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Hepatocellular carcinoma (HCC) is a highly
aggressive primary liver malignancy and the third
most common cause of cancer-related deaths
worldwide. Although early HCC can be treated
through surgical resection, liver transplantation, and
radical ablation, the early recurrence rate after
treatment is > 70%". Systemic therapy, such as
molecular-targeted agents, has made great advances
in HCC treatment, but the optimal therapeutic
approaches are still limited due to insidious onset
and late diagnosism. Therefore, efficient HCC
treatment strategies should be developed urgently.

HCC is a typical immunogenic tumor. Infiltrating
stromal and immune cells promote an
immunosuppressive  tumor  microenvironment,
allowing cancer cells to grow and evade immune
monitoring. Recent studies have reported that
immunosuppressive therapy can prolong the life of
cancer patientsB]. Immune-related genes (IRGs) are
the key drivers of HCC development and
progression. However, approximately 20% cancer
patients benefit from immunotherapy in the long
term®. Therefore, identifying new immunotherapy
markers and uncovering the underlying mechanisms
of immune checkpoints are important.

Recent high-throughput sequencing technologies
have suggested that RNA modification plays a key
role in various physiological and pathological
processes. N7-methylguanosine (m7G) is a common
RNA modification form™. It recruits cellular proteins
and mediates cap-related biological functions.
Moreover, m7G modification is closely associated
with tumor occurrence and development and
involved in multiple tumor-related processes[‘”. For
example, the m7G regulator methyltransferase like-1
protein (MTTL1) participates in tumor immune
infiltration by modifying m7G in neck squamous cell
carcinoma®. However, the correlation between
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m7G-related genes and immunity in HCC remains
unclear. Therefore, exploring the relationship
between m7G-related genes and immunity in HCC
and therapies targeting m7G-related genes may
provide new ideas for the immunotherapeutic HCC
treatment.

In this study, we obtained the HCC RNA-seq data
from the UCSC Xena database (https://xenabrowser.
net/datapages/), and GSE112790 datasets were
downloaded from GENE Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/). Then
ESTIMATE, which is used to infer the gene expression
data-based stromal and immune microenvironment
infiltration in malignant tumor tissues using the
"Estimate" R package of R 4.6.0, was applied to
monitor the stromal content (stromal score),
immune cell infiltration level (immune score),
ESTIMATE score, and tumor purity for each TCGA-
LIHC sample. The ESTIMATE score, which is defined
as tumor purity, is the sum of individual stromal and
immune scores. Then, we used the Spearman
correlation test to analyze the correlation between
m7G-related gene expression and stromal scores,
immune scores, ESTIMATE scores, and tumor purity.
Cluster analysis of EIF4E3 and LARP1 with immune
scores was performed using the Pearson correlation
distance-based consensus matrix using the R
package ConsensusClusterPlus. According to the
clustering results, the samples were divided into two
subgroups.

Then, the tumor-infiltrating immune cells were
analyzed using the CIBERSORT algorithm, a genetic
analysis tool that counts 22 infiltrating immune cells
in each sample. The ssGSEA method of the R
software Gene Set Variation Analysis (GSVA)
software package was used to analyze the infiltration
level of 28 immune cells. Visual data analysis of
immune checkpoints in clusterl and cluster2 was

1. Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen
518033, Guangdong, China; 2. Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen

518033, Guangdong, China


https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/

470

Biomed Environ Sci, 2023; 36(5): 469-475

performed using the R package.

Further study of immune infiltration in the two
subgroups. The outlier genes and samples were
removed using the goodSamplesGenes method of
the R software package WGCNA, and the scale-free
co-expression network was further constructed. We
selected B = 5 (scale-free R* = 0.90) as the soft
threshold, obtained eight co-expression modules,
and calculated their correlation with cluster, stroma
score, immunity score, ESTIMATE score, and tumor
purity. Subsequently, 18 hub genes were obtained
by calculating the gene significance (GS) and module
membership  (MM). Then, we used the
protein—protein interaction (PPl) network and Kyto
Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis to analyze 18 hub genes. All
statistical analyses were conducted using R statistical
software version 4.0.2 and SPSS statistical software
(version 25.0). The survival curves were estimated
based on the Kaplan—Meier method and the
difference between groups was determined using
the log-rank test. The correlation of subtypes, genes,
and immune infiltration levels was analyzed using a
Pearson correlation coefficient. Hypothetical tests
were two-sided, with P-values of 0.05 considered
statistically significant.

m7G mRNA methylation is involved in various
tumor-related biological activities and closely related
to tumor occurrence and development®. Since
tumorigenesis and cancer progression are also
affected by the tumor immune microenvironment,
we explored the relationship between m7G-related
genes and immune infiltration in HCC. The analysis
flowchart is shown in Figure 1.

