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INTRODUCTION

Organoids are primary tissue or stem cells
derived cell aggregates that have the capacity for
self-organization, self-renewal, and the capacity to
mimic cellular and tissue level functions. Organoids
can overcome the shortcomings of traditional 2D cell
culture models and closely mimic 3D primary tissue
composition, architecture, and biologically relevant
models making excellent in vitro systems. Organoids
can be derived from primary tissues, and pluripotent
stem cells [both induced pluripotent stem cells
(iPSCs) and embryonic stem cells (ESCs)] by
supplementing with appropriate physical and
biochemical cues. Physical cues in the form of
extracellular matrices such as collagen, fibronectin,
entactin, and laminin are supplied to provide the
appropriate environmental conditions for the
development of 3D architecture, and cell-to-cell
communications and help in the functional survival
of the organoids. Biochemical cues such as the
variety of growth factors, EGF, Noggin, Activin A, and
R-spondinsm, help in regulating the cell signaling
pathways leading to control of cell proliferation,
differentiation, and self-renewal”.

Organoids are very relevant in basic research as
well as translational applications. Stem cell-derived
organoids show homology with embryonic
developmental stages, lineage specifications, and
tissue homeostasis hence it has helped to
understand the developmental biology of organs
such as the brain, heart, pancreas, and stomach®’.
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Since organoids represent most of the components
of the organs, they can be utilized to study the
genetic, non-genetic, metabolic, and disease
pathology of infectious diseases. Recent advances in
gene editing technologies (CRISPR/Cas9, TALEN, etc.)
and single-cell genomics provides invaluable insights
for the application of organoids to study disease and
development of the organ[‘”. Drug discovery,
efficacy, and toxicity against specific organs can be
tested using vascularized organ-on-chip and
microfluidics technology[5'7]. Hence, organoid
technology is now becoming an important tool in
regenerative medicine and personalized medicine.
Organoids have proved to be a major tool during
the COVID-19 pandemic to mimic SARS-CoV-2
pathogenesis in the dish and to discover newer drugs
against the virus. Humans and bat intestinal
organoids were developed to grow SARS-CoV-2
reproducibly and study the biology of
coronaviruses®™”. Organoids had also allowed the
cultivation and identification of coronaviruses in the
most natural environment that was not earlier
possible to cultivate using immortalized cell lines.
The development of airway, neuronal, kidney,
cardiac, and intestinal organoids has helped to
understand the biology of the virus more clearly and
enable the finding of the appropriate drug
targets[”'m. SARS-CoV-2 can easily grow in the VERO
cell line but the capillary and kidney organoids had
helped understand the virus strategy to damage the
kidney in severely ill patientsm]. Intestinal organoids
helped in understanding the ACE2 expression level in
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the gastrointestinal tract establishing it as another
entry point for viruses other than the respiratory
route™”. SARS-CoV-2 exposure to the human brain
organoid revealed that the virus alters the Tau
distribution from axons to the stroma,
hyperphosphorylation and it can lead to neuronal
death™, Similarly, Mills et al.™ have used cardiac
organoids to identify pathways associated with
cardiac injury in patients with coronavirus and
inhibitors to rescue cardiac dysfunction. The iPSC cell
line was developed from the fibroblasts of the adult
zebrafish by using the doxycycline-inducible lentiviral
delivery system and chemical molecules™. The
zebrafish induced pluripotent cells (ziPSCs) were
stable and the features were similar to fish
embryonic stem cells within in vivo and in vitro
pluripotent nature™. The study of stem cells was
best explored in three vertebrate organisms
including mice, humans, and medaka. The
endothelial cells were enriched from the embroid
body derived from the blastocyst of fli: GFP and kdrl:
GFP transgenic zebrafish™. The endothelial cell
enrichment can increase the chances of the
development of functional circulation leading to the
development of more organ-like organoid tissues.
Zebrafish embryonic explant was shown to specify
ectoderm, mesoderm, and endoderm and form a
mesendoderm lineage even when prepared before
the germ layer formation and without any
extraembryonic tissues. The zebrafish explants
showed genetically regulated self-assembly and the
order of structure formation seems to be regulated
by intrinsic genetic programs“gl. Embroid body from
transgenic zebrafish kdrl: GFP was shown to develop
longer and wider branches of endothelial cells
compared to organ explants“g]. Interestingly, a long-
term proliferating venom gland organoid was
established representing several snake species with
secretory venom peptides and biological activities””.
Figure 1 summarizes the organoids which have been
derived and well established so far from pluripotent
stem cells/adult stem cells and their germ layer
identities.

