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Abstract

Objective     Genomic  alterations  and  potential  neoantigens  for  cervical  cancer  immunotherapy  were
identified in a cohort of Chinese patients with cervical squamous cell carcinoma (CSCC).

Methods     Whole-exome  sequencing  was  used  to  identify  genomic  alterations  and  potential
neoantigens  for  CSCC  immunotherapy.  RNA  Sequencing  was  performed  to  analyze  neoantigen
expression.

Results     Systematic  bioinformatics  analysis  showed  that  C>T/G>A  transitions/transversions  were
dominant  in  CSCCs.  Missense  mutations  were  the  most  frequent  types  of  somatic  mutation  in  the
coding sequence regions. Mutational signature analysis detected signature 2, signature 6, and signature
7 in CSCC samples. PIK3CA, FBXW7, and BICRA were identified as potential driver genes, with BICRA as a
newly reported gene. Genomic variation profiling identified 4,960 potential  neoantigens,  of which 114
were listed in two neoantigen-related databases.

Conclusion     The  present  findings  contribute  to  our  understanding  of  the  genomic  characteristics  of
CSCC and provide a foundation for  the development of  new biotechnology methods for  individualized
immunotherapy in CSCC.
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INTRODUCTION

C ervical  cancer  (CC)  is  one  of  the  most
common  gynecological  malignancies;
approximately  604,127  new  cases  were

reported  worldwide  in  2020,  of  which  nearly  85%
occurred in low- and middle-income countries[1,2].  In
China, the mortality rate of CC in 2022 was as high as
55.07%[3].  Cervical  squamous  cell  carcinoma  (CSCC)
accounts  for  approximately  70% of  all  CCs
worldwide, which is significantly higher than the rate
of cervical adenocarcinoma[4]. Although surgery is an

effective  treatment  for  early-stage  CC,  20%–30% of
CC  patients  in  advanced  stages  experience
recurrence or distant metastasis after chemotherapy
administered  concurrently  with  radiation  therapy,
and  the  5-year  survival  rate  is  only  5%–15%[5].  A
comprehensive  description  of  the  genomic  and
molecular  characteristics  of  228  primary  CCs
(including  144  CSCC  cases)  was  reported  in  The
Cancer  Genome  Atlas  (TCGA)  research  network,
although  only  18  Asians  were  included[6].  CSCC
remains a disease with high morbidity and mortality
in  China,  and  the  number  of  sequencing  samples
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available  for  evaluating genomic  alterations  in  CSCC
is  small.  Therefore,  it  is  necessary  to  establish  a
comprehensive  genetic  profile  of  the  Chinese
population  with  a  larger  sample  size  through  next-
generation sequencing.

Most CSCCs are caused by high-risk subtypes of
human  papillomavirus  (HPV),  and  the  disease
could  therefore  be  prevented  through  well-
established screening and vaccination programs[7].
However,  the  prevalence  and  mortality  of  CSCC
have  remained  relatively  high  because  of  low
vaccination rates. In addition to increasing the rate
of  vaccination,  the  development  of  new
treatments  for  CSCC  is  critical.  In  recent  years,
immunotherapy  has  emerged  as  a  potentially
effective  therapeutic  approach.  Immune
checkpoint inhibitors (ICIs)  have been successfully
applied  to  the  treatment  of  different  types  of
cancer,  such  as  gastric,  lung,  and  head  and  neck
cancer,  which  has  significantly  prolonged  the
survival  of  patients[8-10].  Pembrolizumab  was  the
first  Food  and  Drug  Administration  (FDA)-
approved  first-line  immunotherapy  for  CC;
however,  it  showed  positive  results  in  a  minority
of  CC  patients[11].  In  addition  to  ICIs,  several
immunotherapeutic  approaches  for  advanced
cervical cancer, including HPV therapeutic vaccines
and  adoptive  cellular  therapy,  are  under  study,
and promising efficacy data are emerging[12,13].

The genetic  instability  of  tumor cells  often leads
to numerous somatic mutations, and the expression
of  non-synonymous  mutations  generates  tumor-
specific  antigens  called  neoantigens[14].  Neoantigens
are  presented  by  human  leukocyte  antigen  (HLA)
class I/II  molecules and can activate CD8+ and CD4+
T  cells,  resulting  in  the  induction  of  immune
responses[15].  Because  neoantigens  are  not
expressed  in  normal  tissues  and  are  highly
immunogenic,  they  have  emerged  as  novel  targets
for tumor immunotherapy. Extensive analysis of the
genomic  variations  in  CC  identified  a  close
association  with  mutated  genes  such  as PIK3CA,
FBXW7, EP300, MLL3, CASP8, and FADD[16]. However,
research  aimed  at  identifying  CSCC  neoantigens
through the analysis of genetic mutations is lacking.

In  this  study,  we  explored  the  genomic
characteristics  of  CSCC  using  whole-exome
sequencing  (WES)  data  and  identified  potential
neoantigens by WES and RNA sequencing (RNA-seq).
The  present  findings  improve  our  understanding  of
genetic  alterations  in  CSCC  and  identify  relevant
neoantigens,  which  may  provide  effective
immunotherapeutic  targets  for  the  treatment  of

CSCC. 

MATERIALS AND METHODS
 

Patient Material

Written  informed  consent  was  obtained  from
each  individual  before  enrollment  in  the  study.
Primary  tumor  tissues  and  peripheral  blood  were
collected  from  patients  diagnosed  with  CSCC  at  the
Obstetrics  and  Gynecology  Department  of  the
Chinese  Liberation  Army  General  Hospital  between
January 1, 2021 and May 1, 2022. Sample collection,
HPV  typing,  and  pathological  examination  were
performed  according  to  the  guidelines  or
requirements  of  the  patients.  Data  on  clinical
characteristics were collected from medical records.

