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Abstract

Objective    Triple-negative  breast  cancer  (TNBC)  poses  a  significant  challenge  for  treatment  efficacy.
CD8+ T cells, which are pivotal immune cells, can be effectively analyzed for differential gene expression
across  diverse  cell  populations  owing  to  rapid  advancements  in  sequencing  technology.  By  leveraging
these genes, our objective was to develop a prognostic model that accurately predicts the prognosis of
patients with TNBC and their responsiveness to immunotherapy.

Methods    Sample information and clinical data of TNBC were sourced from The Cancer Genome Atlas
and METABRIC databases. In the initial stage, we identified 67 differentially expressed genes associated
with immune response in CD8+ T cells. Subsequently, we narrowed our focus to three key genes, namely
CXCL13, GBP2, and GZMB, which were used to construct a prognostic model. The accuracy of the model
was  assessed  using  the  validation  set  data  and  receiver  operating  characteristic  (ROC)  curves.
Furthermore,  we  employed  various  methods,  including  Kyoto  Encyclopedia  of  Genes  and  Genomes
(KEGG)  pathway,  immune  infiltration,  and  correlation  analyses  with  CD274  (PD-L1)  to  explore  the
model's predictive efficacy in immunotherapeutic responses. Additionally, we investigated the potential
underlying biological pathways that contribute to divergent treatment responses.

Results    We successfully developed a model capable of predicting the prognosis of patients with TNBC.
The areas under the curve (AUC) values for the 1-, 3-, and 5-year survival predictions were 0.618, 0.652,
and  0.826,  respectively.  Employing  this  risk  model,  we  stratified  the  samples  into  high- and  low-risk
groups.  Through  KEGG  enrichment  analysis,  we  observed  that  the  high-risk  group  predominantly
exhibited  enrichment  in  metabolism-related  pathways  such  as  drug  and  chlorophyll  metabolism,
whereas  the  low-risk  group  demonstrated  significant  enrichment  in  cytokine  pathways.  Furthermore,
immune landscape analysis revealed noteworthy variations between (PD-L1) expression and risk scores,
indicating that our model effectively predicted the response of patients to immune-based treatments.

Conclusion    Our study demonstrates the potential of CXCL13, GBP2, and GZMB as prognostic indicators
of  clinical  outcomes  and  immunotherapy  responses  in  patients  with  TNBC.  These  findings  provide
valuable insights and novel avenues for developing immunotherapeutic approaches targeting TNBC.
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INTRODUCTION

T riple-negative  breast  cancer  (TNBC)  is
characterized  by  the  absence  of  estrogen
and  progesterone  receptors  and  HER2

expression.  It  is  predominantly  classified  as  basal
breast  cancer[1] and  accounts  for  10%–15% of  all
breast cancer (BC) cases. Despite the use of optimal
adjuvant  treatments,  TNBC  often  exhibits  early
metastasis and poor prognosis[2]. However, owing to
its  heightened  immunogenicity,  significant
infiltration  of  tumor-infiltrating  lymphocytes,  and
elevated PD-L1 expression, TNBC may have a greater
potential  to  benefit  from  immune  checkpoint
blockade  therapies[3].  Clinical  trials  have
demonstrated that the combination of atezolizumab
and  nab-paclitaxel  improves  survival  outcomes  in
patients  with  metastatic  TNBC  who  were  PD-L1
positive.  Nevertheless,  the  efficacy  of  single-agent
immune  checkpoint  inhibitors  in  TNBC  remains
limited,  necessitating the development of  strategies
to  enhance  the  antitumor  immune  response  and
prolong  the  survival  of  patients  with  metastatic
disease[4].

Recent  gene  expression  analyses  of  BC  have
revealed  distinct  subtypes  with  clinical,  biological,
and  therapeutic  significance.  Notably,  the  basal-like
tumor  group  shares  similarities  with  the  clinical
characteristics  of  breast  basal/myoepithelial  cells[5].
The  integration  of  precision  medicine  and  next-
generation  sequencing  in  cancer  diagnosis  has
facilitated  the  implementation  of  customized
treatment  approaches  based  on  molecular  marker
expression in both clinical practice and trial design[6].
Furthermore, large-scale gene sequencing and other
“omics” techniques have shed light  on dysregulated
pathways  in  TNBC,  leading  to  the  identification  of
actionable  molecular  features,  such  as  germline
BRCA1/2  mutations  or “BRCAness” the  presence  of
androgen receptors,  and rare genomic alterations[7].
A  comprehensive  understanding  of  these  genetic
changes  may  facilitate  the  development  of  novel
treatment strategies for TNBC.

