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Scarlet fever (SF) is a common infectious disease
caused by group A streptococcus (GAS)™". During the
18th and 19th centuries, SF was a significant cause of
mortality in children aged 5-15 years worldwide™.
The incidence and fatality rates of SF have decreased
remarkably due to the widespread use of effective
antibiotics and improvements in diet and
sanitation®. However, the recent resurgence of SF
has sparked significant interest in infectious
diseases'”. Given the insufficient understanding of
the triggers that cause SF outbreaks and the absence
of available vaccines to prevent GAS infection to
date”, effective prevention and control programs
are needed to manage the ongoing spread of SF.

Time-series analysis is an invaluable tool for
decision-making and strategic planning because of
its ability to uncover patterns, trends, and
relationships by examining and interpreting data
points collected over a period[4]. Seasonal
autoregressive integrated moving average (SARIMA)
is the most common model in the field of health
because of its straightforward structure, rapid
applicability, and ability to provide meaningful
insights into datasets'”. SARIMA has proven
successful in estimating the prevalence, morbidity,
and mortality of contagious diseases. This is
achieved by capturing temporal dependency
properties and accounting for changing trends,
periodic fluctuations, and random variations in a
time series™. However, SARIMA fails to capture
long-term temporal dependencies because it is
designed to model short-term fluctuations.
Moreover, the use of integer differencing in SARIMA
can lead to over-differencing, potentially removing
valuable information that can affect parameter
estimation and fitting. Conversely, the seasonal
autoregressive  fractionally integrated moving
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average (SARFIMA), which incorporates fractional
differencing into SARIMA, overcomes these
limitations'™. Thus, it is well-suited for analyzing both
short- and long-term memory in time series, such as
finance, economics, hydrology, and meteorologym.
Additionally, SARFIMA does not involve complex
mathematical concepts. This transparency enables
end users to understand how the model is built and
to depend more on the results for decision-making
purposes. Despite these promising attributes, no
published work has been conducted using this
method to analyze and evaluate SF epidemics.
Therefore, the objectives of this study were to
examine the flexibility and efficacy of SARFIMA in
estimating SF epidemics in Liaoning, where the
yearly average morbidity was 10.363 per 100,000
persons, which is significantly higher than the
average level (average, 3.26 per 100,000 people per
year) in china'. This study also aimed to compare
the predictive accuracy and reliability of SARFIMA
against SARIMA.

We retrospectively gathered monthly SF incident
cases and population data of Liaoning between
January 2004 and December 2019 from the National
Notifiable Infectious Disease Surveillance System and
the Statistical Yearbook. Subsequently, the series
was split into two segments: a training subset from
January 2004 to December 2018 to establish the
SARIMA and SARFIMA and a test subset from
January to December 2019 to validate the
generalization of the models. An additional testing
dataset from January 2004 to December 2017 was
used to determine the reliability of the models. The
trend, seasonal, and irregular components were
estimated using Seasonal and Trend decomposition
with the Loess technique. The seasonal relative,
indicating the amount by which the incidence for
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that specific time tended to be higher (or lower)
than the average, was computed using multiplicative
decomposition. Changing SF epidemic patterns were
estimated using the average annual percentage
change (AAPC) based on Joinpoint (version 4.8.0.1).
SARIMA and SARFIMA were created using the
“forecast” and “arfima” packages in R 4.2. Moreover,
the incidence rate ratio (IRR) with a 95% confidence
interval (C/) was computed in the pre- and post-
outbreak SF by comparing the two proportionsm. To
determine the predictive quality, two types of
measurement indicators were calculated: scale-
dependent metrics, such as mean absolute deviation
(MAD) and root mean square error (RMSE), and
metrics based on percentage errors, such as mean
absolute percentage error (MAPE), mean error rate
(MER), and root mean square percentage error
(RMSPE)[SI. A Dbetter model was developed by
minimizing these metrics.