The  study  included  60  samples  from  30  CSCC
patients.  Twenty-nine  surgically  resected  tumor
tissues (4–6 g per sample) were snap-frozen in liquid
nitrogen and stored at –80 °C, and one was paraffin-
embedded.  Additionally,  30  blood  samples  (3–5  mL
per  sample)  were  collected  as  controls  and
stored  in  anticoagulant  tubes  containing
ethylenediaminetetraacetic  acid.  The  blood  and
anticoagulant  were  thoroughly  mixed  and  stored  at
–20 °C. All slides were diagnosed by two experienced
pathologists  using  hematoxylin  and  eosin  (H&E)
staining. 

DNA Extraction and Whole-Exome Sequencing

Tumor and matched normal DNA were extracted
using  the  TIANamp  Genomic  DNA  Kit  (DP304,
TIANGEN,  Beijing,  China)  using  fresh-frozen  tumor
tissues and paired blood samples. The QIAamp DNA
FFPE  Tissue  Kit  (56404,  Qiagen,  Hilden,  Germany)
was  used  to  extract  genomic  DNA  (gDNA)  from
formalin-fixed  paraffin-embedded  (FFPE)  tissues.  To
ensure  the  quality  of  the  gDNA,  two  methods  were
employed: (1) Agarose gel electrophoresis to analyze
the  degree  of  DNA  degradation  and  contamination;
and (2)  Qubit® 3.0  Fluorometer  (Invitrogen,  USA)  to
quantify  the  DNA  concentration  accurately.  Finally,
DNA samples with a gDNA concentration ≥ 20 ng/µL
and  a  minimum  of  0.4  µg  gDNA  per  sample  were
used for library construction.

WES  was  performed  using  0.4  µg  of  gDNA  from
each  sample.  Library  construction  and  capture
experiments  were  performed  using  the  Agilent
SureSelect  Human  All  Exon  V6  Kit  (Cat.  No.
5190–8864,  Agilent  Technologies,  Santa  Clara,  CA,
USA)  following  the  manufacturer’s  instructions.
During this process, index codes were added to each
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sample.  The  gDNA  was  fragmented  into  pieces
measuring  approximately  180–280  bp  using  a
hydrodynamic  shearing  system  (Covaris,
Massachusetts,  USA).  After  end  repair,
phosphorylation,  and  A-tailing,  adapter
oligonucleotides  were  added  to  create  libraries.
High-fidelity  polymerase  was  used  to  amplify  DNA
fragments  with  ligated  adaptor  molecules  on  both
ends to ensure sufficient library volume. The libraries
were  then  hybridized  with  a  solution  of  biotin-
labeled  probes,  and  exons  were  captured  using
streptomycin  magnetic  beads.  In  preparation  for
sequencing,  PCR  was  used  to  add  index  tags  to  the
captured  libraries.  After  purification  and
quantification,  the  index-encoded  samples  were
clustered  using  the  HiSeq  PE  Cluster  Kit  V2.5
(Illumina). The DNA libraries were sequenced on the
Illumina HiSeq X-TEN platform (San Diego, CA, USA),
generating  150  bp  paired-end  reads  after  cluster
generation. 

RNA Extraction and RNA Sequencing

To create the library, a minimum of 1 µg of total
RNA  was  necessary.  RNA  was  extracted  from  fresh
tumor  tissues  using  the  Qiagen  RNeasy  Mini  kit
(74106,  Qiagen,  Germany)  and  RNA-Seq  libraries
were  prepared  using  the  NEBNext®  UltraTM  RNA
Library  Prep  Kit  (E7530L,  Illumina,  USA).  The  library
was  quantified  using  the  Qubit2.0  Fluorometer
detection  kit  (Q32866,  Invitrogen,  USA)  and  diluted
to  1.5  ng/µL.  The  Agilent  2100  bioanalyzer  (2100,
Agilent,  USA)  was  used  to  detect  the  insert  size  of
the  library  and  accurately  determine  the  effective
concentration  (higher  than  2  nmol/L)  to  ensure
quality.  Once  the  library  passed  inspection,  it  was
categorized according to the effective concentration
and target off-machine data volume. Finally, Illumina
sequencing was performed, which generated 150 bp
paired-end reads. 

Sequencing  Data  Analysis  and  Variation
Identification

Raw  data  were  preprocessed  by  Fastp  (v.0.23.4,
https://github.com/OpenGene/fastp) to obtain clean
data using the following steps: (1) adapter trimming;
(2) removal of reads with > 10% N bases; (3) removal
of reads in which > 50% of the length contained low-
quality  bases  (quality  threshold  <  5);  and  (4)  sliding
window  trimming,  in  which  the  bases  with  an
average  quality  below  the  cutoff  value  (default  was
20)  in  the  sliding  window  (default  was  4  bp)  were
cut.  BWA[17],  Picard  (http://broadinstitute.github.
io/picard/),  and  GATK  tools[18] were  used  for  read

alignment,  variant  calling,  and  identification  of
single-nucleotide  variants  (SNVs)  and  small
insertions and deletions (InDels). Default parameters
were  used  in  all  software  programs  for  identifying
mutations  in  matched  normal-tumor  samples.  To
further  annotate  candidate  somatic  mutations,  we
used  Funcotator  (FUNCtional  annOTATOR)[19] and
generated  mutation  annotation  format  (MAF)  files
that  included  position,  function,  and  sequencing
data supporting the mutation status.

Somatic  copy  number  alterations  (CNAs)  were
evaluated using the CNVkit[20] pipeline (v.0.9.10). The
default  log2 threshold  was  applied  to  detect  copy
number  gains  or  losses  in  target  regions.  Heatmaps
of copy number alterations were obtained by loading
the  resulting  files  with  segmented  copy  numbers
into  Integrative  Genomics  Viewer  (IGV,  v.2.15.9)[21]

for  visualization.  The  GISTIC  (Genomic  Identification
of  Significant  Targets  in  Cancer)  2.0  pipeline
(v.2.0.23)[22] was  then  applied  to  detect  the
significantly  amplified  and  deleted  regions  with
somatic CNAs with FDR (false discovery rate) < 0.20.
A  confidence  level  of  0.90  was  set  to  determine
significance.  The  GISTIC2.0  output  files  were
visualized by the R package ggplot2.