DESCRIPTION OF VARIOUS TISSUE-SPECIFIC
ORGANOIDS

Intestinal Organoid

Intestinal organoids have been used to model
different intestinal diseases such as Inflammatory
Bowel Disease (Crohn’s disease) and Ulcerative
colitis™ . Intestinal organoids can be derived from

human primary intestinal tissue as well as
pluripotent stem cells. Insulin-like growth factor 1
(IGF-1) and fibroblast growth factor 2 (FGF-2)
combination have been shown to increase the
plating efficiency of human intestinal organoids,
making the CRISPR genome engineering easier and
single-cell RNA sequencing has confirmed that
refined conditions have improved the native cellular
diversity in human small intestinal organoids[24’25].
Recombinant IL-22 targets intestinal stem cells and
supports the growth of both mouse and human
intestinal organoids. IL-22 induces the
phosphorylation of STAT3 in Lgr5(+) intestinal stem
cells”®. The retinoic acid nuclear receptor controls
the exit from the regenerative state and drives
enterocyte differentiation™”. Enteroids are in vitro
3D structures that have a very similar cellular
composition and architecture to the small intestine.
Enteroids can be derived from small intestinal crypt
cells which are Igr5+ and in the presence of Epithelial
Growth Factor (EGF), R-Spondin, and Noggin, it can
be induced to differentiate. Human enteroids
development requires the addition of Wnt-3A,
SB202190 (p38 inhibitor), and A83-01/SB431542
(TGF-B inhibitor)”**. Recent advances showed
expression of ACE2 in differentiated enterocytes
readily infected by SARS-CoV-2 serves as a great
model to investigate anti-viral therapyBO]. Colonoids
have been successfully cultured but their
maintenance is very difficult. A method was
developed to culture the mouse intestinal crypt
organoids and use it for the study of the crypt
metabolic profile by the measurement of oxygen
consumption, glycolysis, ATP utilization, and the rate
of respiration. These crypts can be utilized for the
study of their modulation by nutritional and
pharmacological interventions®™. The intestinal
epithelium extracted from the 3-day-old chicken
embryo was used to generate the three-dimensional
culture of intestinal organoids grown on the Matrigel
matrix®?.  The propagation of organoids was
facilitated by the addition of R-spondin 1,
prostaglandin E2, and Noggin and the intestinal
enteroids can be generated from the intestine of an
adult chicken. The small intestine crypts from
chicken were isolated and propagated into intestinal
organoids under the external stimulus®??.
Prostaglandin E2 promotes the growth of chicken
embryo intestinal organoids and induces sustained
growth and survival of the epithelial spheroids. The
villus crypt obtained from the intestine of the
chicken was found to be capable of the formation of
enteroids under the influence of chemicals and
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growth factors. The developed enteroids have all the

cell types such as epithelial cells, goblet cells, and
enteroendocrine cells®”

. The organoids developed
to form the gut epithelium of chicken were shown to

migrate in the Matrigel matrix and the static
. . [35]
organoids had rotational movements

Gastric Organoid

Human gastric organoids can be generated by
temporal modulation of Wnt, BMP, EGF, FGF, and

retinoic acid signaling pathways in human
pluripotent stem cells®®

. Gastric organoids can be
derived from normal tissue/stomach cancer and iPSC

or ESC. These can be used for gene editing, host-
microbe interaction study, omic profiling,
biobanking, and high throughput screening. In
Helicobacter pylori-infected gastric organoid, CagA
protein (of H. pylori) was found to bind to c-Met
receptor of organoid epithelial cells and induced cell

development in the ex-vivo model was shown to

G protein-coupled

leucine-rich repeat-containing G protein-coupled

receptor 6-expressing stem/progenitor cells of taste

bud can be reprogrammed
cells®”

can
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proliferation. H. pylori infection was also shown to

induce the expression of PDL-1 on gastric epithelial
cells through Shh

signaling pathway. Gastric
organoids might help better understand peptic

ulcers, gastric cancer, the molecular basis of stomach

development, and cell lineage differentiation of
gastric cells.

