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Abstract

Objectives     Hand,  foot  and  mouth  disease  (HFMD)  is  a  widespread  infectious  disease  that  causes  a
significant disease burden on society. To achieve early intervention and to prevent outbreaks of disease,
we propose a novel warning model that can accurately predict the incidence of HFMD.

Methods    We propose a spatial-temporal graph convolutional network (STGCN) that combines spatial
factors  for  surrounding cities  with historical  incidence over a  certain time period to predict  the future
occurrence of HFMD in Guangdong and Shandong between 2011 and 2019. The 2011–2018 data served
as  the  training  and  verification  set,  while  data  from  2019  served  as  the  prediction  set.  Six  important
parameters were selected and verified in this model and the deviation was displayed by the root mean
square error and the mean absolute error.

Results     As  the  first  application  using  a  STGCN  for  disease  forecasting,  we  succeeded  in  accurately
predicting the incidence of HFMD over a 12-week period at the prefecture level, especially for cities of
significant concern.

Conclusions     This  model  provides  a  novel  approach  for  infectious  disease  prediction  and  may  help
health  administrative  departments  implement  effective  control  measures  up  to  3  months  in  advance,
which may significantly reduce the morbidity associated with HFMD in the future.
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INTRODUCTION

H and, foot and mouth disease (HFMD) is a
common  infectious  disorder  caused  by
various  enteroviruses[1],  and  children

younger  than  5  years  are  especially  prone  to
infection[2].  Most  cases  are  self-limiting;  however,
some  patients  rapidly  develop  neurological  or
cardiopulmonary complications, which can even lead
to death[3].
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In  recent  years,  outbreaks  of  this  disease  have
been reported frequently in most parts of the world,
including  the  Asia-Pacific  region[4],  especially  in
eastern  and  southeast  Asia[5,6].  During  2008,
Singapore experienced its largest outbreak of HFMD,
resulting in 29,686 cases[7]. Subsequently, 170 deaths
were  reported  in  Vietnam  in  2011[8] and  98  deaths
were reported in Cambodia in 2012[9]. In mainland of
China,  an  epidemic  of  HFMD started  in  Fuyang  city,
Anhui Province, in 2008 resulting in 353 severe cases
and  22  deaths[10].  More  than  18  million  HFMD-
related  cases  were  reported  in  mainland  of  China
between 2008 and 2017, and the number of deaths
ranked in the top three among all notifiable diseases
since 2010[11]. HFMD morbidity and mortality cause a
significant  economic  and  psychological  burden  on
patients and society.

Epidemiological  surveillance  and  an  improved
understanding  of  the  spatiotemporal  characteristics
of  HFMD  may  provide  useful  insight  into  local
epidemic  control  measures  and  resource  allocation.
Accordingly,  the  epidemiological  characteristics,  risk
factors  and  spatiotemporal  patterns  of  HFMD  have
been  studied  on  a  national  scale[12-15],  prompting
researchers  to  design  and  optimize  HFMD  warning
models  for  different  situations.  The  classic  model
that  has  been  applied  is  a  dynamic  model  of
transmission,  namely  the  Susceptibles-Infectives-
Recovered (SIR) model[16]. However, these traditional
models require the construction of complex systems
based on unrealistic assumptions and simplifications.
With  the  increasing  amount  of  data,  data-driven
prediction  models  of  infectious  diseases  have  been
widely studied, such as the autoregressive integrated
moving average (ARIMA) model[17,18]. However, these
models  use  a  purely  mathematical  method  of
differences  to  extract  linear  factors  in  a  sequence
and cannot  explain  the nonlinear  factors  that  affect
changes  in  a  time  series,  thereby  leading  to  low
prediction  accuracy.  Therefore,  data-driven  deep
learning  models,  such  as  long-  and  short-term
temporal  (LSTM)  patterns  with  deep  neural
networks[19],  not only have good fault tolerance and
large-scale  nonlinear  parallel  processing  methods,
but  also  have  strong  self-learning  and  adaptive
capabilities.

