively high forecasting reliability level™. It has
been shown that the SARIMA model is able to
satisfactorily estimate a simple time series'”, but it is
difficult to manage complex time series, such as the
data with multiple seasonal periods, high-frequency
seasonality, non-integer seasonality, and dual-
calendar effects. By comparison, the innovation
state-space modelling framework that combines
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Box-Cox transformations, Fourier series with time-
varying coefficients, and autoregressive moving
average (ARMA) error correction (known as the
TBATS method) is customized for use with the
patterns included in a complex time series described
above®™. In addition, the TBATS model is used for
linearity and some types of non-linearity in a
complex time series based on  Box-Cox
transformations™, which makes it possible to
perform a multistep ahead prediction. Moreover,
the TBATS model is able to decompose a complex
seasonal time series into its trend, seasonal, and
irregular components™, which is not able to be
undertaken by wuse of the SARIMA model.
Importantly, SF morbidity has been shown to display
dual seasonal patterns in some countries. Therefore,
this study analyzed the long-term epidemic patterns
using the TBATS model. The forecasting power under
the TBATS model was compared with the SARIMA
model.

We obtained the monthly SF incidence and
population data between January 2004 and
December 2019 from the Chinese CDC and the
Statistical Yearbook of China, respectively. Then, we
partitioned the SF morbidity series into two
segments comprising a training dataset from January
2004 to December 2017 to construct the SARIMA
and TBATS models and a testing dataset from
January 2018 to December 2019 to test the
generalization of both models. Two additional
datasets were provided to test the robustness of
both models: the first 180 data sets from January
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2004 to December 2018 and 156 data sets from
January 2004 to December 2016 were treated as
training datasets, respectively; and the remainder
were testing datasets. We estimated the changing
epidemiologic trends of SF based on annual
percentage change (APC) and average APC (AAPC)
using the Joinpoint regression program (version
4.8.0.1). We constructed the TBATS model with the
“forecast,” “tseries,”, and “FinTS” packages in R
software (version 3.4.3). The incidence rate ratio
(IRR) with a 95% uncertainty limit (UL) before and
after the SF outbreak was calculated using the
method proposed by Armitage and Berry[G]. The
mean absolute deviation (MAD), root mean square
error (RMSE), mean absolute percentage error
(MAPE), mean error rate (MER), and root mean
square percentage error (RMSPE) were computed to
compare the forecasting ability of both models.
During the study period, a notable increase in SF
morbidity was detected, with an AAPC = 8.942 (95%

UL: 5.995-11.971; t = 6.697, P < 0.001;
Supplementary Figure S1, available in www.
besjournal.com), and the highest morbidity

(5.930/100,000 persons) occurred in 2019, which
increased by a factor of nearly four compared with
the lowest level (1.489/100,000 population) in 2004
(Supplementary Figure S2, available in www.
besjournal.com). The SF epidemics remained
relatively steady from 2004-2010 (average,
1.937/100,000 persons annually), with an AAPC =
-0.840 (95% UL: -7.678 to 6.505; t = -0.231, P =
0.817). An unexpected outbreak was witnessed in
2011, and since then a rapidly increasing trend
occurred (average, 4.580/100,000 persons annually
[excluding 2013]; the exact causes regarding this
annual drop are unknown; Supplementary Figure
S2), with an AAPC = 5.952 (95% UL: 0.239-11.992; t =
2.466, P = 0.043), which showed good agreement
with a resurgence of SF in Hong Kong, China"”, but
inconsistent with England where the resurgence
occurred in 2014®. There has been a doubling in the
SF incidence during the post-resurgence periods
compared with the pre-resurgence periods (IRR =
2.364, 95% UL: 2.358-2.370). Nevertheless, the
driving force associated with the increased
pathogenicity of GAS fails to be elucidated. A
possible explanation may be due to the acquisition
of novel prophages harboring new hybridizations of
toxin genes and antimicrobial resistance genes,
which is related to the emergence and expansion of
the predominant genotypes of emm12 and emm1 in
China®™. Another explanation may be associated with
the natural periodicity of the SF incidence (SF

epidemics are characterized by a cyclic change of
approximately 6 yearsm). A third explanation may be
linked to the relaxation of the 2-child policy in
2011[3], which led to an increase in the number of
susceptible individuals. A fourth reason may be
attributed to improvements in the diagnostic
capacity and the increased awareness of medical
workers in reporting SF. A fifth reason may be a
result of the deterioration of air quality in China®,
despite the gradual improvements in the last 2
years. Finally, there are no vaccines available to
prevent infections with GAS until now.