Tongue and Salivary Gland Organoids

It is reported that leucine-rich repeat-containing

receptor 5-expressing and

into mature taste
It was also shown that single-progenitor

cells have the potential to develop into all types of
mature taste cells and that differentiated taste cells

develop  without innervation® The

ﬂt‘ine organoid
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Figure 1. Fundamental chart of various categories of human tissue-specific organoids along with relevant

factors. Inducers and/or differentiation factors might vary depending upon on the starting material (viz.,
iPSC/Adult stem cells/iPSC cell line), while iPSCs refers to “induced pluripotent stem cells”.
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mimic the cells of tastebud papillae and it was very
similar to the renewal of adult taste stem cells to
mature taste cells®”. Human submandibular gland
stem/progenitor cells were propagated into
organoids and transplanted into mice after inducing
with FGF10 for the development of salivary gland
tissues*.

Lung’s Organoid

Human pluripotent stem cells were induced to
differentiate into human lung organoids and bud
tip progenitor organoids under defined factors™",
Airway organoids were established from broncho-
alveolar tissues which could be grown and
maintained for a longer time*?. Some of the
important region-specific progenitor cells in the
lungs are basal cells (proximal airways),
neuroendocrine cells and variant club
(bronchioles), alveolar type 2 epithelial cells, and
bronchoalveolar stem cells (BASCs) in
bronchoalveolar duct junction[43]. These progenitor
cells can be utilized for the epithelial regeneration
of lungs and differentiated into different types of
lung cells in controlled conditions. Krt5-GFP+ basal
cells can form tracheospheres when grown for a
week®?. Distal EpCAM"™ CD49f** CD104°°°CD24""
lung epithelial cells can be differentiated into
spheres when it is grown along with d
EpCAM"8Sca-1°* lung mesenchymal cells™".
Chapman et al. 2011"' could grow the organoid
culture from integrin a6B4+ alveolar epithelial
progenitor cells. Kim et al. 2019" have developed
a protocol to grow lung cancer organoid that
produces acinar or large glandular pattern and
express TTF-1, napsin-A, and cytokeratin. Lung
tumor organoids can be used to establish the
model system that can be utilized to study T cell-
based therapies[m. To show the effects of
Olaparib, organoids with BRCA2 p.W2619C and
BRCA2 p.M965] mutations were created and the
former was shown to have lower IC50[46]. Human
adult primary bronchial epithelial cells, lung
microvascular endothelial cells, and lung fibroblast
cells were used together in controlled conditions to
generate airway organoids and it was shown that
these cells can undergo rapid condensation and
self-organization to form the epithelial and
endothelial structures that can be maintained for a
longer time in culture™. Airway organoids are
generated after the condensation and it generates
an invasive multicellular tubular structure that
mimics branching morphogenesis and has
expression of YAP/TAZ activation™®.

Liver Organoid

Human pluripotent stem cells derived from
hepatic organoids were developed that had the
property of self-renewal and were functionally
competent[49] iPSCs can be differentiated into
different types of hepatocytes such as endothelial
cells, Kupffer cells, and cholangiocyteslso]. Mouse and
human primary hepatocytes could be grown for
multiple months and they retained the morphology
as well as gene expression and function”".
Chemically defined hydrogels were used for the
derivation of mouse and hepatic organoids and the
development of the organoids was found to be
sensitive to stiffness and independent of actin-
myosin contractility and required Src family of
kinases (SFKs) and yes-associated protein 1 (YAP)[SZI.
Biopsy-derived human liver organoids were derived
without the use of animal components which can be
a promising technology in regenerative medicine®™.
Human iPSCs (hiPSCs) were induced to develop into
hepatobiliary organoids that mimic hepatogenesis
and show the properties such as indocyanine green
uptake, accumulation of lipid and glycogen, and
secretion of albumin and urea as well drug metabolic
activity. The biliary structures were able to show the
gamma-glutamyltransferase  activity, efflux of
rhodamine, and storage of bile acids. The organoids
could survive more than 8 weeks when transplanted
in mice®.

Thyroid Organoid

Mouse PSCs were used to develop thyroid
progenitors and could be matured into thyroid
follicular organoidsls‘”. Human and murine thyroid-
derived cells were cultured to develop thyroid
organoids that were capable of self-renewal and
they had shown the characteristics of stem cells and
thyroid tissues™. Papillary thyroid cancer organoids
were shown to preserve histopathological profiles,
genetic constitution of the original tumors, patient-
specific drug response, and mutations. Estradiol
promoted the growth of organoids that was related
to estrogen receptor a but independent of ERB and
G protein-coupled ER"® Ogumdipeet et al. 202157
cultured the cells from thyroid gland tissue in a
defined thyroid gland medium (TGM) containing Wnt
and R-spondin 1 for 7 days which differentiated from
the thyrosphere and ultimately aggregated to form
thyroid organoids. Recently, a long-term culture
system of human fetal thyroid organoid was
established which can maintain thyroid lineage and
molecular signatures and it can generate functional
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human thyroid follicles after mice renal
transplantation. Forskolin induced cAMP activation
plays an important role in follicle maturation and
secretion of T4 thyroid hormone™®