We assessed the stromal and immune cell
fractions of by calculating four ESTIMATE indices in
each sample. To explore the potential role of the
m7G-related genes in HCC patient tumor immunity,
we selected 32 m7G-associated genes reported in
prior articlesm, reviews[4’7], and gene cards (https://
www.genecards.org/) and evaluated the correlation
between each m7G-related gene expression and the
ESTIMATE results (Figure 2A). Considering that
EIF4E3 had the highest absolute correlation with the
immune score, we selected EIF4E3 for cluster
analysis with NUDT11, NUDT10, and LARP1 with
decreasing absolute values. Finally, EIF4E3 and
LARP1 with the best clustering effect according to
the consensus clustering results were selected to
categorize the samples into two clusters for
subsequent analysis (Figure 2B and Supplementary
Figure S1IA—C available in www.besjournal.com). The
heatmap showed that clusterl had high LARPI

expression and low EIF4E3 expression, whereas the
opposite expression patterns were observed for the
two genes in cluster2 (Supplementary Figure S1A
available in www.besjournal.com). The Wilcoxon
rank-sum test was performed for tumor and normal
tissues using RNA-seq data from TCGA-LIHC. EIF4E3
and LARP1 expression in tumor tissues were
significantly lower and higher than those in normal
tissues, respectively (Figure 2C, D). EIF4E3 and LARP1
expression in HCC patients in our study was
consistent with that reported in previous studies. In
addition, EIF4AE3 and LARP1 expression were
inversely correlated with immune scores in the
ESTIMATE analysis. Therefore, both EIF4E3 and
LARP1 may be involved in regulating m7G
modifications, which can affect immune infiltration
and immunotherapy response in patients.

To characterize the differences in clinical
characteristics, we performed survival curve for
EIF4E3 and LARP1 in high- and low-risk groups and
clusters (Figure 2E and Supplementary Figure S1) and
associated analysis (Table 1). First, we analyzed
EIF4E3 and LARP1 prognosis in high- and low-risk
groups and clusters using Kaplan—Meier methods.
The results showed that the survival curves of the
high- and low-risk groups in EIF4E3 and LARP1 were
not significantly different, while the survival curves
of the cluster group were different, and cluster2 had
a longer survival period than clusterl, which
indicated that cluster2 had a better prognosis.

Therefore, we used KEGG and GSEA enrichment
analyses to understand the functional differences
between the two clusters and found some enriched
immune-related pathways in cluster2 (Figure 3B and
Supplementary Figure S2A available in
www.besjournal.com). Next, we used the ESTIMATE
algorithm to calculate immune scores, stromal
scores, and tumor purity to understand the HCC
microenvironment. The results showed that patients
in cluster2 had high immune and stromal scores
(Figure 3C—F), suggesting that they may have a large
tumor immune microenvironment. The abundance
of immune cell infiltration contributes to the tumor
immune microenvironment growth[8’9]. Endogenous
T cells significantly delay malignant progression
through tumor response and invasion and T-cell
infiltration also increases tumor susceptibility to
immunotherapy with PD1-blocking antibodies;
particularly high CD8" T-cell expression affects
immunotherapy and survival outcomes in HCC
patients”. High CD8" T-cell expression can target
tumor cells in the tumor microenvironment to exert
anti-tumor immunity. In addition, DCs, which are key
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Figure 1. Flowchart of this study.
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antigen-presenting cells, promote anti-tumor
immunity by activating T cells. We used CIBERSORT
to analyze HCC data from TCGA database and found
that the proportion of CD8" T-cell infiltration in
cluster2 was higher than that in clusterl (Figure 3G).

Moreover, ssGSEA analysis indicated that the
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24 immune cell subtypes (CD8" T-cell, DC,
macrophage, natural killer cell, and natural killer T-
cell activation) showed significantly  higher
expression in cluster2 than those in clusterl
(Figure 3H). These results suggest that cluster2 may
respond well to tumor immunotherapy and achieve
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a good prognosis. Therefore, improving tumor T-cell
infiltration is one method for improving cancer
immunotherapy.