The study included a total of 70,020 incident
cases in Liaoning during 2004-2019, showing an
overall increase, but no statistical significance in SF
morbidity was observed, with AAPC = 4.493 (95% CI:
-22.278 t0 40.485; t = 0.291, P = 0.771). The highest
number of 6,728 cases (15.818 per 100,000 people)
was recorded in 2011, which was 2.085 times higher
than the lowest number of 2,181 cases (5.142 per
100,000 people) in 2013 (Supplementary Figure S1,
available in www.besjournal.com). The
decomposition results indicated that the number of
SF epidemics relatively increased during 2004-2010
(average 9.256 per 100,000 people annually), with
an AAPC of 6.758 (95% CI: -13.399 to 31.607; t =
0.613, P = 0.54) (Supplementary Figure S2, available
in www.besjournal.com). However, an unexpected
escalation was noted in 2011, and since then, it has
remained relatively steady (average 11.024 per
100,000 people annually), with AAPC = 1.899 (95%
Cl: -12.966 to 19.302; t = 0.234, P = 0.815). SF
morbidity was higher by a factor of 1.191 across the
period 2004-2010 (IRR = 1.191, 95% ClI: 1.188 to
1.193) (Supplementary Figures S1-S2). These results
align with the SF resurgence in Hong Kong, China and
South Korea®®. However, this trend did not align with
the resurgence of SF in Englandm in 2014. Moreover,
the exact factors driving the increased pathogenicity
of GAS are not fully understood. One probable
explanation is the acquisition of novel prophages
carrying new combinations of toxin and
antimicrobial resistance genes. This is associated
with the emergence and spread of predominant
genotypes of emm12 and emm1 in China™. Another
explanation could be the natural cyclic patterns of

the SF. As mentioned earlier, SF epidemics in China
have exhibited an approximately six-year cycle[gl. The
unexpected surge since 2011 may indicate an
emerging trend distinct from the previous phase of
low morbidity. A third plausible reason is the
relaxation of China’s two-child policy in 2011, which
resulted in an increase in the number of susceptible
populations. Fourth, improvements in the diagnostic
capacity and increased awareness among medical
workers may have contributed to the observed
increase. Finally, worsening air quality in China may
also be a contributing factor”.

Remarkable semi-annual seasonality was
observed in this study, with one peak in May—-June
and another in November—December
(Supplementary Figure S3, available in www.
besjournal.com). Different climatic features and the
beginning of spring and autumn semesters might
drive these peak activities™”. Our seasonal profile
concurs with the prior literature in Hong Kong,
China, South Korea[gl, and China’s mainland"’.
However, it disagrees with earlier findings in England
(peaking in February—March)m and Poland (peaking
in January—March)™. This disagreement might be
attributed to differences in school breaks,
population density, socioeconomic status, lifestyle,
climatic and ecological features, and predominant
GAS emm gene types“’m. In East Asia (including
China), emm1 and emm12 are the predominant gene
types responsible for SF outbreaks®™, whereas in
England, emm3, emm4, and emml2 are more
prevalentm. These variations in gene types may
contribute to differences in the timing of SF peaks
between East Asia and EuropeB]. Additionally, SF
epidemics remain at a low level in February each
year, and some activities, such as the winter holidays
and Spring Festival in China, could explain the
reduced SF epidemicsm.