Synonymous  and  nonsynonymous  somatic  SNVs
were  analyzed  using  the  R  package  maftools  to
identify  the  type  of  point  mutations  in  each  tumor
sample[23].  The  mutational  signature  contribution  of
each  tumor  sample  was  estimated  using  the  R
package  deconstructSigs[24],  which  accurately
reconstructed  the  mutational  profiles  of  tumor
samples  by  identifying  linear  combinations  of  pre-
defined  features.  This  tool  established  the
correspondence between the 96 mutation spectrum
and the 30 mutational characteristics of the Catalog
of Somatic  Mutations in Cancer (COSMIC) database.
The  calculated  weights  were  assigned  to  the
mutational  signatures,  in  which  a  higher  weight
indicates a more significant contribution.

Two  computational  methods,  Oncodrive-
CLUSTL[25] and OncodriveFML[26], were used to detect
potential  driver  genes.  The  OncodriveCLUSTL
algorithm  uses  a  sequence-based  clustering
technique  to  identify  linear  clustering  bias  in  the
observed somatic mutations. OncodriveFML is a tool
that  detects  genes  under  positive  selection  by
analyzing the functional impact bias of the observed
somatic  mutations.  Default  values  were  used  for  all
software  parameters,  and  driver  genes  were
identified according to the following criterion: genes
with  an  FDR  <  0.25  in  both  OncodriveCLUSTL  and
OncodriveFML  were  considered  as  driver  genes.
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MutSigCV[27] was  used  to  perform  convolution  tests
to  identify  significantly  mutated  genes  (SMGs).  This
software  comprehensively  analyzes  somatic  SNVs
and  InDels  to  obtain  SMGs  whose  mutation  rate  is
significantly  higher  than  the  background  mutation
rate.  Genes  with  FDR  <  0.20  were  considered  as
SMGs.

RNA-seq raw reads that passed the Illumina RTA
quality  filter  were  first  preprocessed  with  Trim
Galore  (v.0.6.10)  to  remove  adapter  sequences  and
for  base  quality  control.  Then,  STAR  software
(v.2.7.10b)  was  used  to  align  the  remaining  RNA
reads  to  the  NCBI  human  reference  genome
(GRCh38).  Finally,  the  number  of  reads  aligning  to
each  gene  in  the  mapping  results  was  calculated  as
Fragments  Per  Kilobase  per  Million  (FPKM)  values
using RSEM software (v.1.3.3). 

HLA Typing and Neoantigen Detection

HLAscan  tool  (v.2.1.2)[28] was  used  to  determine
HLA  types  across  the  patients’ whole-exome
sequences by aligning reads to HLA sequences from
the  international  ImMunoGeneTics  project/human
leukocyte antigen (IMGT/HLA) database. Neoantigen
analysis  was  performed  using  the  NeoPredPipe
pipeline[29],  which  integrates  ANNOVAR  and
netMHCpan  to  process  neoantigens  predicted  from
multi-region  Variant  Call  Format  (VCF)  files.
ANNOVAR  correctly  annotates  variants  from  VCF
files to identify non-synonymous variants, generating
peptide  sequences  based  on  variant  bases.  Before
executing  netMHCpan,  HLA  haplotypes  were  cross-
referenced  with  available  HLA  haplotypes,  and
epitopes of 8–11 mer length (known to be likely for
peptides  presented  by  human  MHC  class  I
molecules)  were  specified  to  make  predictions.
NetMHCpan  4.1[30] was  used  to  detect  the  binding
affinity  strength  of  each  mutant  peptide  to  sample-
specific  HLA  alleles  to  identify  exome-derived
neoantigens.  Finally,  the  results  were  filtered
according  to  half-maximal  inhibitory  concentration
(IC50) and rank value (IC50 < 500 nmol/L and %Rank
<  2%).  A  neoantigen  was  considered  expressed  if  a
mutated gene Tumor-FPKM ≥ 0.5 when RNA-seq was
available. 

Visualization and Statistical Analysis

All  graphical  analyses  were  performed  in  the  R
statistical environment (v. 4.2.2). P-value calculation
methods  and  multiple  testing  corrections  are
reported  in  the  text.  Because  of  the  limited  sample
size,  all  analyses  were  conducted  at  a  two-sided
significance  level  of  0.2  (exceptional  cases  stated

otherwise).  Linear  correlations  were  assessed  using
Pearson’s correlation coefficient. 

RESULTS
 

Samples and Clinical Data

A  total  of  60  paired  samples  from  patients  who
had  undergone  radical  hysterectomy  without
radiotherapy  or  chemotherapy  were  analyzed.  The
samples  included  30  primary  tumor  tissues  and  30
matched  peripheral  blood  samples.  Of  the  30
patients,  22  were  HPV-positive,  and  8  were  HPV-
negative  (Supplementary  Table  S1,  available  in
www.besjournal.com).  The  patients  ranged  in  age
from  24  to  77  years,  with  an  average  age  of  50.3
years. The clinical stages (International Federation of
Gynecology  and  Obstetrics  [FIGO]  2018)  of  the
patients were as follows: 12 in stage I, 12 in stage II,
and  6  in  stage  III.  The  pathological  types  of  all
samples were squamous cell carcinoma with varying
levels  of  differentiation:  6  cases  were  low,  17  were
middle, and 7 were middle-low. Among the patients,
9  had  lymph  node  metastasis,  22  had
lymphovascular  space  involvement,  3  had
parametrial  invasion,  21  had  deep  stromal  invasion
(infiltration depth > 1/2), and 3 had a positive vaginal
resection  margin.  During  the  follow-up  period  of
6–19  months  (median,  12.5  months),  3  cases  (10%)
experienced tumor recurrence. 