The  presence  of  tumor-infiltrating  lymphocytes
(TILs)  in  adenocarcinoma  has  emerged  as  a  reliable
prognostic  factor  that  positively  affects  patient
survival, particularly in BC subtypes characterized by
triple-negative and HER2 overexpression[8]. Although
T  cells  constitute  the  primary  TIL  population[9],  the
correlation  between  quantitative  and  qualitative
variations  among  T  cell  subpopulations  and  patient
prognosis  remains  unclear.  Single-cell  sequencing
studies revealed that BCs with abundant TILs harbor

CD8+  T  cells  that  exhibit  characteristics  of  tissue-
resident  memory  (TRM)  cell  differentiation.  CD8+
TRM  cells  display  elevated  expression  of  immune
checkpoint molecules and effector proteins. Notably,
gene  signatures  specific  to  CD8+  TRM  cells  derived
from  scRNA-seq  data  were  strongly  associated  with
improved  survival  outcomes  in  patients  with  early-
stage  TNBC,  surpassing  the  prognostic  value  of  CD8
expression alone. CD8+ TRM cells  play a crucial  role
in  immune  surveillance  within  the  BC
microenvironment  and  represent  a  prime target  for
modulating immune checkpoint inhibition[10].

Based  on  available  data,  immune  checkpoint
inhibitor  therapy  holds  promise  as  a  targeted
treatment approach for patients with TNBC with the
ability  to  predict  treatment  responses[11].  Timing  of
treatment  is  crucial  as  biomarker  evaluation  for
patient response should ideally occur at the time of
initial  diagnosis,  allowing  for  the  consideration  of
immunotherapy  as  a  first-line  treatment  option.
However,  the  identification  of  reliable  biomarkers
that  can  accurately  predict  treatment  responses
remains a subject of ongoing research, necessitating
further  investigations  to  assist  in  the  selection  of
optimal  treatments  for  specific  patients.  Our
objective  was  to  develop  a  prognostic  model  for
TNBC  by  analyzing  immune-related  genes  that
exhibit  significant  differences  between  CD8+  T  cells
and  other  cell  types  in  TNBC.  This  model  aims  to
identify TNBC subpopulations that are most likely to
benefit  from  immunotherapy,  thus  facilitating
personalized treatment strategies. 

MATERIALS AND METHODS
 

Obtaining  Information  on  Triple-negative  Breast
Cancer Patients

To obtain the necessary information on patients
with  TNBC,  we  accessed  The  Cancer  Genome  Atlas
(TCGA)  database  (https://portal.gdc.cancer.gov/)
and the METABRIC database (http://www.cbioportal.
org/).  These  databases  provide  comprehensive
datasets  containing  RNA transcriptome data  (HTSeq
Counts  and  HTSeq  FPKM)  and  relevant  clinical
information specifically related to BC.

We retrieved datasets from these databases and
filtered  them  to  extract  information  pertaining  to
patients with TNBC. We obtained 271 TNBC samples
from the METABRIC database as the training set and
187  TNBC  samples  from  TCGA  as  the  validation  set
for  further  analysis.  All  data  obtained  were
standardized  to  ensure  consistency  and
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comparability across datasets. 

Identification of Immune-Related CD8+ T Genes

To  identify  the  immune-related  CD8+  T  genes
specific to TNBC, we accessed single-cell sequencing
data (GSE11068) from the TISCH database. From this
dataset,  we extracted differentially expressed genes
associated with CD8+ T cells in TNBC.

A  list  of  immune-related  genes  was  obtained
from  the  IMMPORT  database.  Using  the  R  package,
we  performed  an  intersection  analysis  between  the
differentially  expressed  genes  in  CD8+  T  cells  and
immune-related  genes.  This  analysis  identified  67
immune-related  CD8+  T  cell  differential  genes  that
were used for subsequent analyses. 