Kidney Organoid

Kidney organoids were developed from hiPSCs-
derived metanephric mesenchyme and ureteric bud-
like cells. Here aldosterone, arginine, and
vasopressin  were used to promote the
differentiation into principal cells and intercalated
cells®. Kidney organoids were developed from
human induced pluripotent cells to study the renin-
angiotensin system and shown to have kidney-
specific cells such as podocytes, proximal tubule
cells, distal tubule cells, stromal cells, and
endothelial cells®”. Renin production by the
organoid was also shown to be responding to the
parathyroid hormone'”.

Pluripotent stem cell-derived kidney organoid
closely resembles nephrogenesis and its
differentiation into ureteric bud and metanephric
mesenchyme and patterning into nephron structure
resemble fetal kidney[m]. Adult stem or progenitor-
derived kidney tubuloids provide a better model to
study adult kidney tubule renewal and repair. Kidney
tubuloids are genetically stable and can be
propagated for a longer time and consist of the adult
proximal tubule, distal tubule, collecting duct
epithelium, and loop of Henle®. Kidney organoids
and tubuloids can be used for the study of
physiology, disease modeling, drug screening, and
tissue transplantation. A tumor tubuloids bank has
been established to study drug targets[62‘63]. Pediatric
cancer organoid biobanks of different kidney tumors
are developed to study renal cell carcinoma,
malignant rhabdoid tumors, congenital mesoblastic
nephroma, and Wilms tumor®. The methods of
metabolomics and transcriptomics were used to
study the metabolic dynamics during the
differentiation of kidney organoids and the role of
important amino acids was shown in the regulation
and lineage maturation of the organoidlﬁs].

Blood Vessel Organoid

Human blood vessel organoids have been used
as a model to study diabetic vasculopathy[ee] and
hyperglycemia and inflammatory cytokines have
been shown to induce the thickening of the vascular
basement membrane'®’. The human blood vessel
organoid contains different cell types such as
pericyte and endothelial cells and it self-assembles
into capillary networks with an envelope of

basement membrane®. Endothelial cells and mural
cells require blood vessel function and can be
generated from human pluripotent stem cells.
Human pluripotent stem cells were induced to
develop into blood vessel organoids which mimic
microvasculature in morphology, function, and
molecular signature[sgl.

Brain Organoid

hPSC-derived 3D organoids called cerebral
organoids were developed having discrete
interdependent brain regions and used to model
microcephaly[69]. iPSCs from a patient were used to
generate whole brain organoids and endothelial cells
from the patient itself were used to vascularize the
organoid[m]. The organoid models of the dorsal
forebrain are populated with a rich diversity of cell
types that are normally present in the cerebral
cortex. It indicates that the cellular diversity of the
brain can be reproduced in the lab” . Human
cerebral organoid has been demonstrated to model
glioblastoma’”.  Vascularized human  cortical
organoids were developed to model the
development of the cortex which can be used to
study brain pathology and provide a platform to
develop cell therapies and model the nervous
system disorder and injuries[73]. Brain organoids were
engineered to mimic fetal brain development and
used in modeling Zika virus-induced microcephaly”*.
Also, human brain organoids were used to
demonstrate the neurotoxic effect of SARS-CoV-
2" The dorsal-ventral axis of the brain was
established by fusing dorsal forebrain and ventral
forebrain organoids in a coculture. These organoids
can be a good model to recapitulate complex
interactions among different parts of the brain”®.
Microfilament engineered cerebral organoids can
form neuroectoderm and cortical region and
reconstitution of the basement membrane leads to
the formation of polarized cortical plate and radial
units””’®. A human cortical organoid was developed
showing dynamic changes in the cell population and
electrical activitym]. A  miniaturized multi-well
spinning bioreactor was used to generate the
forebrain, midbrain, and hypothalamus organoid
from the hiPSCs"**”. Blood-brain barrier organoids
were developed by coculture of endothelial cells,
pericytes, and astrocytes by culturing them in low
adhesion  conditions®.  The patient-derived
glioblastoma cells were grown inside the cerebral
organoids to form a model wherein glioblastoma
cells get an environment similar to the natural
microenvironment to understand the disease