However,  such  models  only  consider  disease
parameters  in  the  time  dimension,  so  a  spatial-
temporal prediction model that accurately describes
the real situation was needed. In this study, we used
the  spatial-temporal  graph  convolutional  network
(STGCN),  which  can  consider  spatial  effects  to
predict  the  future  occurrence  of  HFMD.  By  stacking

continuous  convolution  modules  to  process  the
number of  patients,  the hidden time series features
are extracted. For the prediction of future incidence,
STGCN will not only refer to the recent incidence in a
city  but  will  also  take  into  account  the  incidence  in
neighboring  cities  through  the  graph  convolution
module.

Guangdong  and  Shandong  Provinces,
representing  the  most  populous,  major  economic
provinces  in  southern  and  northern  China,  have
suffered  greatly  from  the  HFMD  epidemic.
Therefore,  we  designed  this  model  to  help  local
health  administrative  departments  take  timely  and
effective blocking measures to reduce the morbidity
and mortality associated with HFMD in the future. 

METHODS
 

Study Areas

Considering  the  extensive  area  and  diverse
demographic,  economic  and  climatic  characteristics
of  China,  the  distribution  of  cases  and  the  risk
factors for HFMD likely vary among different regions.
Therefore,  we  choose  two  representative  provinces
with a heavy burden of HFMD as the research area:
Guangdong  and  Shandong,  which  represent
southern and northern China, respectively.

Guangdong Province comprises 21 administrative
districts  and can be divided into four  administrative
regions  according  to  its  population  and  area  size
(Pearl  River  Delta  region,  eastern  Guangdong,
western  Guangdong  and  northern  Guangdong).
Most  regions  have  a  subtropical  monsoon  climate,
and  the  typical  high  temperature  and  rainy
conditions  are  optimal  for  the  epidemic  spread  of
HFMD.  Shandong  Province  comprises  140  counties
(sub-districts)  belonging  to  17  administrative
districts  and  can  also  be  divided  into  four
administrative  regions  (eastern  Shandong,  central
Shandong,  southern  Shandong  and  northwest
Shandong).  With  a  warm  temperate  monsoon
climate, Shandong is a distinct city with four seasons,
which means that the occurrence of HFMD presents
significant seasonality. 

Data Sources and Characteristics

Data were acquired for all  reported HFMD cases
from  January  1,  2011  to  December  32,  2019  in
Guangdong  and  Shandong  from  the  National
Notifiable  Disease  Surveillance  System  (NNDSS)  of
the  Chinese  Center  for  Disease  Control  and
Prevention.
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Spatial information for each city, mainly including
longitude  and  latitude  data,  was  downloaded  from
the  National  Catalogue  Service  for  Geographic
Information  of  the  Ministry  of  Natural  Resources  of
the  People’s  Republic  of  China  to  construct  the
graph  structure.  The  2011–2018  data  served  as  the
training  and  verification  set,  while  data  from  2019
served as the prediction set.

Symptomatic  HFMD  cases  (n =  3,257,285)  were
reported  in  Guangdong,  and  the  numbers  of
reported  cases  fluctuated,  with  a  high  incidence
observed  every  2  years.  There  were  two  peaks  in
epidemiology  each  year:  a  summer  peak  was
observed in May and June (Supplementary Figure S1,
available  in  www.besjournal.com),  with  a  second
smaller  autumn  peak  in  October  and  November,
with  the  exception  of  2017  when  the  autumn  peak
exceeded the summer peak. High risk areas of HFMD
in  Guangdong  were  located  in  the  Pearl  River  Delta
region,  especially  Zhuhai  city  and  Guangzhou  city,
which had the highest incidence rates and number of
reported  cases  over  the  9-year  period
(Supplementary  Figures  S2–S3,  available  in  www.
besjournal.com).

A total of 832,065 HFMD cases were reported by
the  surveillance  system  from  2011  to  2019  in
Shandong.  The incidence of  HFMD showed a typical
major  peak  each  year,  and  the  number  of  reported
cases began to increase in March and reached a peak

from May to July (Supplementary Figure S4, available
in  www.besjournal.com).  The  highest  average
number of reported cases occurred in the provincial
capital and the northwest region of Shandong, while
the  highest  average  incidence  rate  was  detected  in
Dongying  city  on  the  northern  coast  of  Shandong,
and  the  lowest  incidence  rate  was  in  Linyi  city,
located  inland  in  south  Shandong  (Supplementary
Figures S5–S6, available in www.besjournal.com). 