Construction  of  PPI  Network  and  Identification  of
Core Genes

We  used  the  STRING  database  to  construct  the
protein-protein  interaction  (PPI)  network.  This
allowed us to visualize the interactions between the
differentially  expressed  genes  obtained  in  the
previous  step.  By  integrating  available  PPI  data,  a
comprehensive PPI network was generated.

Next,  to  identify  hub  genes  associated  with
prognosis,  we  performed  univariate  regression
analysis  of  the  differentially  expressed  genes.  This
analysis  helped  us  identify  the  genes  that  exhibited
significant  differences  in  prognosis.  From  this
analysis,  we  selected  eight  genes  showing
statistically  significant  differences  for  further  model
construction  and analysis.  These  eight  genes  served
as core genes for subsequent steps in this study. 

Construction and Validation of Prognostic Models

Using  the  prognosis-related  genes  obtained
earlier,  we  employed  LASSO  regression  with  a  10-
fold  cross-validation  approach.  The  validation
process  involved setting  a P-value threshold  of  0.05
and running 1,000 cycles. To prevent overfitting, we
applied  random  perturbations  1,000  times  in  each
cycle.

Through  the  LASSO  regression  process,  we
identified  three  genes  and  their  corresponding
correlation  coefficients,  which  were  used  to
construct a prognostic model.

To assess the accuracy of the model, we analyzed
its  performance using a validation set.  This  involved
conducting  single-and  multi-factor  analyses  and
generating an area under the curve (AUC).

The  validation  process  ensured  the  robustness
and  reliability  of  the  prognostic  model,  provided
insight  into  the  differences  observed  in  the

validation  set,  and  evaluated  its  performance
through various analyses. 

Functional  Enrichment  Analysis  and  Mutation
Analysis

To  conduct  functional  enrichment  analysis,  we
used the Kyoto Encyclopedia of Genes and Genomes
(KEGG)  database.  Specifically,  we  employed  the
“ClusterProfiler” package (V 4.6.2)  to perform KEGG
analysis,  which  allowed  us  to  identify  and  analyze
the  significant  functional  pathways  associated  with
the  different  groups  identified  in  this  study.  This
analysis  provides  insights  into  the  important
biological  processes  and  pathways  involved  in  the
high- and low-risk groups.

Furthermore,  mutation  analysis  was  performed
using  the  Maftools  package  (V  2.14.0).  This  analysis
involved  examining  the  mutation  information,
specifically  within  the  high- and  low-risk  groups.  By
studying the mutation landscape, we aimed to gain a
better understanding of the genomic alterations and
potential  driver  mutations  associated  with  different
TNBC risk groups.

We  performed  several  analyses  to  assess  the
differences in response to immunotherapy between
the high- and low-risk groups. First, we examined the
differences  in  the  expression  of  CD274  (also  known
as PD-L1) between the two groups and evaluated its
correlation  with  risk  scores.  This  analysis  provides
insight into the potential association between CD274
expression and risk groups.

Next,  we  conducted  an  immune  infiltration
analysis  to  explore  the  variations  in  immune  cell
populations  between the  high- and  low-risk  groups.
This  analysis  aimed  to  identify  important  factors
related  to  the  immune  response  within  the  tumor
microenvironment.

Additionally,  we  performed  immune  functional
analysis  to  assess  the  functional  characteristics  of
the immune system in relation to the risk groups. By
examining immune-related functional  pathways and
processes, we aimed to identify the key factors that
may  contribute  to  differences  in  immunotherapy
responses.

To  validate  the  accuracy  of  the  risk  group
classification  in  predicting  immunotherapy
responses,  we  compared  the  responses  of  different
subtypes  of  samples.  Furthermore,  we  plotted  the
AUC to assess the predictive performance of the risk
group  classification  in  relation  to  immunotherapy
response.  This  analysis  provided  an  objective
evaluation of the accuracy of the model in predicting
the likelihood of positive immunotherapy outcomes. 
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RESULTS
 

Identification of CD8+ T Cell-Related Immune Genes

To  identify  CD8+  T  cell-related  immune  genes,
we  obtained  immune-related  gene  data  from  the
IMMPORT  (https://www.immport.org/home)  and
InnateDB (https://www.innatedb.ca/) databases. We
then  accessed  single-cell  data  of  TNBC  from  the
TISCH database (https://tisch.comp-genomics.org) to
extract the expression profile of CD8+ T cells.