964

Biomed Environ Sci, 2023; 36(10): 959-971

pathology and targeted therapy. The glioblastoma
cerebral organoid (GLICO) model provides a system
mimicking the primary human glioblastoma
multiforme in ex vivo and can be useful for high-
throughput drug screeninglsz]. A human pluripotent
stem cell-derived cerebral organoid has been
developed which can produce cortical neurons and
recapitulates cortical development and patient-
specific iPSCs have also been used to develop the
model for microcephaly[sg'gal. A Sonic Hedgehog
(SHH) protein gradient was established in forebrain
organoids that can enable the formation of the
anteroposterior and dorsoventral axis in the human
brain organoid[84]. The toxic effect of alcohol on cell
signaling pathways and neurons was studied at the
cellular, metabolic, and gene expression levels. For
instance, alcohol-induced neurotoxicity has been
studied in iPSC-derived cerebral organoids to model
the fetal alcohol spectrum disorder in the fetus of
alcoholic mother®™. Cerebral organoids developed
from the iPSC cells of schizophrenia patients were
used to understand the molecular basis of the
disease by studying the transcriptomic changes and
metabolic changes in these organoid[86]. Various
imaging and analysis methods have been developed
and image acquisition methods have been improved
to study and adapt to the increasing demands of
cerebral organoid research data®. Primary
embryonic stem cells derived from zebrafish and
medaka have been shown to form the anterior
neural structures®™ and blastula stage cell
aggregates could mimic eye developmental stages
such as the retinal specification, morphogenesis, and
differentiation. The number of cell aggregates,
genetic factors, and the changes in morphology was
mimicking the in vivo conditions.

Retinal Organoid

Studies with human and mouse ES cells have
shown that these cells can self-assemble to form the
cell aggregates in the 3D suspension culture to form
retinal tissues under the low serum concentration®®**".
Retinal organoids from human pluripotent stem cells
were derived and used to investigate retinal
development, retinal disease modeling, and
therapeutic development[gzl. Light-sensitive retinal
organoids were developed that had multiple nuclear
and synaptic layers. The cell types of the retinal
organoids developed in vitro demonstrated stable
structure at a rate similar to the human retinal
development in vivo"®. Cone-rich retinal organoids
were developed and their generation, transcriptome
profiling, and functional validation demonstrated

their resemblance to macula/fove[94]. The
reproducibility and quicker development of fish-
derived organoids along with advanced gene-editing
technology makes it convenient to understand the
development and diseases in animals. Fish-derived
organoids can also help in understanding the effects
of the physical environment and chemical factors on
the morphogenesis and differentiation of embryonic
tissues. Lucie Zilovafish’s primary embryonic stem
cells can self-assemble to form retinal tissue which
mimics the in-vivo early eye development[gsl.

Pancreatic Organoid

Protein C receptor-positive (Procr+) cells, present
in the islet of the pancreas in an undifferentiated
state and have epithelial-to-mesenchymal transition
characteristics can differentiate to form all four
types (o, B, 6, and PP cells) of endocrine cells. These
Procr+ cells can form islet-like organoids and can be
maintained for a longer time on serial passaging[%].
Pancreatic organoid models have been established
from tumors and biopsies and shown to survive
cryopreservation. Pancreatic organoids could mimic
the pancreatic duct and orthotopically transplanted
pancreatic cancer organoid shows similarity in
disease progression and metastasis®®. These
organoids can be used to study alterations in genes
and changes in specific pathways responsible for
cancer progression®.

Endometrium Organoid

Novel and promising endometrium organoid was
developed from mouse and human endometrium
tissue which mimics the molecular and histologic
architecture of the respective tissues®”. The
developed organoid responded to estrogen and
progesterone and human endometrial organoids
also mimic the menstrual cycle on hormonal
treatment””. Human endometrial organoids were
developed to study the embryo implantation process
and these organoids were able to differentiate into
pinopodes, large cytoplasmic apical protrusions[%].
3D culture of normal and deciduous endometrium
was developed which could respond to reproductive
hormones and showed the early characteristics of
pregnancy[ggl. Mammary tumor organoids have been
developed from mouse models engineered for the
deficiency of BRCA1 and BRCA2!"*.