STGCN Model

As  shown  in Figure  1,  the  STGCN  model  mainly
consists  of  three  components:  two  temporal
convolution layers and one spatial convolution layer.
The  two  spatiotemporal  convolution  block
components  have  the  same  structure  and  a  fully
connected layer component was used as the output
layer.  The  internal  layout  of  each  spatiotemporal
convolution  component  was  a  sandwich  structure.
First,  the feature information in the time dimension
was  obtained  through  the  temporal  convolution
layer  (annual  incidence  data),  and  then  the  feature
information  in  the  space  was  mixed  through  the
spatial  convolution  layer  (incidence  in  various  cities
extracted  by  graph  convolution  operation).  After
that,  high-dimensional  information was  obtained by
feature  extraction  in  the  time  dimension.  At  the
output layer, we took the incidence data of the same
period  last  year  as  one  of  the  reference  factors  for
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the  prediction  results.  Details  about  the  specific
parameter settings and principles are provided in the
Supplementary Materials (Supplementary Text S1.2),
available in www.besjournal.com.

To  build  a  more  stable  and  accurate  model,  six
important  parameters  were  selected  and verified  in
this model,  including the forecast time (predicting 4
weeks,  8  weeks  or  12  weeks  in  advance),  historical
data  length  (historically  reported  cases  in  one  city,
H = 4 weeks, 8 weeks or 12 weeks), data channel size
(used  to  determine  the  convolution  kernels  in  each
convolution  layer),  time  convolution  kernel  size
(used to determine the size of  the receptive field in
each  extraction  process  in  the  temporal  dimension,
kt = 3 or 5), neighborhood number (the fusion range
of  spatial  information  around  one  city,  ks)  and  the
inclusion  or  exclusion  of  graph  convolution.  The
deviation  was  displayed  by  the  root  mean  square
error  (RMSE)  and  the  mean  absolute  error  (MAE).
Moreover,  the  consistency  between  the  true  value
and the predicted value was verified by R2. 

RESULTS
 

Model Parameters

The  deviation  between  the  observed  value  and
the true value was displayed by the RMSE and MAE,
and  the  detailed  results  of  parameter  comparisons
are provided in the Supplementary Tables S1–S4 and
Supplementary  Figure  S7,  available  in  www.
besjournal.com.

As  the  main  epidemiological  data  for  Shandong
showed  relative  singleness,  the  optimum  prediction
model  could  achieve  12  weeks  of  early  warning
based  on  the  following  parameters:  24  weeks  of
historical  data length (H = 24),  channel size of (1,  4,
8),  time  convolution  kernel  size  of  5  (kt  =  5)  and
neighborhood  number  of  4  (ks  =  4)  with  graph
convolution.

However,  Guangdong  showed  more  complex
epidemiological  data,  and  the  demographic  data
among cities  showed great  disparity.  Therefore,  the
result  of  the  prediction  model  was  different  from
that  of  Shandong,  and  the  optimum  prediction
model  was  based  on  the  following  parameters:  24
weeks of historical data length (H = 24), channel size
of (1, 3, 1), time convolution kernel size of 5 (kt = 5)
and neighborhood number of 5 (ks = 5). 

Predictive Epidemical  Curve of  HFMD Based on the
STGCN Model in 2019

We  selected  the  cities  of  Qingdao,  Liaocheng,

Jinan  and  Zaozhuang  to  represent  east  Shandong,
west  Shandong,  south  Shandong  and  north
Shandong,  respectively  (Figure  2A–D and
Supplementary  Figure  S8,  available  in  www.
besjournal.com).  The  blue  line  is  the  actual
incidence,  and  the  prediction  data  are  shown  in
orange. The consistency between the true value and
the  predicted  value  was  verified  by R2,  and  the
correlation  between  the  average  disease  data  from
2011–2018  and  the  predicted  curve  was  also
compared  (Supplementary  Table  S5,  available  in
www.besjournal.com).

For  most  of  the  cities  in  Shandong,  the  model
can capture the time point of disease outbreak, and
the peak height  is  consistent  with  the real  situation
(R2 >  0.5),  which  shows  that  the  model  has  good
prediction  ability  after  data  training.  Furthermore,
the  best  prediction  was  shown  in  cities  with  more
than  4,000  reported  cases  or  an  incidence  higher
than  10/million  people  (R2 >  0.75,  and  detailed
materials shown in Supplementary Table S5).