In  the  GSE110686  dataset,  we  divided  the  cells
into  13  different  subpopulations  based  on  the
expression  of  marker  genes  (Figure  1A).
Subsequently,  we  performed  cell  annotation  and
identified  six  cell  types:  CD4+  Tconv,  CD8+  T,  CD8+
Tex, Mono, Tprolif, and Treg cells (Figure 1B). The pie
chart  shows that  the  sample  contains  1,681 CD8+ T
cells (Figure 1C).

To identify  CD8+ T  cell  genes specifically  related

to  immunity,  we  analyzed  the  differential  gene
expression  within  the  CD8+  T  cells  from  the
GSE110686  sample.  A  total  of  160  differentially
expressed  genes  were  identified  (P <  0.05).  To
narrow  down  the  list  to  immune-related  genes,  we
intersected  the  differentially  expressed  genes  with
immune-related  genes  and  generated  a  Venn  plot.
This  resulted in  the identification of  67  CD8+ T  cell-
related  immune  genes  (Figure  1D).  These  genes
represent key targets for further investigation of the
immune response in TNBC. 

Construction  of  Protein-Protein  Interaction  (PPI)
Network and Identification of Core Genes

To  obtain  relevant  core  genes  for  further
analysis,  we  constructed  a  PPI  network  comprising
67 genes using the STRING database (Figure 2A). The
number  of  nodes  for  each  gene  was  determined
(Figure  2B).  Notably, CD8A and STAT1 emerged  as
pivotal contributors within the network, with 41 and
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Figure 1. Identification of CD8+ T cell-related immune genes. (A, B) Triple-negative breast cancer single-
cell  sequencing  UMAP  cluster  analysis  visualization,  there  are  six  different  cell  types  from  13  clusters.
(C)  Number  of  different  types  of  cells  in  single-cell  sequencing.  (D)  Venn  map  acquisition  of  67
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39 nodes, respectively. To identify genes suitable for
model  construction,  a  comprehensive  univariate
analysis  encompassing  all  genes  was  performed
(Figure  2C),  which  led  to  the  identification  of  eight
key  prognostic  genes: XCL1, CXCL13, CXCR6, STAT1,
GBP2, PDCD1, GZMB, and FASLG (P < 0.1). 

Construction and Validation of Prognostic Models

To mitigate the risk of  overfitting the prognostic

features,  LASSO  regression  was  performed  on  the
genes. By setting the primary value of Log (λ) as the
minimal deviation possibility, three genes associated
with  the  prognosis  of  TNBC  were  extracted
(Figure  3A–B).  Subsequently,  a  risk  scoring  formula
was developed as follows:

riskscore =
n

∑
k=

coef (genek) × expr (genek) ,
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where  "coef"  represents  the  correlation  coefficient  of
the gene and "expr" represents the expression level of
the  gene  in  each  sample.  The  prognostic  statuses  of
the high- and low-risk groups were compared using the
risk  scoring  formula  in  TCGA  and  validated  using  the
METABRIC  sample  (Figure  3C–D).  The  results
demonstrated  that  the  model  effectively  predicted
patient prognosis (P < 0.1), with a cutoff value of 40%.
Moreover, prognostic analysis was conducted on three
genes  (CXCL13, GBP2,  and GZMB),  which  revealed
significant differences (Figure 3E–G).

Univariate  and  multivariate  analyses  were
performed  to  verify  the  predictive  efficacy  of  this
model  for  clinical  traits  (Figure  3H–I).  The  results
indicated  significant  differences  in  grading  and  risk
scores  (<  0.05).  Furthermore,  the  model  prediction
analysis  demonstrated  the  model’s  ability  to
effectively  predict  the  1-year,  3-year,  and  5-year
survival rates of patients (Figure 3J). Additionally, the
AUC curve revealed that the model better predicted
patient  grading  and  risk  scores,  whereas  its
predictive  performance  based  on  age  was  less
satisfactory (Figure 3K). 