Prostate Organoid

Prostate organoids are generally responsive to
androgen and it mimics the prostate epithelium[m“.
Prostate organoids can be generated from adult
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stem cells and pluripotent cells from mice, human
benign, and malignant tumors and can be
manipulated at the molecular level using
CRISPR/Cas9 and shRNA systems[m]. In the mouse
model, luminal C cells located at distal prostate
invagination tips were shown to have a higher
potential to form the organoid and regeneration of
the prostate epithelial duct and it forms the distal
prostate luminal lineage by self-renewal and
differentiation"*. A single luminal stem/progenitor
cell was shown to generate 3D prostate organoids
and it had shown structural similarity with basal cells
and luminal cells, long-term expansion, and
functional androgen receptor signalling[1°4]. Luminal
cells are favoured for organoid generation and form
basal cells in culture™®. Prostate cancer cell lines
LNCaP and C4-2B were used to form organoids with
glandular structure and the organoid has androgen
receptor-positive adenocarcinoma cells but p63-
positive basal cells were absent™®. Mouse and
human bladder organoids have been cultured
efficiently and genetically manipulated™”. These can
be established from the cancer tissues, biopsies, and
passaged for a longer period"®.

Testicular Organoid

Testicular organoids have been used to study
cell-cell interactions, germ-cell niches, disease
modelling, and testicular cancer. Testicular
organoids consisting of germ cells, Sertoli cells,
Leydig cells, and peritubular myoid cells were
developed from pigs, mice, macaque, and
humans™. Sertoli-like cells™” and Leydig-like
cells"”*"*Y have been derived from pluripotent cells.
iPSCs can be induced to form Sertoli cells, Leydig
cells, germ cells, peritubular cells, and endothelial
cells, and a combination of these can give a
functional testis™?. Microwell culture system was
used to generate thousands of homogeneous
porcine testicular organoids which had testis-specific
architecture and cell associations™*. Moreover,
testicular cells isolated from testes tissue were
cultured in the presence or absence of a scaffold
which further led to the development of testicular
organoids[m].

Cardiac Organoid

Cardiac organoids were developed using human-
induced stem cell-derived cardiomyocytesllls]. The
derived embryoid bodies were cast on rat-
engineered heart tissue (EHT) to check the human
induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CM) embryoid body (EB)

controlled beating activity and it was found that EB-
controlled beating activity was a regular beating.
Action potential and calcium transient transmission
from EB were directly related to rat EHT. Heart
forming organoid (HFOs) was generated from human
pluripotent stem cells aggregated by directed cardiac
differentiation through modulation of the Wnt
pathway and small molecules™®. HFOs structures
had a myocardial layer that was lined by
endocardial-like cells and encircled by septum
transversum-like Anlagen. The composition of HFOs
closely mimics early native heart Anlagen. Human
cardiac organoids have been generated to model
myocardial infarction and screening of drug
toxicity[m].

DRUG SCREENING USING ORGANOIDS

Most of the drugs failed in clinical trials in phase
Il and phase Ill from 2013 to 2015[118], because of the
effectiveness and safety of the candidate drugs.
Hence, the development of a model system that can
provide a better estimate of effectiveness and safety
is required which can minimize the cost of drug
development as well as enhance the rate of success.
Patient-derived organoids as well as adult stem
cell/iPSC-derived organoids have played a pivotal
role as a drug screening model in the last decade.
Organoids can recapitulate the morphological,
structural, and functional characteristics of the body
organs, and hence act as a reliable and better model
compared to the animal models and cell lines™.
Organoids can help eliminate the biases of modern
medicine because of the differences in the genetics
of patients, anomalies in the prediction of outcomes,
and the longer time taken in the novel drug
development. Organoids developed from a specific
diseased sample or a specific individual can improve
the treatment and act as powerful precision therapy
tools. Organoid biobank can be used for high
throughput screening (Figure 2). Drug screening for
cystic fibrosis using organoids has resulted in two
new cystic fibrosis drugs and the model has also
identified the unique mutations that can benefit
from the unique set of treatment options[m].
Organoid models can not only help in identifying
new drugs but also classify the patients who can
benefit or not benefit from the particular treatment
protocol. Organoids can be used in the future to
partially or completely replace animal models for
drug testing and development. Organoids grown
from the rectal biopsy of two patients had shown a
positive response to the drug ivacaftor and the
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patients had shown a positive response to treatment
with the drug[m]. Organoids derived from primary
human pancreatic ductal adenocarcinoma have been
used to develop new drugs against the disease'™”.
Organoids were derived from intrahepatic
cholangiocarcinoma, gall bladder cancer, and
neuroendocrine carcinoma of the ampulla of Vater
and it was shown on compound library screening
that antifungal drugs amorolfine and fenticonazole
can suppress the organoids derived from biliary tract
carcinomas with minimal toxicity on normal biliary
epithelial cells™?, Organoid studies can be a useful
preclinical model for pharmacodynamic profiling and
drug screening platforms. This way, the organoid
research domain can help to improve the efficacy
and specificity of drugs; and to find out novel drug
targets. Seahorse XF analysis was optimized and
used to investigate the bioenergetics of organoids
and characterize the responses to drugs, and gene
knockdowns and track the metabolic changes in
specific cell types[m]. One of the best examples of
organoid uses for drug screening is the Forskolin-
induced Swelling in Intestinal Organoids. Cystic
fibrosis transmembrane conductance regulator
(CFTR)-modulating drugs correct surface expression
and/or function of the mutant CFTR channel in
subjects with cystic fibrosis (CF) but the major
challenge is the identification of subject that can
benefit from the drug as CFTR gene shows
heterogeneity and other factors might be involved in
drug efficacy. To address this problem, an epithelial
organoid is developed from the rectal biopsies of
patient in organoid growth medium and drug
screening is done to identify the correct drug for the
individual patient. Forskolin-induced swelling is