The SARFIMA parameters (including p, g, P, and
Q) were estimated, and the number of differencing
orders and preferred modes were selected by
eliminating those with a lower log-likelihood (refer
to Supplementary Materials [SARFIMA method],
available in www.besjournal.com). Supplementary
Table S1 (available in www.besjournal.com)
summarizes the modes of the best SARFIMA (3, O,
1)(3, -0.347, 0),,, suggesting that the preferred
model was selected as the one with mode 1. This
model reported the maximum log-likelihood
(-1193.7), coupled with the minimum Akaike’s
information criterion (2411.391) and Bayesian
information  criterion  (2449.706). Also, the
autocorrelation function (ACF) and partial ACF
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results for the forecast error are provided in
Supplementary Figure S4 (available in  www.
besjournal.com), showing most correlations were
within the 95% CI. The Ljung-Box Q test (x* = 0.158,
P = 0.691) indicated no serial correlations in the
residuals. These checks confirmed a white noise
series of forecast errors. Similarly, based on the
modeling processes, SARFIMA (2, -0.302, 1)(1, 0.471,
2),, was selected as the optimal model fitted to the
SF incidence series during 2004-2017; the model
diagnoses for their key parameters and residuals are
illustrated in Supplementary Table S2 and
Supplementary Figure S5 (available in  www.
besjournal.com). Accordingly, a prediction of the
future 12 and 24 data points was achieved based on
these two best SARFIMA models (Table 1 and
Supplementary Table S3, available in www.
besjournal.com).

Additionally, we identified the SARIMA (3, 0, 1)(3,
1, 0);, and SARIMA (2, 1, 2)(1, 1, 2),, specifications
based on the modeling steps as the best models for
the incidence series during 2004-2018 and
2004-2017, respectively (refer to Supplementary
Materials [SARIMA method], Supplementary Table
S4, and Supplementary Figure S6, available in
www.besjournal.com). Further diagnostic checks for
residuals are provided in Supplementary Figures
S4-S5 and Supplementary Table S4. Figure 1 and
Table 2 compare the forecasting accuracy and
reliability of SARIMA and SARFIMA. The MAD, MAPE,

RMSE, RMSPE, and MER values under SARFIMA were
lower than those under SARIMA for these two
datasets. This indicates that SARFIMA offered a
clearer perspective than SARIMA on capturing the
dynamic dependency structure in the spread of SF.
Previous literature has also indicated that SARFIMA
is sufficient for forecasting oil supply, road fatality
rate, temperature, and hemorrhagic fever with renal
syndrome, and some generate more accurate results
than SARIMA®. These studies provide additional
support for our findings and reinforce the usefulness
of SARFIMA as a promising alternative for analyzing
SF trends and seasonality.

SARFIMA extends SARIMA, replacing the
differencing term with fractional integration. With
the introduction of fractional integration[6], SARFIMA
has the potential to capture long-range dependence
and long memory effects in SF incidence series; it
enables better capture of nonlinear patterns and
complexities; it can offer more flexibility in modeling
the dependence structure of SF epidemics; it can
accommodate both seasonal and non-seasonal
series, allowing for the modeling of multiple
seasonal patterns; and it becomes robust to outliers
because the inclusion of long memory helps to
smooth out the effects of outliers. This explains why
SARFIMA generates more accurate and flexible
predictions than SARIMA. Considering the appeal of
SARFIMA, the importance of this sophisticated
model as a powerful forecasting tool should be

Table 1. Forecasts between January and December 2019 using SARIMA and SARFIMA

SARIMA (3, 0, 1)(3, 1, 0),,

SARFIMA (3, 0, 1)(3, -0.347, 0),,

Time Observations
Forecasts 95% CI Forecasts 95% CI

January 450 397 222 to 573 416 238 to 593
February 182 78 -171to 327 134 -123 to0 392
March 343 206 -64 to 475 228 -48 to 505
April 418 280 5to 555 298 19 to 577
May 538 594 314 to 875 540 259 to 822
June 587 688 398 to 977 603 315 to 891
July 380 300 2 to 598 305 8 to 602
August 119 42 -263 to 347 99 -204 to 403
September 217 106 -204 to 417 155 -153 to 462
October 300 195 -119 to 509 235 -75 to 545
November 559 505 187 to 823 488 176 to 801
December 617 672 351t0 993 599 284to 914