KEGG  Pathway,  Mutation,  and  Immunological
Checkpoint Analysis

KEGG  pathway  analysis  was  conducted  on
samples  from  the  high- and  low-risk  groups  to
explore the crucial biological functions and pathways
associated with the identified core genes. The results
revealed that the high-risk group primarily exhibited
enrichment  in  cardiac  muscle  contraction,  drug
metabolism via cytochrome  P450,  extracellular
matrix  (ECM)  receptor  interaction,  and  xenobiotic
metabolism via the  cytochrome,  porphyrin,  and
chlorophyll  metabolism  pathways.  Conversely,  the
low-risk  group  demonstrated  enrichment  in  the
chemokine  signaling  pathway,  cytokine  receptor
interaction, hematopoietic cell  lineage, natural killer
cell-mediated  cytotoxicity,  and  T  cell  receptor
signaling pathway (Figure 4A–B).

Furthermore,  gene  mutation  analysis  was
performed in both risk  groups,  identifying TP53 and
TTN as  the  genes  with  the  highest  mutation
frequencies  (Figure  4C–D).  Immunological
checkpoint  analysis  revealed  significant  differences
in CD274 expression between the high- and low-risk
groups (Figure 4E), which exhibited a strong negative
correlation with the risk score (Figure 4F). 

Immune Landscape of High and Low Risk Groups

Immune  cells  play  crucial  roles  in  the  immune
microenvironment.  To  gain  an  insight  into  the

distribution  of  different  immune  cells  in  the  high-
and  low-risk  groups,  we  conducted  immune  cell
infiltration  (Figure  5A)  and  immune  functional
analyses  (Figure  5B).  Immune  infiltration  analysis
revealed  higher  levels  of  immune infiltration  by  M0
and M2 cells in the high-risk group, whereas memory
B  cells,  CD8+  T  cells,  M1  cells,  and  other  cells
exhibited  higher  expression  in  the  low-risk  group.
Immune  functional  analysis  indicated  that  the  low-
risk  group  exhibited  higher  scores  for  all  immune
pathways, which may account for the higher survival
rates observed in this group.

To assess the applicability of this model across all
samples, we divided the 185 TNBC samples into four
subtypes based on the expression of immune genes;
significant  differences  were  observed  among  the
four  subtypes  (Figure  5C).  Immune  subtype  data
were  retrieved  from  the  xenabrowser  (https://
xenabrowser.net/datapage).  Additionally,  significant
differences  were  observed  in  survival  status
between  the  high- and  low-risk  groups  (Figure  5D),
further validating the reliability of this grouping.

Furthermore,  to evaluate the significance of  this
grouping  for  clinical  treatment,  we  analyzed  the
correlation between different immunotherapies and
risk  scores  (Figure  5E).  The  results  indicated
differences  in  the  immune  treatment  response
between the two groups, with the group with lower
scores  displaying  stronger  responsiveness.  The  ROC
curve  exhibited  an  AUC  of  0.604,  indicating  reliable
prediction  of  the  immunotherapeutic  effect  in
patients through immune scoring (Figure 5F). 

DISCUSSION

In  this  study,  we  identified  differentially
expressed genes associated with immunity in CD8+ T
cells  and  constructed  a  PPI  network.  Through  a
meticulous  screening  process,  we  identified  three
genes,  namely CXCL13, GBP2,  and GZMB,  which
were  used  to  construct  a  prognostic  model.  Using
this  model,  we  categorized  the  samples  into  high-
and  low-risk  groups,  and  validated  their  efficacy  in
an  independent  validation  group.  The  results
demonstrated  that  this  model  exhibited  a  superior
predictive  ability  for  the  clinical  prognosis  of
patients.

To  gain  a  deeper  insight  into  the  biological
functional  distinctions  between  the  different  risk
groups,  we conducted KEGG pathway and mutation
analyses.  Notably,  we  observed  that  groups  with
lower  risk  scores  displayed  greater  sensitivity  to
immunotherapy  and  longer  overall  survival  times.
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These  findings  highlight  the  potential  of  our  model
to  guide  personalized  treatment  decisions  and
improve patient outcomes.

Among  the  67  intersecting  genes  analyzed,  we
identified four genes with prognostic significance, of
which  three  were  selected  for  further  investigation.