-
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J p High throughput
""—A screening

f——-—x = = In-vitro assays
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—= - Bioinformatics support

Figure 2. Organoid based drug screening and
target validation platform.

monitored in organoid using calcein green. In vitro
extent of swell response is related to the clinical
response to the treatment in the patient. The assay
is a cost-effective approach for identification of
patients who will respond to the drug independent
of their CFTR mutations. This assay can also help in
development of future new CFTR modulators”®®*?.

COMPUTATIONAL APPROACHES ON ORGANOIDS
AND RELATED STUDY

In this era, the wide application of various
machine learning (ML) techniques and/or the
employment of deep learning (DL) algorithms in the
sphere of healthcare services has accelerated the
computational procedure of detection along with
the commencement of early diagnosis of different
diseases/disorders to enhance the survival rate of
human beings as well as prolong the lifetime of the
patients. Several ML and DL methods including
Logistic Regression (LR), Random Forest (RF),
Support Vector Machine (SVM), Decision Tree (DT),
K-Nearest Neighbor (KNN), Convolutional Neural
Network (CNN) are rapidly deployed to detect the
presence of disease and diagnose the disease for
shielding the human organs. Table 1 explores some
related research works regarding the usage of the
principles of ML and DL for the diseases responsible
for affecting various human organs.

The current methods of manufacturing organoids
are yet to demonstrate consistency and robustness.
ML can help design and test organoids utilizing
computers rather than the traditional lab method.
Scalable production of high-grade organoids can be
possible with the help of ML/DL. Mechano-
transduction pathways can be applied to regulate
the manufacturing of organoids and ML methods can
help in the identification of key signature
cytoskeleton states associated with the phenotype
of the organoid.

DISCUSSION AND LIMITATIONS OF
ORGANOID CULTURE

Organoid  technology provides a great
opportunity for the study of organogenesis, cell
differentiation, cell-cell interactions, and
physiological functions but it has some inherent
limitations.  Organoid culture doesn’t have
mesenchymal cells, immune cells, and vasculature
hence it can’t exactly mimic the organs or tissues of
the body but the coculture can improve the
architecture of the organoids[m]. Organoids can’t
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model multi-organ pathologies and it recapitulates
only part of the entire body hence studies in animal
models should be used to complement the organoid
studies™. Organoid studies can’t mimic the
developmental axis of the organ and lack a
functional immune system and complete
physiological conditions. Protocols and culture
conditions for organoid needs to be well defined to
enhance reproducibility and cell types and structures
in organoid should be compared with the respective
organ. Maintenance of organoid and derived
structures need to be standardized for maintenance
for a longer time. The establishment of a tissue bank
and distribution hub can provide uniformity in the
work performed at different labs. The results
obtained from organoids might vary depending on
the source of initiating cells (such as cell lines, fetal
or adult primary stem cells, or iPSC cells), culture
media, and growth conditions used for iPSC or
organoid maintenance. The reproducibility of the

organoid varies according to the type and complexity
of the assay, source of initiating cells, and hence
proper quality control is required for minimizing the
variability[m]. In the organoids structure of the
colon, the function of cystic fibrosis transmembrane
conductance regulator (CFTR) protein and its rescue
by CFTR modulators can be quantified using the
forskolin-induced swelling assay and it has been
widely used to screen drugs or find out the patient-
specific drugs[m'ns]. Similar kinds of organoid-based
assay/readout methods for other human organs are
lacking.