Note. SARIMA, seasonal autoregressive integrated moving average; SARFIMA, seasonal autoregressive
fractionally integrated moving average; Cl, confidence interval.
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underscored when analyzing the temporal levels of frameworks, and age-structure mathematical
other communicable diseases. However, further models, have recently emerged, showing potential
validation is required to confirm this finding. for time series forecasting. Consequently, studies
Furthermore, several new advanced statistical that specifically focus on comparing the predictive
techniques, such as Bayesian structural time series, quality of SARFIMA with the aforementioned
flexible transmitter networks, error-trend-seasonal techniques are essential.
B
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Figure 1. Comparison of the observed curves with the forecast curves under the SARIMA and SARFIMA.
(A) 12 hold-out data forecasts under the SARIMA in Liaoning, (B) 12 hold-out data forecasts under the
SARIMA in mainland China, (C) 12 hold-out data forecasts under the SARFIMA in Liaoning, and (D) 12
hold-out data forecasts under the SARFIMA in mainland China. The grey shaded area signifies the
forecasted curve with 95% Cl in plots. It appears that the forecasts under the SARFIMA are closer to the
observed curves.

Table 2. Comparison of forecast accuracy and reliability under SARIMA and SARFIMA

Models MAD MAPE RMSE RMSPE MER

12 hold-out data forecasts for the SF incidence in Liaoning
SARIMA (3,0, 1) (3, 1, 0), 89.124 0.300 94.142 0.227 0.355
SARFIMA (3, 0, 1) (3, -0.347, 0), 53.747 0.168 64.959 0.137 0.200
24 hold-out data forecasts for the SF incidence in Liaoning
SARIMA (2, 1,2) (1,1, 2);, 133.123 0.486 153.433 0.325 0.684
SARFIMA (2, -0.302, 1) (1, 0.471, 2)4, 63.199 0.239 81.777 0.154 0.384

Note. SARIMA, seasonal autoregressive integrated moving average; SARFIMA, seasonal autoregressive
fractionally integrated moving average; MAD, mean absolute deviation; MAPE, mean absolute percentage
error; RMSE, root mean square error; RMSPE, root mean square percentage error; MER, mean error rate.
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This study has several limitations. First, because
SF has become a milder disease with a low fatality
rate since the 20th century[lo], patients with mild
symptoms may not seek medical attention, leading
to underreporting and underdiagnosis of SF cases.
Second, owing to the unavailability of data from to
2020-2023, we only used data from 2004-2019 to
indicate model performance. The COVID-19
outbreak significantly changed the SF epidemic trend
from 2020-2023. Thus, the model should be
regularly updated by incorporating new data to
ensure reliable forecasting. Third, the findings of this
study pertain specifically to how well SARFIMA
estimates SF epidemics. Additional studies are
needed to validate the efficiency of this method in
estimating epidemics of other communicable
diseases. Fourth, 100 or more observations are
anticipated to be used to construct SARFIMA in
applications.  Finally, although SARFIMA with
exogenous variables could potentially offer a higher
forecasting accuracy, we could not obtain these SF-
related variables; hence, further analyses were
excluded.

In summary, SARFIMA is a versatile model that
can capture both short- and long-term dependencies
in SF incidence as well as seasonal patterns. Its
ability to capture complex dynamics and accurately
forecast SF epidemics enables it to have advantages
over SARIMA. Consequently, SARFIMA should be
considered a valuable alternative for estimating SF
epidemics to make informed decisions, optimize
resources, and plan for the future. Furthermore, the
incidence of SF remains high in Liaoning under
current interventions. This highlights the need for
additional preventive and control measures to

address this evolving situation.
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SUPPLEMENTARY MATERIAL