Notably, CXCL13 (Chemokine  C-X-C  motif  ligand  13)
has  emerged  as  a  prominent  gene  of  interest[12].  It
encodes a chemokine ligand that plays a crucial role
in  B  cell  recruitment  and  the  formation  of  tertiary
lymphatic structures by interacting with its receptor,
CXCR5[13]. Studies had shown that the CXCL13/CXCR5
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signaling  pathway  promotes  BC  progression  and
lymph  node  metastasis.  Additionally,  inhibition  of
CXCL13 effectively suppresses TNBC cell proliferation
by  promoting  apoptosis[14].  Moreover,  experimental
evidence  suggests  that CXCL13 expression  in  the

tumor  microenvironment  triggers  long-term
antitumor  immunological  memory  in  TNBC,
facilitating  effective  antitumor  immune  responses
through  post-chemotherapy  immune  cell
infiltration[15].
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Another  gene  of  interest  was GBP2 (Guanylate
Binding Protein 2).  It  encodes a guanine nucleotide-
binding  protein  with  antiviral  activity  against
influenza viruses via innate immune responses. GBP2
has  been  investigated  in  various  cancers,
demonstrating  its  potential  as  a  prognostic  marker
and  intricate  involvement  in  immune  responses[16].
Notably,  the  expression  of GBP2 mRNA  in  patients
with  BC  was  correlated  with  prognosis  and  recently
established  T  cell  characteristics,  corroborating  our
results[17].

Granzyme  B  (GZMB)  is  an  important  gene.  It  is
involved in the formation of cytolytic particles in NK
cells,  and  plays  a  role  in  various  pathological
processes. GZMB expression serves as an indicator of
NK cell cytotoxicity in different pathologies[18]. In the
context  of  TNBC  with  an  immune-responsive
microenvironment, GZMB expression  is  associated
with  tumor  infiltration  of GZMB and  CD8+  T  cells,
accompanied  by  increased  expression  of  multiple
immunosuppressive molecules,  including PD-L1.  The
cytotoxic  activity  mediated  by GZMB expression  is
closely  linked  to  expanded  T  cell  populations  and
may influence the response of patients with TNBC to
immune  checkpoint  blockade  therapy[19].
Understanding the significance of  these genes in BC
and their intricate involvement in immune responses
provides  valuable  insights  into  their  potential  as
prognostic  markers  and  their  impact  on  treatment
strategies.

KEGG  enrichment  analysis  revealed  distinct
functional  differences  between  the  high- and  low-
risk  groups.  Specifically,  in  the  high-risk  group,
differentially  expressed  genes  were  predominantly
enriched  in  metabolism-related  pathways,  including
drug and chlorophyll  metabolism.  Cytochrome P450
(CYP)  enzymes,  a  class  of  monooxygenases
responsible  for  the  metabolism  of  endogenous  and
exogenous  substances  including  drugs  and
environmental  compounds,  play  crucial  roles  in
these  pathways.  It  had  been  demonstrated  that
Inflammatory  cytokines  can  modify  CYP  enzyme
activity,  potentially  affecting  chemotherapy
exposure,  treatment  response,  and  patient  survival
rates in BC[20]. Another pathway that was enriched in
the  high-risk  group  was  the  ECM  interaction
pathway.  The  ECM  is  a  structurally  organized
network of proteins and polysaccharides secreted by
cells into the extracellular space. ECM1, for instance,
had  been  shown  to  influence  BC  development  and
contribute  to  trastuzumab  resistance  through
activation  of  the  EGFR  signaling  pathway[21].
Conversely, the low-risk group exhibited enrichment

of  different  cytokine  pathways,  such  as  chemokines
and  cytokines.  Chemokines  are  small,  secreted
molecules  that  play  crucial  roles  in  cell  survival,
proliferation,  and  the  guidance  of  migrating  cells
through  G  protein-coupled  receptors.  Several
chemokines  have  been  implicated  in  cancer
occurrence  and  progression.  For  example,  the
CXCL12-CXCR4 axis  is  associated  with  tumor
progression,  angiogenesis,  metastasis,  and  cell
survival[22]. CCL3 has  been  linked  to  immune
surveillance and drug resistance, and has emerged as
a  prognostic  biomarker  for  various  solid  and
hematologic  malignancies[23].  Furthermore, CCR7
plays  a  significant  role  in  promoting  growth  and
metastasis  of  TNBC[24].  The  enriched  pathways
identified in this analysis  offer valuable insights into
the functional disparities between high- and low-risk
groups,  shedding light  on the potential  mechanisms
underlying their distinct prognostic outcomes.