Genomic Alterations
 

SNVs and InDels Analysis　After performing WES on
30  CSCCs  and  matched  control  samples  (peripheral
blood cells) using the Illumina X10 platform (Illumina
Inc.,  San  Diego,  CA,  USA),  we  assembled  a
concatenated  quality  report  of  the  WES  data
(Supplementary  Table  S2,  available  in
www.besjournal.com).  The  control  samples  had  at
least 57 Mb of target exons covered with an average
depth of 160.76x (ranging from 112.96× to 243.10×),
and the tumor samples had at least 155 Mb of target
exons  covered  with  an  average  depth  of  400.22×
(ranging  from  289.22×  to  516.15×).  More  than
93.03% of  tumor-targeted  regions  were  effectively
covered  by  at  least  30×  reads. Figure  1 shows  the
schematic of the research process.

Multiple  tools  were  used  to  identify  somatic
mutations  (SNVs  and  Indels)  in  CSCCs.  A  total  of
6,232 mutations involving 3,216 genes in exons and
splice  regions  were  detected,  including  3,523
missense,  1,561  synonymous,  269  nonsense,  147
splicing,  46  in-frame  InDels,  102  frameshift  InDels,
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448  UTR  mutations,  120  5'Flank  mutations,  and  16
other  types  of  mutations  (Supplementary  Tables
S3–S4,  available  in  www.besjournal.com).  Missense
mutations  were  the  most  frequent  type  of  somatic
mutation  in  the  CDS  (coding  sequence)  regions,
accounting  for  56.53% of  all  mutations  (Figure  2).
Each  sample  had  an  average  of  345  mutations
(range,  152–1,030),  indicating  high  heterogeneity
among  CSCC  samples.  Lastly,  we  calculated  the
aggregated  mutation  density  from  non-silent
mutations  in  the  CSCC  data,  resulting  in  mean  and
median mutation densities of 2.73/Mb and 1.97/Mb,
respectively. 

CNA  Analysis　 Huang  J.[16] et  al.  compared  whole-
genome  sequencing  to  WES  data  for  somatic  CNA
analysis in CC, which demonstrated that WES data is
also suitable for CNA analysis. In this study, we used
WES  data  to  analyze  CNAs  in  CSCCs  and  identified
6766 CNAs in 30 samples, with an average of 225.87

CNAs per sample.  Significant gains or  losses of  copy
number  were  detected  on  many  chromosome arms
in  the  CSCC  samples.  Chromosomes  1p,  1q,  3p,  3q,
5p,  16q,  18p,  19q,  20p,  and  20q  showed  frequent
copy  number  gains,  whereas  chromosomes  4p,  4q,
11p,  11q,  13p,  15q,  and  22p  showed  frequent  copy
number losses (Supplementary Table S5, available in
www.besjournal.com).  The overall  CNA results were
generally  consistent  with  those  of  other  studies  on
CC[31-34].

Significantly  amplified  and  deleted  regions  were
identified  using  the  GISTIC2.0  algorithm  (with  a
threshold of FDR < 0.20). We subsequently identified
64  focal  events,  of  which  19  were  amplification
peaks  and  45  were  deletion  peaks.  The  analysis
revealed that these focal events involved 535 genes,
some  of  which  are  known  oncogenes  or  tumor
suppressor  genes,  such  as FLG (1q21.3), BIRC3
(11q22.3), IRF4 (6p25.3), TTF1 (9q34.13), CAMTA1
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Figure 1. The  flowchart.  CSCC,  cervical  squamous  cell  carcinoma.  FPKM,  Fragments  Per  Kilobase  per
Million.  HLA,  human  leukocyte  antigen.  IC50,  half-maximal  inhibitory  concentration.  SNVs,  single-
nucleotide variants. InDels, insertions and deletions.
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(1p36.23), MUC16 (19p13.2), ROBO2 (3p12.3), TAF15
(17q12),  and YWHAE (17p13.3)  (Supplementary
Table  S6,  available  in  www.besjournal.com).  Among
the 64 focal events, significantly amplified cytobands
were  3q27.1,  1q21.3,  5p13.2,  7p22.1,  and  11q22.3,
and  significantly  deleted  regions  were  4q13.2,
2q11.2,  7p11.2,  1q21.1,  and 11p14.3 (both with the
top five lowest q values) (Figure 3). The regions with
the  highest  significance  in  terms  of  recurrent  copy
number amplification and deletion were 3q27.1 and
4q13.2,  encompassing  multiple  genes  such  as
AP2M1, DVL3, PSMD2, EIF2B5, ECE2, ALG3, ABCF3,
VWA5B2, CAMK2N2, HTR3C, HTR3E, MIR1224,
HTR3E-AS1, UGT2B11, UGT2B28,  and
LOC105377267.  This  result  indicated  that  genes  in
these  two  regions  may  be  related  to  CSCC
occurrence. 

Mutational Spectrum and Mutational Signature

The  mutation  spectrum  displayed  the  type  and
number  of  point  mutations  in  each  tumor  sample
(Figure  4A,  B).  C>T/G>A  transitions  (58.38%)  and
C>G/G>C  transversions  (23.39%)  were  the  most
common  point  mutations  in  the  present  cohort.