Supplementary Methods

Establishing the SARIMA Usual ARIMA is specified by three components: the autoregressive (AR) component,
the integrated (I) component, and the moving average (MA) component™, which involves predicting future
epidemics based on a non-seasonal time series. The SF incidence frequently has notable seasonal effects”, and
hence a seasonal ARIMA (SARIMA) should be adopted, it is an extension of the ARIMA by including the seasonal
versions of the three components above, which is designed to capture the underlying patterns and trends by
considering both the seasonal and non-seasonal components of a series'). The SARIMA is usually denoted as
SARIMA(p, d, q)(P, D, Q)s, where p refers to the number of AR terms, d represents the degree of differencing, q
signifies the number of MA terms, P, D, and Q stand for the seasonal terms above (i.e. SAR, SMA, and seasonal
difference), and S is the number of periods in a season. SARIMA requires determining the six parameters above
through four steps. First, SARIMA assumes stationarity, and thus stationarity of the SF incidence series was
analyzed by a KPSS unit root test'”, this statistic rejects stationarity when P < 0.05, indicating that differencing
was required to achieve data stationarity, and otherwise not. Second, identifying the appropriate structure by
inspecting the autocorrelation function (ACF) and partial ACF (PACF) plots that help roughly determine the
values of p, q, P, and Q™. A series of combinations emerged thereof, the best one was identified by
maximizing the log-likelihood (LL), and minimizing the Akaike's information criterion (AIC), corrected AIC (CAIC),
and Bayesian information criterion (BIC)™. Third, conducting model diagnostics to judge whether the resulting
residuals were white noise based on the Ljung-Box Q test, autocorrelogram, and partial autocorrelogram[l’sl.
Finally, once the best model satisfied the required tests, it could be determined for forecasting purposes.
Establishing the SARFIMA Time series often has a complex interplay between observed values, which is
characterized by a gradual decrease in magnitude over time, following a hyperbolic decay (HD) pattern[G].
Unlike SARIMA which assumes that the autocorrelation decays exponentially, SARFIMA allows for a HD of
autocorrelation, thus accommodating long-range dependence, which has been the most commonly used model
to analyze the underlying mechanisms driving HD'. By incorporating the fractional integration (d), SARFIMA
provides a flexible framework for capturing both short and long memory simultaneously[6‘7]. d in different
ranges suggests various features of a series®. Usually, the range d; € (-1, 0.5) is used, so if d; € (-0.5, 0),
indicating the invertibility of the series; if d; € (-1, -0.5), indicating the anti-persistence of the series; if dg=0,
indicating the short memory and mean-reverting process of the series; and if d; € (0, 0.5), indicating the long-
range persistence of the series®®. Often, a SARFIMA is denoted as SARFIMA (p, d*, a)(P, D*, Q)s, where d=d+
dsand D'=D+ Dy, dsor Dy represents the fractional integration, and d or D signifies the integer part (where d or
D2 O)[s]. The Hurst (H) exponent serves as a valuable statistical measure used to analyze the long-term memory
and predictability of a time series as it quantifies the degree of persistence or anti-persistence present in a
series”. The relationship between H and dis denoted as dgor Dy= H - 0.5, so if H > 0.5, indicating a persistent
series; if H < 0.5, suggesting an anti-persistent series; and if H = 0.5, showing a random walk of series®®”). The
computation of H includes some techniques such as rescaled range (R/S) analysis or detrended fluctuation
analysis[gl. This study used the corrected R/S to determine whether the SF incidence series displays long-range
properties. Constructing the SARFIMA requires selecting the best modes as it is under the assumption of
multiple modes (i.e. beginning the fits with multiple starting values), causing more than one mode'®. The best
one was identified by maximizing LL and minimizing AIC and BIC®®. The other steps required estimating the
parameters and conducting model diagnostics, which followed what was indicated in SARIMA.
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Supplementary Table S1. Resultant candidate modes under the SARFIMA(3, 0, 1)(3, -0.347, 0),