A  marked semi-annual seasonal behavior
occurred in the monthly SF incidence, with a strong
peak between May and June, and a weak peak
between November and December (Supplementary
Figures S3-S4, available in www.besjournal.com).
We surmised that different climatic features and
beginning of spring and autumn semesters
contributed to this difference in the margin of peak
activities. Our seasonal profile correlates well with
previous findings from Hong Kong, Chinam; however,
discordant with that in England, which peaked
between February and March®. This inconsistency
may be due to the different school breaks,
population density, and different GAS emm gene
types in east Asia and Europe[l’sl. In addition, the SF
epidemics retain the lowest level in February every
year (Supplementary Figure S3), attributable to the
winter holidays and the Spring Festival.

The forecasts under the TBATS approach rely
largely on the number of harmonics k; applied for
each seasonal pattern. As a result, in selecting the
number of harmonics k;, considering one seasonal
component each time, we then fitted the model on
the target data repeatedly via gradually increasing
the number of harmonics k;, but holding the
remaining harmonics constant for each i until the
optimal AIC is obtained. In determining the most
suitable orders (p and g) of the ARMA model, we
used the automatic procedure proposed by
Hyndman and colleagues[m] to fit the forecasting
residuals. If the selected model with the ARMA (p, q)
residual component generates a smaller AIC than the
one model without the ARMA (p, q) residual
component, this selected specification would be
considered as the best possible model; otherwise,
the ARMA (p, q) residual component is deleted. After
modelling by trial and error, the TBATS (0.04, {4,0},
0.882, {<12,5>}) specification was selected as the
optimal model in that the minimum AIC (-197.965)
was detected in this model, and the identified key
parameters of this best TBATS model are reported in
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Supplementary Table S1, available in  www.
besjournal.com. Additional statistical diagnoses for
the forecast errors are provided in Supplementary
Table S2 and Supplementary Figures S5-S6, available
in www.besjournal.com. The Ljung-Box Q statistics of
the forecast errors produced a Qg4 = 11.442 with a
P-value of 0.875, indicating no serial correlations in
this residual series. Moreover, the ARCH effect was
largely removed because the LM, = 23.808 with a
P-value of 0.302. These results confirmed the
adequacy of the model specifications. Similarly,
based on the modelling steps described above, the
TBATS (0.01, {0,0}, 0.898, {<12,5>}) and TBATS
(0.048, {0,0}, 0.902, {<12,5>}) specifications tended
to be the preferred models for forecasting the 12-
and 36-holdout periods (Supplementary Tables
$3-S4 and Supplementary Figures S7-S10, available
in www.besjournal.com).

Similarly, following the SARIMA modelling steps,
the optimal SARIMA models on different datasets
were identified (Supplementary Tables S2-S5, and
Supplementary Figures S5, S11-S12, available in
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www.besjournal.com). Subsequently, the best
SARIMA and TBATS models could be used to perform
multistep ahead predictions (Figure 1 and
Supplementary Figures S$13-5S14, available in
www.besjournal.com).  Table 1 lists  the
measurement  metrics, which indicate the
forecasting reliability levels on different time
windows under the preferred SARIMA and TBATS
models. The optimal TBATS models provided a
smaller MAD, MAPE, RMSE, RMSPE, and MER
compared with the optimal SARIMA models, with a
performance improvement of almost 50% in the
forecasting abilities for estimating both short- and
long-term epidemiological trends, albeit the
predictive potential showed a slight reduction with
the increase in prediction time windows. We further
compared the forecasting abilities of both methods
for 48- and 72-step ahead predictions, and the
comparative results are listed in Supplementary
Tables S1, S6-S7, and Supplementary Figures
S$15-S16 (available in www.besjournal.com), which
show a similar finding, but the predictive results
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Figure 1. Comparative results of the forecasts based on the SARIMA and TBATS models. (A) The
comparison between the 24-step ahead forecasts of the SARIMA model and the observed values. (B) The
predicted upcoming 36-month values from January 2020 to December 2022 using the SARIMA model.
(C) The comparison between the 24-step ahead forecasts of the TBATS model and the observed values.
(D) The predicted upcoming 36-month values from January 2020 to December 2022 using the TBATS

model.