Previous  studies  reported a  high C>T transition rate
(54%,  55.0%,  63.47%)  and  a  high  C>G  transversion
rate  (-,  18.9%,  21.85%)  in  CC  samples  through
mutation  spectrum  analysis[6,16,35],  which  is
consistent  with  the  present  results.  The  mutational
processes  leading  to  tumorigenesis  are  diverse,  and
certain  mutational  signatures  can  reveal  the
specificity  of  the  mutational  process  and  the
potential  etiology  of  a  cancer[36].  To  explore  this
further,  we  added  one  base  each  upstream  and
downstream from the point mutation site to form a
three-base  pattern  and  then  counted  96  (6×4×4)
mutation  combinations.  We  mapped  96  mutation
spectra  to  the  30  mutational  signatures  of  the
COSMIC database[37] and identified three mutational
signatures  in  CSCC  samples,  namely,  signature  2
(26.33%),  6  (6.06%)  and  signature  7  (9.58%)
(Figure 4C). 

SMGs and Driver Genes

The  MutSigCV  algorithm  was  applied  to  identify
SMGs  across  all  tumor  samples  (FDR  <  0.20).  Then,
the top 50 mutated genes of all tumor samples were
selected  for  visualization.  In  addition  to  SMGs,  the
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clinical features of 30 patients, including HPV status,
pathology,  FIGO  stage,  and  tumor  mutation  burden
(TMB)  were  determined  (Figure  5).  Among  these
genes, RAMP2 (13.33%,  4/30)  and FOSL2 (13.33%,
4/30)  showed  statistically  significant  levels  of
recurrent  mutations  (FDR  <  0.20)  (Supplementary
Table  S7,  available  in  www.besjournal.com).  They
were identified as SMGs in this cohort and confirmed
as novel  SMGs.  Additionally, PIK3CA (26.67%, 8/30),
FBXW7 (16.67%, 5/30), SCN5A (16.67%, 5/30), STK11
(16.67%, 5/30), and PCNXL2 (16.67%, 5/30) had high
mutation  rates  but  did  not  have  statistically
significant recurrent mutations. However, they were
enriched  in  non-silent  mutations,  indicating  that
they may play important roles in CSCC. We identified
three  driver  genes  according  to  the  filtering  criteria
(Table 1). Among the predicted driver genes, PIK3CA
and FBXW7 were  reported  in  previous  studies[6,16],

and BICRA (10.00%,  3/30)  is  novel.  The  point
mutations of PIK3CA were all clustered in the helical
domain,  including  E545K  (62.50%,  5/8)  and  E542K
(37.50%, 3/8), whereas no mutations were detected
in  the  kinase  domain  of  the  gene  (Supplementary
Figure  S1A,  available  in  www.besjournal.com).  Five
hotspot  mutations  were  identified  in FBXW7,
including two R385C (40.00%), one R399G (20.00%),
one  R425S  (20.00%)  within  the  WD40  domain,  and
one  L154fs  (20.00%)  outside  the  domain
(Supplementary  Figure  S1B).  This  mutational
characteristic  of FBXW7 has  not  been  reported  in
previous studies on CSCC. 

Identification of the Neoantigens

In  this  study,  WES  data  for  CSCCs  was  used  to
predict  neoantigens  and  RNA-seq  data  was  used  to
examine  the  expression  of  these  neoantigens.  The
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HLAscan  tool  was  used  to  identify  four-digit  HLA
class  I  alleles  in  CSCC  samples,  which  showed  that
HLA-A*02:01  (33.33%),  HLA-B*13:02  (16.67%),  and
HLA-C*06:02  (30.00%)  were  the  most  common
alleles  at  the  HLA-A,  HLA-B,  and  HLA-C  loci
respectively (Table 2).

The  NeoPredPipe  pipeline  incorporating  the
NetMHCpan  4.1  program  was  applied  to  predict
neoantigens  with  filtering  criteria  of  IC50 �<
500 nmol/L  and %Rank <  2%.  Potential  neoantigens
were  detectable  in  all  samples,  and  4960  potential
neoantigens  were  identified  (Supplementary
Table  S8,  available  in  www.besjournal.com).  The
average  number  of  non-synonymous  mutations  in
CSCC  samples  was  136.37  (range,  50–378),  with  an
average  of  165.33  neoantigens  (range,  44–487)
(Table 2). Figure 6 displays the predicted HLA class I
neoantigens  for  each  CSCC  sample.  Pearson
correlation  analysis  showed  a  strong  linear  positive
correlation between the number of neoantigens and
the  number  of  somatic  non-synonymous  mutations
(Pearson  correlation  coefficient R =  0.85, P =  3.7  ×
10−9)  (Figure  7A),  consistent  with  previous
studies[35,38].

The  study  also  identified  multiple  recurrently

mutated  antigen  genes,  which  were  defined  as
“potential  neoantigen  genes”. Figure  7B shows  the
potential neoantigen genes at different FIGO stages:

HDAC6 (3/30), DPP10 (3/30), PIK3CA (8/30),
MUC16 (5/30), CIC (3/30), USP28 (3/30), DNAH6
(3/30), and CDKL5 (3/30) (all genes were found in at
least  three  CSCC  samples).  Most  potential
neoantigen genes were present in known oncogenic
driver  genes  such  as MUC16,  which  promotes
cervical  cancer  progression via JAK2/STAT3
phosphorylation-mediated  cyclooxygenase-2
expression[39].  Furthermore, PIK3CA is  an  immune-
related gene deposited in the Immunology Database
and Analysis Portal (ImmPort)[40].

In  the  present  analysis  of  neoantigens,  each
unique immune target was detected in a particular
CSCC  patient,  suggesting  that  neoantigens  are
highly heterogeneous. This result is consistent with
previous reports that the vast majority of potential
neoantigens  are  patient-specific[41].  Therefore,  we
explored  the  heterogeneity  of  potential
neoantigens  in  CSCC.  The  results  showed  that
99.78% (4949/4960)  of  the  neoantigens  were
present  in  only  one  patient,  whereas  only  0.22%
(11/4,960)  of  the  neoantigens  were  present  in  at
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least  two  patients  (Figure  7C). “STRDPLSEITK”,
generated  by PIK3CA (E545K),  was  the  most
commonly  shared neoantigen.  This  result  suggests
that identifying shared neoantigens for CSCC could
be challenging.