Modes AIC BIC LL

Mode 1 1654.925 1690.048 -816.463
Mode 2 1656.486 1691.608 -817.243
Mode 3 1656.844 1691.967 -817.422
Mode 4 1658.588 1693.71 -818.294
Mode 5 1658.738 1693.861 -818.369
Mode 6 1659.058 1694.18 -818.529
Mode 7 1659.949 1695.072 -818.975
Mode 8 1660.268 1695.39 -819.134
Mode 9 1662.806 1697.928 -820.403
Mode 10 1663.734 1698.856 -820.867
Mode 11 1665.047 1700.17 -821.524
Mode 12 1666.785 1701.907 -822.392
Mode 13 1666.866 1701.989 -822.433
Mode 14 1667.475 1702.597 -822.737
Mode 15 1672.506 1707.629 -825.253
Mode 16 1675.773 1710.896 -826.887
Mode 17 1683.103 1718.225 -830.551
Mode 18 1692.033 1727.156 -835.017
Mode 19 1692.24 1727.362 -835.12

Mode 20 1692.442 1727.565 -835.221
Mode 21 1700.832 1735.954 -839.416
Mode 22 1702.176 1737.299 -840.088
Mode 23 1703.389 1738.512 -840.695
Mode 24 1714.219 1749.341 -846.109
Mode 25 1714.768 1749.89 -846.384
Mode 26 1732.879 1768.002 -855.44

Mode 27 1738.179 1773.301 -858.089

Note. SARFIMA, seasonal autoregressive fractionally integrated moving average; AIC, Akaike’s information
criterion; BIC, Bayesian information criterion; LL, log-likelihood.
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Supplementary Table S2. Resultant candidate modes under the SARFIMA(2, -0.302, 1)(1, 0.471, 2),,

Modes AlC BIC LL
Mode 1 1561.067 1595.431 -769.534
Mode 2 1561.444 1595.808 -769.722
Mode 3 1561.448 1595.811 -769.724
Mode 4 1561.448 1595.811 -769.724
Mode 5 1561.45 1595.814 -769.725
Mode 6 1561.486 1595.85 -769.743
Mode 7 1561.495 1595.859 -769.748
Mode 8 1561.499 1595.863 -769.75
Mode 9 1561.502 1595.865 -769.751
Mode 10 1561.506 1595.87 -769.753
Mode 11 1561.509 1595.873 -769.755
Mode 12 1561.511 1595.874 -769.755
Mode 13 1561.511 1595.875 -769.755
Mode 14 1561.512 1595.875 -769.756
Mode 15 1561.512 1595.875 -769.756
Mode 16 1561.512 1595.876 -769.756
Mode 17 1561.512 1595.876 -769.756
Mode 18 1561.514 1595.878 -769.757
Mode 19 1561.74 1596.103 -769.87
Mode 20 1561.753 1596.117 -769.877
Mode 21 1561.776 1596.14 -769.888
Mode 22 1561.791 1596.154 -769.895
Mode 23 1561.811 1596.174 -769.905
Mode 24 1561.83 1596.194 -769.915
Mode 25 1561.843 1596.207 -769.922
Mode 26 1561.846 1596.21 -769.923
Mode 27 1561.855 1596.218 -769.927
Mode 28 1561.86 1596.224 -769.93
Mode 29 1561.865 1596.229 -769.933
Mode 30 1561.867 1596.231 -769.934
Mode 31 1561.883 1596.247 -769.941
Mode 32 1561.968 1596.331 -769.984
Mode 33 1562.251 1596.615 -770.126
Mode 34 1562.261 1596.625 -770.131
Mode 35 1562.871 1597.235 -770.436
Mode 36 1563.323 1597.687 -770.661
Mode 37 1563.362 1597.726 -770.681
Mode 38 1563.447 1597.81 -770.723
Mode 39 1563.761 1598.124 -770.88
Mode 40 1564.014 1598.378 -771.007
Mode 41 1564.144 1598.507 -771.072
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Continued
Modes AIC BIC LL
Mode 42 1564.149 1598.512 -771.074
Mode 43 1564.15 1598.513 -771.075
Mode 44 1564.158 1598.521 -771.079
Mode 45 1564.159 1598.523 -771.08
Mode 46 1564.162 1598.526 -771.081
Mode 47 1564.189 1598.553 -771.095
Mode 48 1564.213 1598.576 -771.106
Mode 49 1564.377 1598.741 -771.189
Mode 50 1564.683 1599.047 -771.342
Mode 51 1564.755 1599.119 -771.377
Mode 52 1564.992 1599.356 -771.496
Mode 53 1565.249 1599.612 -771.624
Mode 54 1565.656 1600.02 -771.828
Mode 55 1566.507 1600.87 -772.253
Mode 56 1567.261 1601.625 -772.631
Mode 57 1567.358 1601.722 -772.679
Mode 58 1567.595 1601.959 -772.798
Mode 59 1567.683 1602.047 -772.842
Mode 60 1567.746 1602.109 -772.873
Mode 61 1568.846 1603.21 -773.423
Mode 62 1569.285 1603.649 -773.643
Mode 63 1570.262 1604.625 -774.131
Mode 64 1570.905 1605.268 -774.452
Mode 65 1570.961 1605.325 -774.481
Mode 66 1571.379 1605.742 -774.689
Mode 67 1573.295 1607.658 -775.647
Mode 68 1574.893 1609.257 -776.447
Mode 69 1575.204 1609.567 -776.602
Mode 70 1575.716 1610.079 -776.858
Mode 71 1576.168 1610.531 -777.084
Mode 72 1576.184 1610.547 -777.092
Mode 73 1576.558 1610.921 -777.279
Mode 74 1576.932 1611.296 -777.466
Mode 75 1580.158 1614.521 -779.079
Mode 76 1590.366 1624.73 -784.183
Mode 77 1590.854 1625.218 -784.427
Mode 78 1595.913 1630.276 -786.956
Mode 79 1598.18 1632.544 -788.09
Mode 80 1600.319 1634.682 -789.159
Mode 81 1611.598 1645.962 -794.799