Correspondingly,  we  selected  the  cities  of
Dongguan,  Jieyang,  Qingyuan  and  Zhanjiang  to
represent  the  Pearl  River  Delta  region,  eastern
Guangdong,  northern  Guangdong  and  western
Guangdong,  respectively  (Figure  2E–H).  In  general,
the  prediction  curve  in  the  Pearl  River  Delta  region
matched  the  actual  incidence  curve  (R2 >  0.5,
Supplementary  Figure  S9,  available  in  www.
besjournal.com).  However,  the  precision  seemed
lower  in  northern  and  western  Guangdong,  which
showed  low  incidence  rates  and  disease  burden.
Despite  this,  most  prediction  curves  rose  slightly
earlier  than  the  actual  increase  in  incidence,  which
means  that  the  model  can  play  a  role  in  early
warning.

Given  the  more  complicated  incidence  rate
characteristics,  the  predictive  model  for  Guangdong
requires  more  disease  data  to  train  and  verify  the
results,  and  the  optimum  prediction  model  was
appropriate for more than 10,000 reported cases or
an incidence higher than 30/million people (R2 > 0.6,
and  detailed  materials  shown  in Supplementary
Table S6, available in www.besjournal.com). 

Geospatial Map Based on the STGCN Model in 2019

To  balance  the  uneven  distribution  of  the
population  in  each  prefecture-level  city,  we
produced  geological  maps  according  to  incidence
(per million people),  and the severity of  the disease
was  graphed  according  to  its  brightness  value
(Figure 3).

The  overall  peak  period  for  Shandong  was  at
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Figure 2. The predictive  epidemical  curves  based  on  city  level  data  of  HFMD incidence  in  2019.  (A)–(D)
show  data  from  four  representative  cities  in  Shandong  Province:  Qingdao,  Liaocheng,  Jinan  and
Zaozhuang,  respectively.  (E)–(H)  show  data  from  four  representative  cities  in  Guangdong  Province:
Dongguan, Jieyang, Qingyuan, and Zhanjiang, respectively.
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approximately 25–33 weeks,  and the most seriously
affected  areas  were  around  Dongying,  Jinan  and

Qingdao, which demonstrated spread of the disease
to surrounding areas. By week 29 of the comparison,
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Figure 3. Geospatial maps showing HFMD incidence in Shandong Province and Guangdong Province. (A)
Shandong on week 29. (B) Shandong on week 33. (C) Guangdong on week 26. (D) Guangdong on week 39.
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the  prediction  results  of  the  model  were  basically
consistent with the actual  high incidence areas,  and
the  actual  rates  were  also  accurately  predicted  for
marginal  cities  such  as  Weihai  and  Zaozhuang.  By
weeks 30–33, the early warning effect of the model
was  more  obvious.  The  color  indicated  for  Jinan,
Weihai,  Qingdao  and  Dongying  was  more  obvious
than  for  other  cities  around  Jinan,  as  the  pandemic
increased after the summer season. This shows that
the  model  can  capture  spatial  information  and  use
this in its prediction.

For  Guangdong,  the  high  risk  areas  were
concentrated  in  the  Pearl  River  Delta  region,  while
the  summer  and  autumn  peaks  occurred  at
approximately  24–28  weeks  and  36–40  weeks,
respectively. As the maps show, we found that week
26  in  summer  and  week  39  in  autumn  gave
representative  predictions  for  the  major  cities  that
were close to the real incidence rates. However, the
early warning effect was not observed for the other
regions,  as  their  incidence  rates  were  significantly
lower  than that  in  the  Pearl  River  Delta  region,  and
changes  in  morbidity  rates  were  not  obvious  in  the
geospatial map. 