RNA-seq  data  were  used  to  examine  the
expression  of  neoantigens,  and  the  results  showed
that  there  were  4,559  potential  neoantigens  in  27
pairs  of  samples,  of  which  58.13% (2,650/4,559,
2,650  neoantigens  involving  939  genes)  were
expressed  (Supplementary  Table  S9, available  in
www.besjournal.com). 

Validation of Potential Neoantigens

The  Tumor-Specific  Neoantigen  database
(TSNAdb) is a collection of neoantigen information
from 7748 samples of 16 different cancers in TCGA
database[42].  CTdatabase  contains  high-throughput
and  carefully  curated  data  on  cancer-testis
antigens[43].  The  accuracy  of  the  present
neoantigen results was verified by comparison with
TCGA-CESC  (cervical  squamous  cell  carcinoma  and
endocervical adenocarcinoma) data in TSNAdb and
CTA data in CTdatabase. Among the 4,960 potential
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Table 1. Driver genes identified by whole exome sequencing

Gene Indels SNVs
Tot

Muts*
Sample
affect

Sample
percent (%)

FDR CT‡

Present in
CGC

Reported in
previous
research

Predicted by
OncodriveCLUSTL

Predicted by
OncodriveFML

Predicted by
MutSigCV

K3CAPI 0 8 8 8 26.67 0.048 0.181 0.836 Yes Yes

BICRA 0 3 3 3 10.00 0.181 0.064 1 No No

FBXW7 1 4 5 5 16.67 0.181 0.165 1 Yes Yes

　　Note. *Tot Muts denotes the total mutations occurred in certain genes. ‡FDR CT denotes corrected P value.
FDR, false discovery rate; SNVs, single-nucleotide variants; InDels, insertions and deletions; CGC, Cancer Gene
Census.
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neoantigens  identified  in  this  study,  114
neoantigens  involving  27  genes  were  identified  in
both  databases.  In  TSNAdb,  46  neoantigens
corresponding  to  eight  genes  were  identified  in
TCGA-CESC  dataset  (Table  3),  whereas  in
CTdatabase  (CTAs),  68  neoantigens  corresponding
to  19  genes  were  identified  (Supplementary  Table
S10,  available  in  www.besjournal.com).  Six  of  the
27  neoantigen-related  genes  were  reported  as
therapeutic  targets  in  the  Therapeutic  Target

Database[44] and the corresponding drugs were also
included.  Alpelisib  and  BAY  80-6956,  which  are
related  to  the PIK3CA target,  have  been  approved
by the FDA for the treatment of breast cancer and
follicular  lymphoma,  respectively[45,46],  whereas
drugs  targeting MAPK1, MUC16, MAGEA3,
MAGEC2,  and MAGEC1 are  currently  in  clinical
trials.  Additionally,  PIK3CA  was  included  in  a
clinical trial as a potential therapeutic target in the
treatment of CC (NCT02957266). 

 

Table 2. Number of nonsynonymous mutations, neoantigens and HLA class I allotypes of 30 patients

Sample-ID Number of
nonsynomous mutations

Number of
neoantigens HLA-A* HLA-B* HLA-C* Sequencing strategies Stage

SCCP01T 66 52 02:07/30:01 － 01:02/12:02 WES/RNA-seq IIIC1

SCCP02T 72 86 24:02/33:03 58:01 01:02/03:02 WES IIA2

SCCP03T 220 258 02:01/03:01 35:08/44:02 05:03 WES/RNA-seq IIA

SCCP04T 67 97 03:01/31:01 51:02 12:02/15:02 WES/RNA-seq IIB

SCCP05T 96 119 02:01/11:01 51:01/51:02 08:01/15:02 WES/RNA-seq IB2

SCCP06T 182 311 02:01/02:06 51:01 03:03/15:02 WES/RNA-seq IB2

SCCP07T 264 163 03:01 35:01 04:01 WES/RNA-seq IB3

SCCP08T 50 76 11:01/30:01 13:02 03:04/06:02 WES/RNA-seq IB2

SCCP09T 193 333 11:01/24:02 13:01/15:01 03:03/03:04 WES/RNA-seq IIA

SCCP10T 98 151 02:01/02:03 13:01/48:01 03:04/08:03 WES/RNA-seq IB2

SCCP11T 102 115 02:07/31:01 40:01 01:02/03:04 WES/RNA-seq IIIA

SCCP12T 77 124 02:01/30:01 15:02/44:03 08:01 WES/RNA-seq IB1

SCCP13T 106 128 02:01/02:07 40:01/54:01 01:02/03:04 WES/RNA-seq IB3

SCCP14T 79 109 02:06/11:01 40:01/40:06 01:02/08:01 WES/RNA-seq IIA1

SCCP15T 71 51 01:01/11:01 37:01 06:02/07:02 WES/RNA-seq IIA1

SCCP16T 218 290 02:01/02:06 15:11/35:01 03:03 WES IB2

SCCP17T 188 271 02:06/24:02 15:11/51:01 03:03/14:02 WES/RNA-seq IIIC1

SCCP18T 99 128 02:03/03:01 27:07/40:01 07:02/15:02 WES/RNA-seq IB3

SCCP19T 361 487 01:01/02:06 07:02/51:01 07:02/14:02 WES/RNA-seq IIA1

SCCP20T 72 67 03:01 07:02/37:01 06:02/07:02 WES/RNA-seq IIIC1

SCCP21T 79 121 11:01/24:02 15:02/27:07 08:01/15:02 WES/RNA-seq IB2

SCCP22T 68 53 02:01/03:01 13:02/ 03:03/06:02 WES/RNA-seq IIB

SCCP23T 72 90 01:01/11:01 35:03/37:01 06:02/12:03 WES/RNA-seq IIIC1

SCCP24T 83 66 02:01 15:11 03:03/08:01 WES/RNA-seq IIIC1

SCCP25T 378 324 01:01/30:01 13:02/54:01 01:02/06:02 WES/RNA-seq IIA1

SCCP26T 180 118 02:07/33:03 37:01/46:01 01:02/06:02 WES/RNA-seq IIA1

SCCP27T 121 186 11:01/30:01 13:02/14:01 06:02/08:02 WES/RNA-seq IB2

SCCP28T 204 392 11:01/11:12 15:02/35:03 08:01/12:03 WES/RNA-seq IIA2

SCCP29T 167 150 11:01 13:01/13:02 03:04/06:02 WES/RNA-seq IIA

SCCP30T 58 44 02:01/32:01 13:01 03:04/12:02 WES IB1

　　Note. HLA, human leukocyte antigen. *List separator.
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DISCUSSION