TNBC  is  characterized  by  tumor  heterogeneity
and  a  lack  of  effective  therapies  beyond
chemotherapy,  making  it  the  most  challenging  BC
subtype.  Advancements  in  omics  technologies  have
allowed  us  to  explore  the  intricate
microenvironment  of  TNBC,  considering  it  to  be  an
ecosystem comprising both the intrinsic and extrinsic
features  of  cancer  cells[25].  The  tumor
microenvironment  (TME)  plays  a  crucial  role  in
driving  proliferation,  angiogenesis,  apoptosis
inhibition, immune suppression, and drug resistance
in  TNBC.  A  comprehensive  understanding  of  the
different  components  within  the  TME  can  enhance
clinical  outcomes  in  patients  with  TNBC[26].
Histological  analysis  has  been  widely  used  to
investigate  the  TNBC  microenvironment[27].  In  this
study,  we aimed to unravel  the immune landscapes
of  high- and  low-risk  groups  by  conducting  immune
infiltration  and  immune  functional  analyses.  M1
macrophages  are  generally  considered  antitumor,
while M2 polarized macrophages are associated with
promoting  tumor  growth  and  metastasis  by
regulating  processes  such  as  angiogenesis,  immune
suppression,  hypoxia  induction,  and  tumor  cell
proliferation[28].  The  proportions  of  M1  and  M2
macrophages  were  significantly  higher  in  the  high-
risk  group  than  those  in  the  low-risk  group.  Tumor-
associated  macrophages  (TAMs)  in  TNBC  promote
tumor  growth  and  progression  through  various
mechanisms,  including  the  secretion  of  inhibitory
cytokines,  suppression  of  TIL  effector  function,  and
promotion  of  regulatory  T  cells  (Tregs).  TAMs  had
been  shown  to  directly  and  indirectly  regulate  the
expression of the immune checkpoint molecules PD-
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1/PD-L1 in the tumor microenvironment[29]. Notably,
M0 cells exhibited the opposite trend, suggesting the
presence of specific proteins or genes in the high-risk
group  that  may  promote  macrophage  polarization.
Further  experimental  validation  is  required  to
confirm  this  hypothesis.  In  the  high-risk  group,  the
infiltration  of  various  immune  cells  was  relatively
low, which may have contributed to higher mortality
rates.  Altered  immune  cell  composition  within  the
TME  may  contribute  to  immune  evasion  and
diminished  antitumor  responses,  thereby
exacerbating the aggressive behavior of TNBC.

The  approval  of  PD-1  blockade  as  a  first-line
treatment for stage II/III TNBC and metastatic TNBC
patients  with  PD-L1  expression  has  provided
significant  advancement  in  treatment[30].  However,
challenges  remain,  such  as  identifying  predictive
biomarkers  to  select  patients  who  would  benefit
from  PD-1  blockade,  and  achieving  a  balance
between efficacy and long-term toxicity in individual
patients.  In  this  study,  we  investigated  the
relationship between CD274 (PD-L1) expression, and
the  risk  scores  derived  from  our  prognostic  model.
We  observed  a  significant  negative  correlation
between  CD274  expression  and  the  risk  score.
CD274 is an immune checkpoint ligand that inhibits
antitumor  immune  responses  by  interacting  with
the  PDCD1  receptor  on  T  lymphocytes  in  various
tumor  types[31].  TNBCs  are  generally  considered  to
have  low  immunoreactivity.  However,  tumors
expressing  PD-L1  often  show  a  higher  response  to
immune  checkpoint  blockade.  The  elevated
presence  of  PD-L1  in  tumors  has  been  associated
with  poor  prognosis[32],  which  aligns  with  the
findings  of  our  analysis.  Furthermore,  in  the
correlation analysis of immunotherapy response, we
identified  significant  differences  in  risk  scores
between  the  complete  response  and  partial
response  groups  as  well  as  between  the  stable
disease  and  progressive  disease  groups  (P <  0.01).
These  results  indicate  substantial  differences  in
immunotherapy responses among the different risk
groups identified by our model. Taken together, our
findings  highlight  the  potential  of  our  risk  score
model  in  predicting  immunotherapy  response  and
provide insights into the complex interplay between
immune  checkpoints,  tumor  immune
microenvironment, and TNBC prognosis.