Comparison with other Common Prediction Models

Four  common  disease  prediction  models  were
compared  with  our  STGCN model  in  this  study,  and
the  prediction  performances  of  these  models  for
Shandong and Guangdong,  with different prediction
lengths  (4  weeks,  8  weeks,  and  12  weeks),  are
summarized in Table 1, showing the MAE and RMSE

values.
The  historical  average  model  (HA)  takes  the

model  establishing  as  a  seasonal  process,  and  uses
the average of previous seasons as the prediction. In
this  study,  we used the incidence data of  HFMD for
each city for 24 consecutive weeks as the input, and
then we calculated  the  average  value  and used this
as  the  predicted  value  of  the  subsequent  incidence
data. The support vector regression (SVR) model is a
common  time  series  prediction  model  that  involves
mapping  low-dimensional  data  to  higher-
dimensional  space,  and  then  reducing  the
hyperplane  in  the  higher-dimensional  space.  In  this
study,  radial  basis  function  was  used  as  the  kernel
function, and the penalty parameter and the number
of  multinomial  kernel  functions were set  as  1.0  and
3,  respectively.  The  LSTM  model  can  fully  extract
time  information  by  stacking  multiple  LSTM  cell
structures.  In  this  study,  we  divided  the  model  into
two LSTM units with activation functions, namely the
full  connection  layer  and  the  output  layer.  One
hundred  neurons  were  set  in  the  full  connection
layer, and the number of neurons in the output layer
was  the  number  of  cities,  corresponding  to  the
prediction  results  for  each  city.  The  CONV-LSTM
model can not only established temporal relations as
an  LSTM  model,  but  also  had  the  capability  of  the
CNN model to capture spatial features hidden within
the  data.  It  has  a  convolution  structure  between
different  states  and  a  predictive  structure  by
stacking  CONV-LSTM  layers.  The  model  consists  of
one  CONV-LSTM  layer,  one  LSTM  unit,  one  full

Table 1. Comparison of the five prediction models

Area Model
4 weeks 8 weeks 12 weeks

MAE RMSE MAE RMSE MAE RMSE

Shandong HA 124.98 196.05 141.65 219.14 153.74 233.09

SVR 107.12 130.73 110.23 150.69 122.80 160.88

LSTM 55.83 107.53 142.51 172.98 149.33 183.26

CONV-LSTM 58.08 97.67 58.95 106.39 61.38 111.59

STGCN 50.38 95.07 51.55 96.18 51.29 96.01

Guangdong HA 286.79 502.38 322.68 550.92 344.92 569.47

SVR 177.68 294.34 233.00 460.24 244.48 383.71

LSTM 158.46 28.43 170.99 339.68 184.52 390.29

CONV-LSTM 147.28 266.25 163.51 338.87 168.30 348.65

STGCN 144.79 262.15 158.48 306.87 159.92 320.76

　　Note. HA, historical average model. SVR, support vector regression. LSTM, long- and short-term temporal.
STGCN,  spatial-temporal  graph  convolutional  network.  RMSE,  root  mean  square  error.  MAE,  mean  absolute
error.
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connection layer and one output layer.  The number
of  neurons  in  the  output  layer  is  the  number  of
cities,  corresponding  to  the  prediction  results  for
each city.

As  shown  in Table  1,  the  STGCN  achieved
excellent results for two province datasets. It greatly
outperformed  time  models,  including  the  HA,  SVR
and  LSTM  models.  Compared  with  the
spatiotemporal  model,  the  STGCN  also  surpasses
CONV-LSTM  based  on  convolution  and  gated
networks.  Compared  with  CONV-LSTM  that  uses
round-robin architecture,  with the height and width
of  each  layer  remaining  constant,  the  STGCN  uses
multiple convolution kernels of different sizes and a
codec-like architecture,  so that  the model  can learn
the  characteristics  of  incidence  rates  over  different
time  spans.  Moreover,  this  model  can  also  learn
correlations between different cities by changing the
width  of  the  convolution  kernel,  which  can  greatly
increase the predictive power of the model. 

DISCUSSION

Epidemiological  studies  of  HFMD  have  indicated
diverse  seasonal  patterns  of  HFMD  incidence  in
southern  and  northern  China.  Different  climatic
conditions  may  lead  to  different  seasonal
characteristics  between  the  northern  and  southern
regions. Discriminant analysis confirmed that climate
factors[20-21] were  the  main  predictors  of  the
epidemiological  distribution  of  HFMD  throughout
mainland  China.  Therefore,  the  national  incidence
data cannot be used to establish an incidence model
as  they  would  cause  deviations  and  fluctuations  in
the  model.  In  this  study,  Guangdong  Province  was
selected  as  a  representative  low  latitude  region  to
simulate a high incidence province in the subtropical
region,  and  Shandong  Province  was  selected  as  a
representative  high  latitude  region  to  simulate  the
temperate  monsoon  climate  to  establish  the  HFMD
prediction model.