There  is  limited  data  on  genomic  alteration
profiles and neoantigens of CSCC in Chinese patients.
In  this  study,  we  used  WES  to  analyze  the  somatic
mutational  landscape  in  a  cohort  of  patients  with

CSCC  (30  samples).  Analysis  of  somatic  non-
synonymous  mutations  was  used  to  identify
potential  neoantigens that can serve as new targets
for CSCC immunotherapy. RNA-seq data was used to
examine the expression of candidate neoantigens.

A  total  of  6,232  somatic  mutations  were
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Figure 6. Predicted HLA class I neoantigens in 30 squamous cell carcinoma. Different colors represented
different HLA types. HLA, human leukocyte antigen.
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Table 3. A list of candidate neoantigens validated by TSNAdb database

Sample Protein Mutation AA HLA types Identity Length (AA) %Rank Affinity (nmol/L) Drugs

SCCP14T CADPS R737W HLA-A02:06 YLRDLLEWA 9 0.502 25.53 −

SCCP14T CADPS R737W HLA-B40:01 LEWAENGAM 9 0.436 52.67 −

SCCP14T CADPS R737W HLA-B40:01 LEWAENGAMI 10 1.173 237.85 −

SCCP24T CADPS R737W HLA-A02:01 YLRDLLEWA 9 0.407 24.09 −

SCCP13T DENND5B D339H HLA-A02:01 FLHAPVPYL 9 0.007 3.86 −

SCCP13T DENND5B D339H HLA-A02:01 SLLHFLHAPV 10 0.526 5.35 −

SCCP13T DENND5B D339H HLA-A02:01 FLHAPVPYLM 10 0.469 13.82 −

SCCP13T DENND5B D339H HLA-C03:04 FLHAPVPYL 9 0.133 34.66 −

SCCP13T DENND5B D339H HLA-A02:01 HFLHAPVPYL 10 1.087 44.79 −

SCCP13T DENND5B D339H HLA-B54:01 LPASLLHFLHA 11 0.194 52.16 −

SCCP13T DENND5B D339H HLA-A02:07 FLHAPVPYL 9 0.014 256.91 −

SCCP13T DENND5B D339H HLA-A02:01 LHFLHAPVPYL 11 1.597 272.86 −

SCCP13T DENND5B D339H HLA-C01:02 HAPVPYLMGL 10 0.187 380.05 −

SCCP13T DENND5B D339H HLA-C01:02 FLHAPVPYL 9 0.129 391.67 −

SCCP13T DENND5B D339H HLA-A02:01 SLLHFLHAP 9 1.536 453.38 −

SCCP07T MAPK1 E322K HLA-C04:01 YYDPSDKPI 9 0.017 389.35 BVD-523, ASTX029, HH2710

SCCP01T MAPK1 R135K HLA-A30:01 KGLKYIHSA 9 1.615 482.21 BVD-523, ASTX029, HH2711

SCCP06T MUC16 A4577T HLA-A02:01 SMGDTLASI 9 0.265 30.46 Oregovomab, Abagovomab

SCCP06T MUC16 A4577T HLA-A02:06 SMGDTLASI 9 0.523 58.48 Oregovomab, Abagovomab

SCCP06T MUC16 A4577T HLA-A02:01 SMGDTLASISI 11 1.565 324.65 Oregovomab, Abagovomab

SCCP06T MUC16 A4577T HLA-C15:02 SSMGDTLASI 10 1.661 353.86 Oregovomab, Abagovomab

SCCP07T PIK3CA E542K HLA-A03:01 AISTRDPLSK 10 0.14 53.93 Alpelisib, BAY 80-6946

SCCP07T PIK3CA E542K HLA-A03:01 KAISTRDPLSK 11 0.299 469.89 Alpelisib, BAY 80-6947

SCCP09T PIK3CA E542K HLA-A11:01 AISTRDPLSK 10 0.312 99.32 Alpelisib, BAY 80-6948

SCCP09T PIK3CA E542K HLA-A11:01 KAISTRDPLSK 11 0.273 256.36 Alpelisib, BAY 80-6949

SCCP09T PIK3CA E542K HLA-A11:01 ISTRDPLSK 9 0.629 333.21 Alpelisib, BAY 80-6950

SCCP21T PIK3CA E542K HLA-A11:01 AISTRDPLSK 10 0.312 99.32 Alpelisib, BAY 80-6951

SCCP21T PIK3CA E542K HLA-A11:01 KAISTRDPLSK 11 0.273 256.36 Alpelisib, BAY 80-6952

SCCP21T PIK3CA E542K HLA-A11:01 ISTRDPLSK 9 0.629 333.21 Alpelisib, BAY 80-6953

SCCP21T PIK3CA E542K HLA-C15:02 STRDPLSKI 9 0.135 453.03 Alpelisib, BAY 80-6954

SCCP01T PIK3CA E545K HLA-A30:01 STRDPLSEITK 11 0.01 38.96 Alpelisib, BAY 80-6955

SCCP02T PIK3CA E545K HLA-B58:01 ITKQEKDFLW 10 0.049 13.03 Alpelisib, BAY 80-6956

SCCP02T PIK3CA E545K HLA-B58:01 EITKQEKDFLW 11 1.03 391.32 Alpelisib, BAY 80-6957