T-cell infiltration in tumors can be described as
high T-cell infiltration (hot tumor) or low T-cell
infiltration (cold tumor), with studies suggesting
different responses to immune checkpoint inhibitor
(ICl) treatment for hot and cold tumors. To identify
the differences and gain thorough understanding of
the immune microenvironment, we analyzed
immune checkpoint expression. We found that
immune checkpoints (PD1, PDL1, PDL2, CTLA4, LAG3,
HAVCR2, TIGIT, CD86, BTLA, NRPQ, LAIR1, LGALS9,
CH27, CD40, CD44, CD48, CD70, TNFRSF8, TNFRSF18,
TNFRSF14, and VSIR), particularly CTLA4, LAG3,
HAVCR2, and TIGIT, were highly expressed in
cluster2 (Supplementary Figure S3 available in
www.besjournal.com). ICls are beneficial for patients
with several types of cancer, including HCC, and anti-

CTLA-4 immune checkpoint blockade therapy
improves survival in advanced HCC patients[m]. In
addition, LAG3, TIM3, and ITIM restore the

responses of HCC-derived T cells to tumor antigens,
and combine with PDL1 and CTLA4 to have additive

effects. Activation of tumor-associated T cells by
immune checkpoint blockade is one of the most
successful immunotherapy approaches for various
solid tumors. Therefore cluster2 might benefit more
from ICI treatment than clusterl. EIF4E3 and LARP1
may promote cold tumor transformation into hot
tumors in HCC.

To further analyze the relationship between the
two clusters, we also studied the hub genes of the
subtypes. We applied the DEGs (630 upregulated
and 167 downregulated) to construct the WGCNA
network (Supplementary Figure S4AA-C).
Subsequently, module-trait analysis revealed that
the yellow module was significantly associated with
m7G (R = 0.29, P <0.01) and immunity (R = 0.90, P
<0.01). Then we obtained 18 hub genes (GZMA,
CCL5, S1PR4, GZMH, HCST, CTSW, GZMK, NKG7,
NCR3, CST7, CD2, CRTAM, CD27, GZMB, CD8B, LAG3,
CD8A, TNFRSF13B) from yellow module based on
MM > 0.8 and GS > 0.15 (Supplementary Figure
SAD-E available in www.besjournal.com). Among
these, CD27 co-stimulates OX40 and 4-1BB to
promote the survival of activated T cells, which is the
key to T-cell initiation and memory differentiation.

Table 1. Clinical features of two clusters

Number Clusterl (N = 160) Cluster2 (N = 208) P value
Age (Mean £ SD) 59.48 +13.63 59.43 £13.45 0.40
Gender, n (%) 0.09
Female 44 (11.96) 76 (20.65)
Male 116 (31.52) 132 (35.87)
M stage, n (%) 1
MO 123 (45.90) 141 (52.61)
M1 2(0.75) 2(0.75)
N stage, n (%) 1
NO 122 (48.22) 127 (50.20)
N1 2(0.79) 2(0.79)
T stage, n (%) 0.18
T1 75 (20.55) 105 (28.77)
T2 38 (10.41) 56 (15.34)
T3 42 (11.51) 36 (9.86)
T4 4(1.10) 9(2.47)
Pathological stage, n (%) 0.35
stage | 72 (20.93) 98 (28.49)
stage Il 35(10.17) 51(14.83)
stage Il 44 (12.79) 39 (11.34)
stage IV 2(0.58) 3(0.87)
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Under pathological conditions, CD27 binds to tumor
cell-expressed CD70. Chronic co-stimulation leads to
immune checkpoint expression in T cells, thus
depleting immune function. The LAG3 immune
checkpoint also plays a role in immune function
depletion in tumors. Therefore, we speculated that
cluster2 responded better to immunotherapy than
clusterl, probably due to EIF4E3- and LARP1-
mediated m7G modification.

We developed a PPl network and performed
correlation  analysis to determine the
interactions between proteins, which showed
that the 18 hub genes were strongly correlated
(Supplementary Figure S5A, B available in
www.besjournal.com). Subsequently, KEGG
enrichment analysis was performed to study the
biological functions of the 18 hub genes
(Supplementary Figure S5C). The results showed
that these genes were mainly enriched in the T-
cell receptor signaling pathway. The ESTIMATE
and ssGSEA datasets showed the same trend
(Supplementary Figure S5D and E).

We used 183 patients with GSE112790 as an
external dataset to validate our approach, which
further enhanced our knowledge on the association
between EIF4E3/LARP1 and immunity
(Supplementary Figure S6 available in  www.
besjournal.com). Further studies should explore the
relationship between EIF4E3/LARP1 and immunity
and its regulatory mechanism, which may provide a
promising target for improving the immunotherapy
response in HCC. This study still has some
limitations. Due to the use of TCGA and GEO public
databases, we could not explain EIF4E3 and LARP1
expression at the protein level or prove the direct
role of EIF4E3 and LARP1 in anti-tumor immunity.
Therefore, the direct mechanism needs to be further
studied.
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