Note. SARFIMA, seasonal autoregressive fractionally integrated moving average; AIC, Akaike's information

criterion; BIC, Bayesian information criterion; LL, log-likelihood.
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Supplementary Table S3. Forecasts between January 2018 and December 2019 from
the SARIMA and SARFIMA

SARIMA(2, 1,2)(1, 1, 2);, SARFIMA(2, -0.302, 1)(1, 0.471, 2),,
Time Observations
Forecasts 95% CI Forecasts 95% ClI
18-January 638 577 408 to 746 654 471 to 837
18-February 214 244 30 to 457 340 72 to 609
18-March 282 328 98 to 558 423 133 to 712
18-April 401 393 153 to 633 454 154 to 754
18-May 797 764 510 to 1018 654 347 to 961
18-June 855 856 575 to 1137 713 401 to 1,024
18-July 353 571 253 to 889 441 126 to 756
18-August 99 305 -48 to 658 219 -98 to 536
18-September 138 305 -70 to 681 266 -53to0 585
18-October 245 380 -9to 769 347 27 to 667
18-November 472 676 279 t0 1,074 605 28410 926
18-December 631 875 467 to 1,283 709 387 101,030
19-January 450 598 170 to 1,026 453 127 to 779
19-February 182 349 -102 to 801 208 -122to 538
19-March 343 450 -24 10 925 308 -24 10 639
19-April 418 442 -51to 934 361 28to0 693
19-May 538 730 22510 1,235 554 221to 887
19-June 587 774 25810 1,289 607 273 to 940
19-July 380 491 -36t0 1,018 365 31to 699
19-August 119 287 -253t0 828 164 -170 to 498
19-September 217 360 -197 to 918 216 -118 to 550
19-October 300 454 -120to 1,029 297 -37to 631
19-November 559 734 145+t0 1,322 545 211to 879
19-December 617 883 28310 1,484 629 295 to 963

Note. SARIMA, seasonal autoregressive integrated moving average; SARFIMA, seasonal autoregressive
fractionally integrated moving average; Cl, confidence interval.