Currently organoid technology is having difficulty
in homogenization and lacks the scalability for high
throughput screens and large-scale cell therapy.
Improvement in cell culture methods and ECM
support may produce more scalable and
reproducible organoids. For cell transplantation
therapy using organoids, Matrigel scaffold needs to
be replaced by a more biocompatible material.

Table 1. Computational approaches of ML and DL for detecting and diagnosing disease

Employed ML Associated

Advantages
approaches organ

Future challenges Reference

Neural Networks, Head and

Logistic Regression Neck cancer-affected patients.

Effective diagnosis of head and neck

Producing better diagnostic accuracy [126]
considering smoking history along with the
perineural invasion of patients.

DT, RF Heart Heart disease detection with high A diverse mixture of ML techniques to predict [127]
accuracy. heart diseases with better accuracy.
KNN Liver Early and effective prediction of chronic Development of a model for obtaining more [128]
liver infections. accuracy to detect chronic liver infections.
DL Pancreas DL-based Nucleus Classification of images Employment of a larger dataset to produce [129]
for predicting pancreas cancer with high better accuracy for predicting pancreas cancer.
accuracy.
Bayes classifiers, Stomach Creation of a model by dint of ML Avoid the statistical assumptions and [130]
SVM approaches to initially detect stomach consideration of larger datasets to detect
cancer. stomach cancer with better accuracy.
LR, RF Kidney Effective diagnosis of chronic kidney Improvement in diagnosis of CKD with better [131]
diseases (CKD) with superior accuracy. accuracy considering more categories of severe
CKD and more complex data samples of
patients.
CNN Lung Lung cancer prediction from data of CT  Consideration of the smoking history of [132]
images. patients.
Shallow Breast Breast cancer identification with higher  This works compared with only limited CNN and [133]
convolutional accuracy. deep learning methods, while these number
neural network could be extended in future for better
prospective and better efficiency.
DL Brain Effective diagnosis of brain cancer by This work could be extended to utilize in other [134]
highly efficient deep learning model human cancers for designing DL-oriented
depending upon CNN for glioblastoma diagnostic methods through more high-
multiforme (GBM) subtype detection throughput experimental data profile.
with superior accuracy.
DL/CNN Brain Explanation-driven DL model through the Classification techniques with higher accuracy [135]

use of CNN, local interpretable model-
agnostic explanation (LIME) as well as

and better optimizer could be applied and
superimposed on proposed technique.

Shapley additive explanation (SHAP) to

predict discrete subtypes of brain
tumours from MRI image dataset.
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For the stable scaling up of organoids and their
reproducibility, we need to ensure a microbe free
cell culture form cell production to validation,
development of organoid storage and delivery
methods, and methods to validate the safety and
efficacy of the in vivo organoids.

Current protocols have limitations of readability
as optical monitoring provides unclear information
about functionality of the organoids. The readouts of
metabolites, secreted factors are variable because of
the organoid formation methods. The integration of
miniature biosensors into developing organoids can
solve this problem but it needs to undergo intensive
research and development to achieve that goal.
Readouts can be improved by controlled imaging
and automated analysis, insertion of miniaturized
electrochemical probes, and parallelization and high
throughput organoid generation. Some of the other
limitations of organoid technology are limited level
of maturity and functions of organoids, accessibility
of organoids because of short life span,
heterogeneity such as variation in organoid
formation efficiency, and differences in end point
morphology and function.

Organoid technology also raises several ethical
issues such as sources of stem cells, informed
consent and privacy of cell donors, moral and legal
conditions associated with organoids use, gene
editing and chimera formation, commercialization,
equity in results of treatment and commercialization
of the organoids. Misuse and dual use of stored
organoids can also have ethical implications as
current guidelines are not very clear about organoid
uses.

CONCLUSIONS AND PERSPECTIVE

Human organoids have tremendous potential in
translational applications and their genetic
manipulation, and co-culture with microbes and
parasites have opened new models to study disease
mechanisms. Human organoids also provide a great
opportunity to validate the results generated from
the studies on animal models. The fast
developments in the field of organoid research have
transformed the ways experiments are done in the
lab. This survey article demonstrates the recent
trends in organoid research and highlights the
important growth conditions and determining
factors that help the in vitro development of
organoids and the possible uses of organoids in
disease characterization. Finally, the computational
frameworks (viz., machine learning, deep learning,

artificial  intelligence, and soft computing
approaches) related to this study are also amended
to this survey paper for better exploration of related
diseases.
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