Over  the  past  few  years,  graph  convolutional
networks  have  attracted  widespread  attention
because of their powerful modeling capabilities that
have  been  successfully  applied  to  areas  such  as
traffic  prediction[22] and  recommender  systems[23].
The better use of topological structure has achieved
a  significant  improvement  over  traditional  machine
learning  methods  in  mid-  and  long-term  traffic
prediction.  Based  on  this,  we  applied  the  deep
neural  network  STGCN  to  an  early  warning  system
for  infectious  diseases.  The  time  dimension
information  was  extracted  by  a  convolution  neural

network,  while  spatial  information  was  captured  by
a  graph  convolution  algorithm.  Finally,  by  stacking
the  space-time  convolution  blocks,  the  deeper
space-time  features  were  extracted  continuously.
Thus, the reliability of trend prediction by this model
was greatly increased.

According  to  the  RMSE  and  MAE  values,  the
optimum  parameters  for  Shandong  and  Guangdong
were  obviously  different,  which  indicated  that  the
stability  and  consistency  of  the  data  may  influence
model construction and output. If the input data set
is  too  small,  the  model  cannot  effectively  capture
the  hidden  features,  which  leads  to  large  errors  in
prediction.  However,  if  the  input  data  is  too  large,
there may be too much interference for  the model,
resulting  in  learning  difficulties.  Guangdong showed
a more complicated incidence profile. Although most
cities  in  Guangdong  showed  two  peaks  in  the
incidence data, the autumn peak varied in forms on
different  years.  Moreover,  the  second  (autumn)
peak  gradually  converged  with  the  first  (summer)
peak  after  2017,  with  the  second  peak  exceeding
that  of  the  first  peak  for  some  cities.  Thus,  the
predictive  model  needs  more  disease  data  to  train
and verify the results.

After a series of calibrations for the parameters,
the  forecast  data  became  more  consistent  with  the
actual incidence, especially in some cities with a high
disease burden. For the northern cities with distinct
seasons,  this  model  works  well,  particularly  when
there  are  more  than  4,000  reported  cases  or  an
incidence  higher  than  10/million  people.  For  the
southern  cities  with  more  versatile  epidemic
features,  the  predictive  model  requires  more  data,
and  the  optimum  curve  was  obtained  with  more
than  10,000  reported  cases  or  an  incidence  higher
than  30/million  people.  In general,  for  cities  with  a
lower  population  density  and  incidence,  the
occurrence  of  infectious  diseases  tends  to  be
occasional and sporadic. For example, for Yangjiang,
Shantou and Shanwei in Guangdong Province, with a
low  morbidity  and  population  density,  the  HFMD
epidemic data are atypical and irregular, which leads
to  poor  simulation  results  with  the  model.  This
model  can  be  used  to  implement  preventive
measures up to 3 months in advance for cities with a
high  incidence  of  HFMD,  thereby  allowing  health
administrative  departments  to  initiate  control
measures  (akin  to  those  from  pandemic
preparedness  plans)  including  surveillance,
mandatory  reporting,  isolation,  school  closures  and
social distancing.

In  conclusion,  we  present  a  pioneering  early
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warning  model  with  the  potential  to  greatly
reduce  the  incidence  of  HFMD  by  allowing
effective  prevention  and  control  measures  to  be
put  in  place  in  advance.  This  model  could  also  be
applied  to  the  prevention  and  control  of  other
infectious  diseases.  However,  it  will  be  important
to  consider  seasonal  differences  in  climatic
conditions  that  may  affect  disease  epidemics  in
different  regions,  such  as  the  average
temperature,  rainfall,  wind  speed,  relative
humidity and daylight duration. Moreover, studies
on a variety of disease epidemics indicate that the
characteristics  of  region-varying  and  time-varying
parameters, and spatially stratified heterogeneity,
should  also  be  fully  considered.  Therefore,  we
believe  that  the  model  can  be  optimized  by  the
addition of more ancillary factors in the future. 
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