Supplementary Table S4. Identified possible SARIMA with the AIC, CAIC, BIC, and LL values

Ljung-Box Q test

Models AIC CAIC BIC LL

X P
SARIMA(3, 0, 1)(0, 1, 1)y, 2012.96 2013.48 2031.70 -1000.48 0.108 0.743
SARIMA(3, 0, 1)(3, 1, 0),, 2007.61 2008.51 2032.60 -995.80 0.047 0.829
SARIMA(3, 0, 1)(2, 1, 0), 2018.84 2019.54 2040.71 -1002.71 0.130 0.718
SARIMA(3, 0, 1)(1, 1, 0), 2050.74 2051.26 2069.49 -1019.37 0.053 0.818
SARIMA(3, 0, 1)(1, 1, 1)y, 2014.59 2015.29 2036.46 -1000.30 0.120 0.729
SARIMA(2, 0, 1)(3, 1, 0), 2014.53 2015.23 2036.40 -1000.27 0.004 0.949
SARIMA(1, 0, 1)(3, 1, 0)y, 2014.55 2015.07 2033.29 -1001.27 0.114 0.735

Note. SARIMA, seasonal autoregressive integrated moving average; AIC, Akaike’s information criterion;
CAIC, corrected Akaike’s information criterion; BIC, Bayesian information criterion; LL, log-likelihood.
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Supplementary Figure S1. Yearly incident cases and incidence rate in Liaoning during 2004-2019. This
plot pinpoints that the SF outbreak occurred in 2011 and there is a periodic cycle pattern of around 4-7

years.

?
seasonal

|
=
o
o
'

-200 -

N
o
o
'
o

[y

o

o
'

o
\
remainder

-100 -
-200 -
2005

2010

2015
Time (year)

2020

Supplementary Figure S2. A seasonal decomposition of the SF incidence series based on the STL
technique. The (A) SF series is decomposed into (B) seasonal, (C) trend, and (D) irregular parts. It seems
that there is a periodic outbreak pattern and a clear seasonality in SF incidence.
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Supplementary Figure S3. The decomposed seasonal relative (SR) for the SF morbidity series using the
multiplicative decomposition method. A value of SR = 1 means that the incidence for that period is
exactly the same as the average. A value of SR >1 means the incidence is higher than the average
(indicating a high-risk season), and a value of SR <1 means this period’s incidence is lower than the
average (indicating a low-risk season). As shown, SF epidemics present pronounced dual seasonal
patterns per year.
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Supplementary Figure S4. ACF and PACF plots for the residual series under the SARIMA and SARFIMA. (A)
ACF and (B) PACF plots for the residual series under the SARIMA, (C) ACF and (D) PACF plots for the
residual series under the SARFIMA. Here the correlogram demonstrates that most spikes fall within the
95% Cl except for few outside this significance bounds (which is also reasonable because some high-order
correlations easily exceed the significance bounds by chance alone), indicating that there is little evidence
of non-white noise in the forecast errors.
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Supplementary Figure S5. ACF and PACF plots for the residual series under the SARIMA and SARFIMA
based on the data during 2004-2017 in Liaoning. (A) ACF and (B) PACF plots for the residual series under
the SARIMA, (C) ACF and (D) PACF plots for the residual series under the SARFIMA. Here the correlogram
demonstrates that most spikes fall within the 95% C/ except for few outside this significance bounds
(which is also reasonable because some high-order correlations easily exceed the significance bounds by
chance alone), indicating that there is little evidence of non-white noise in the forecast errors.
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Supplementary Figure S6. ACF and PACF plots for the seasonally differenced series in Liaoning. (A) ACF
plot, and (B) PACF plot. The significant spike at lag 3 in the PACF indicates that the maximum orders may
be 3 in the non-seasonal AR component, the significant spike at lag 10, 11, and 12, along with 23, 24, and
25 in the ACF suggests that the maximum orders may be 3 in the seasonal AR component. The significant
spikes at lag 12, 24, and 36 in the ACF suggests that the maximum orders may be 1 in the seasonal MA
component.
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