The  prognostic  risk  model  developed  by  us
demonstrated  its  ability  to  effectively  distinguish
between  high- and  low-risk  groups  in  terms  of
TNBC  prognosis  and  predict  patient  response  to
immunotherapy.  Our  findings  highlight  the

significance of CXCL13+ CD8+ T cells, which exhibit
increased  depletion  labeling,  reduced  effector
molecule  expression,  and  enhanced  proliferation
capacity.  The  abundance  of  CXCL13+  CD8+  T  cells
negatively  affects  the  overall  immune  function  of
CD8+  T  cells  and  is  associated  with  immune
evasion  environment[33].  Additionally,  in  gastric
cancer,  CXCL13+  CD8+  T  cell  infiltration  has  been
linked  to  lower  overall  survival  rates  and  a
reduced  response  to  chemotherapy.  These  cells
are  associated  with  an  immunosuppressive
environment  characterized  by  Treg  cell
proliferation  and  dysfunctional  cytotoxic  T
lymphocytes  (CTLs).  They  may  serve  as
independent prognostic and predictive markers in
patients[34].  Although  there  are  currently  no
specific data indicating the role of CXCL13 in TNBC,
based  on  the  aforementioned  analyses,  we
hypothesized  that CXCL13 may  be  a  crucial  factor
influencing  immunotherapy  outcomes  in  TNBC.
Further  research  is  warranted  to  explore  the
potential  impact  of CXCL13 on  TNBC
immunotherapy  and  to  elucidate  the  underlying
mechanisms.  Although  the  advancement  of
immune  checkpoint  blockers  is  an  important
achievement in TNBC treatment, the scope of PD-
L1  overexpression  in  tumors  remains  limited.
Therefore,  there  is  an  urgent  need  to  develop
immunotherapies  targeting  specific  subtypes  of
breast  tumors  to  achieve  better  therapeutic
effects. We believe that analysis based on CD8+ T
cell-related genes can provide assistance in finding
specific  therapeutic  targets,  which  is  also  the
significance of  this  article.  In  summary,  this  study
has  introduced  several  innovative  aspects,
including the development of a prognostic model,
prediction  of  immunotherapy  response,  in-depth
analysis  of  immune  mechanisms,  identification  of
potential  targeted  therapies,  and  exploration  of
the  complexity  of  TNBC.  These  findings  provide
valuable insights into BC research and treatment.

It is important to acknowledge the limitations of
this  study.  First,  the  data  used  in  our  study  were
obtained  from  public  databases;  although  we
employed  various  databases  to  augment  our
dataset,  the  sample  size  and  available  clinical
information  remained  relatively  limited  for  TNBC.
Increasing  the  sample  size  and  obtaining  more
comprehensive  clinical  information  will  strengthen
the robustness of our findings. Second, although we
validated  our  prognostic  model  using  different
methods  and  demonstrated  its  accuracy,  further
experimental  validation  under  both in  vitro and in
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vivo settings is  required. Conducting experiments to
validate  the  functional  relevance  of  the  identified
genes  and  their  effect  on  TNBC  immunotherapy
responses will enhance the translational significance
of  our  findings.  Finally,  the  precise  mechanisms  by
which  CD8+  T-cell-related  immune  genes  influence
the  response  of  TNBC  to  immunotherapy  remain
largely  unknown.  Investigating  these  underlying
mechanisms  should  be  the  focus  of  future  research
as  it  would  provide  valuable  insights  into  the
molecular pathways and signaling networks involved
in  the  TNBC  immunotherapy  response.  Addressing
these limitations and conducting further studies will
advance  our  understanding  of  TNBC  prognosis  and
immunotherapy,  ultimately  leading  to  improved
clinical outcomes. 

CONCLUSION

In this study, we focused on identifying immune-
related  CD8+  T  cell  genes  in  TNBC  samples  and
constructed  a  prognostic  model  based  on  CD8+  T
cell-related  immune  genes.  The  model  successfully
classified the samples into high- and low-risk groups,
demonstrating  its  effectiveness  in  predicting  the
prognosis.  It  is  important  to  note  that  our  findings
require  further  validation,  both in  vitro and in  vivo,
to confirm the functional relevance of the identified
genes  and  their  potential  impact  on  TNBC
immunotherapy responses. 
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