566

Biomed Environ Sci, 2022; 35(6): 563-567

deviated from the epidemic trajectories. In addition,
we used the SF incidence data in Liaoning,
Heilongjiang, and Shandong provinces, and Inner
Mongolia (which are the hardest hit areas by SF in
China in the last decade[z'al) to assess the predictive
quality of these two methods. Likewise, the TBATS
method produced lower error rates in all the
datasets (Supplementary Table S8, available in
www.besjournal.com). Our recent study indicated
that the Error-Trend-Seasonal (ETS) model also has a
powerful potential in estimating the long-term
epidemic behaviors of diseases™. As a result, we
further developed the ETS model based on the SF
morbidity to predict the epidemiological trends, and
the results also showed similar findings (the
computed MAPE values were 16.101% vs. 38.511%,
21.142% vs. 28.273%, and 23.984% vs. 26.735% in
the 12-, 24-, and 36-step ahead forecasts,
respectively; Supplementary Table S9, available in
www.besjournal.com). These findings further
substantiated the utility of the TBATS model. The
TBATS model was introduced by adding the

trigonometric representation of seasonal
components based on the Fourier series into the
traditional BATS model, which enabled handling of
all complex time series, as well as linear and non-
linear information™, thus indicating the suitability
and adequacy of this model. Considering the
attractive advantages of the TBATS model, this
model can be recommended as a flexible and useful
long-term predictive tool in assessing the epidemic
patterns of SF in other countries or other contagious
diseases; however, further work is required for
validation. Moreover, with the rapid advances in the
forecasting domain of time series, many hybrid
prediction models (e.g., SARIMA-BPNN, SARIMA-
GRNN, and SARIMA-LSTM) have also been reported
to show an attractive advantage in estimating the
long-term epidemic trajectories of diseases.
Therefore, what is now needed are studies involving
comparisons of the predictive reliable level between
the TBATS model and the above-mentioned models.

This study had some limitations. First, SF is a mild
illness and has rarely led to death since the 20"

Table 1. The comparisons of the predicted results between the SARIMA model and the TBATS model on
different testing datasets

Testing horizons

Models
MAD MAPE RMSE MER RMSPE
24-step ahead predictions
SARIMA 0.295 64.346 0.382 0.607 0.551
TBATS 0.114 21.142 0.160 0.235 0.061
Reduced percentage (%)
SARIMA vs. TBATS 61.356 67.143 58.115 61.285 88.929
12-step ahead predictions
SARIMA 0.212 42.951 0.257 0.429 0.467
TBATS 0.087 16.101 0.113 0.177 0.193
Reduced percentage (%)
SARIMA vs. TBATS 58.962 62.513 56.031 58.741 58.672
36-step ahead predictions
SARIMA 0.258 55.527 0.396 0.546 0.758
TBATS 0.133 23.984 0.174 0.282 0.271
Reduced percentage (%)
SARIMA vs. TBATS 48.450 56.807 56.061 48.352 64.248

Note. SARIMA, seasonal autoregressive integrated moving average method; TBATS, an advanced
innovation state-space modelling framework by combining Box-Cox transformations, Fourier series with time-
varying coefficients and autoregressive moving average (ARMA) error correction; MAD, mean absolute
deviation; MAPE, mean absolute percentage error; RMSE, root mean square error; MER, mean error rate;

RMSPE, root mean square percentage error.
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centuryB]. Therefore, infected individuals with mild
clinical manifestations sometimes fail to seek
medical aid, resulting in under-reporting and under-
diagnosis. Second, to ensure that the model
obtained a satisfactory forecasting result, it is
important to note that this model should be updated
with new incidence data. Third, to investigate
whether our TBATS model was adequate for
estimating the SF epidemics in other study regions or
other infectious diseases, much work is still needed.
Finally, integrating the factors influencing the SF
epidemics may improve the predictive power.
Nevertheless, we are not able to perform such an
analysis due to the unavailability of a multivariate
TBATS method and SF-related factors.

In summary, SF had dual seasonal behaviors,

peaking in May-June and November—December,
with a recurrence in 2011 in China; since then it
started to be increasing in the SF incidence. The
TBATS method was advantageous in analyzing the
long-term epidemiological seasonality and trends of
SF, which can be considered a useful and flexible
alternative to aid stakeholders to develop practical
solutions to stop the ongoing spread of SF in China.
In addition, we re-established the preferred TBATS
(0.023, {0,0}, 0.895, {<12,5>}) specification based on
the 16 years of data to predict the SF incidence into
2022, although the SF incidence was predicted to
reach a plateau in the next 3 years [Supplementary
Tables S1 and S10 (available in
www.besjournal.com), and Figure 1], the SF
incidence remained at a high level, suggesting that
additional or comprehensive interventions must be
developed to manage this evolving scenario.
Data Availability  All the data supporting the
findings of the work are contained within the
Supplementary Material (Supplementary Table S11,
available in www.besjournal.com).
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