SCCP14T PIK3CA E545K HLA-A11:01 STRDPLSEITK 11 0.053 91.72 Alpelisib, BAY 80-6958

SCCP28T PIK3CA E545K HLA-A11:12 STRDPLSEITK 11 0.053 91.72 Alpelisib, BAY 80-6959

SCCP28T PIK3CA E545K HLA-A11:01 STRDPLSEITK 11 0.053 91.72 Alpelisib, BAY 80-6960

SCCP29T PIK3CA E545K HLA-A11:01 STRDPLSEITK 11 0.053 91.72 Alpelisib, BAY 80-6961

SCCP03T SLC26A3 V340I HLA-C05:03 VGDCFDIAM 9 0.841 391.96 −

SCCP19T VCPIP1 D434N HLA-A02:06 GIHPSLVANV 10 0.749 171.9 −

SCCP19T VCPIP1 D434N HLA-A01:01 VANVHQYFY 9 0.173 244.29 −
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identified  in  30  CSCC  samples,  with  an  average  of
207.73 mutations per sample, which is slightly lower
than the average of 225.65 mutations per sample in
TCGA  database  for  CC[6].  Analysis  of  nonsilent
mutations  showed  a  mean  mutation  burden  of
2.73/Mb,  which  was  slightly  higher  than  TCGA
mutational  burden  of  2.53/Mb  (excluding
hypermutated  tumors)[6].  Chung[34] et  al.  reported
that cervical adenocarcinoma has a lower mutational
burden than CSCC, which may explain the difference
in  mutational  burden  between  this  study  and  TCGA
database.  CNA  analysis  in  CSCC  identified  6,766
CNAs  (225.87  per  sample),  which  is  considerably
higher  than the number reported in  TCGA database
for CC[6]. GISTIC2.0 analysis revealed 19 amplification
peaks and 45 deletion peaks. Furthermore, 15 (50%)
patients had high-level copy number amplification at
3q27.1,  which  was  consistent  with  findings  in  lung
squamous cell  carcinoma and esophageal squamous
cell carcinoma[47,48]. ALG3,  which is one of the genes
covered  by  this  region,  helps  tumor  cells  generate
high mannose N-linked glycans. Aberrant expression
of high-mannose N-linked glycans is  associated with
cancer  progression[49,50,51]. ALG3 is  significantly
overexpressed in radioresistant breast cancer tissues
and  promotes  radioresistance  and  cancer  stemness
by  inducing  the  glycosylation  of  TGF-β  receptor  II
(TGFBR2)[50].  Although ALG3 is  an  effective
therapeutic  target  in  breast  cancer  patients  with
high ALG3 levels[50],  whether  it  promotes  the
development  of  CSCC  remains  to  be  determined.
HTR3C,  another  gene  in  the  3q27.1  region,  is  a
biomarker for predicting lung cancer prognosis[52].  A
risk  model  that  includes HTR3E together  with  13
other  central  immune-related  genes  (CBLC, TNF,
PSMC4, TRAV30, PDIA3, FGF8, PDGFRA, ESRRA,
SBDS, CRHR1, LTA, NR2F1, TNFRSF18)  was  used  to
predict  the  prognosis  of  endometrial  carcinoma[53].
MIR1224 acts  as  a  tumor  suppressor  in  the
occurrence and development of  cancers and can be
used  as  a  tumor  biomarker  for  early  diagnosis  and

prognosis prediction[54]. UGT2B28 (located at 4q13.2)
is  a  predictor  of  progression  in  prostate  cancer  and
can  be  therapeutically  targeted  by  using  a
combination of AR/EGFR inhibitors[55].

Analysis  of  CSCC  samples  identified  three
mutational signatures corresponding to signatures 2,
6,  and 7 in the COSMIC database (Figure 4C).  These
are  slightly  different  from  those  found  in  the  CESC
dataset  in  TCGA  database,  specifically  signature  2
(72.5%)  and  6  (13.2%).  The  APOBEC  family  of
proteins  specifically  catalyze  the  conversion  of
cytosine in the genome to uracil, which is related to
base  excision  repair  and  DNA  replication
mechanisms[56].  It  can  be  activated  by  HPV  virus
infection and is involved in the immune response[56].
APOBEC,  which  is  closely  related  to  cervical
carcinogenesis,  is  the  source  of  signature  2  and
signature  13  in  human  cancers[6,57].  These  studies
suggest  that  APOBEC  causes  CSCC  mutations  under
the  control  of  HPV.  Additionally,  signature  6  is  a
novel  early  warning  biomarker  for  CC  associated
with the deficiency of DNA mismatch repair.

This  study  identified  three  genes  (PIK3CA,
FBXW7,  and BICRA)  predicted to act as driver genes
that could potentially promote tumor formation and
development. BICRA,  a  component  of  the  SWI/SNF
chromatin  remodeling  complex,  was  identified  as  a
novel driver gene of CSCC. However, we did not find
published  evidence  supporting  that  this  gene  is
associated  with  cancer  risk  or  development.  We
observed  eight  missense  mutations  in PIK3CA
(26.67%),  which  is  consistent  with  results  reported
previously  (26% in  Cancer  Genome  Atlas  Research
Network[6],  16.7% in  Huang  et  al.[16]).  The  results
further  indicated  no  significant  difference  in  the
PIK3CA mutation  rate  between  cervical
adenocarcinoma and CSCC. We identified two SMGs
that  may  be  associated  with  CSCC: RAMP2 and
FOSL2. RAMP2 downregulation may promote distant
metastasis  of  cancers  and  is  associated  with  a  low
survival  rate  in  oral  squamous  cell  carcinoma[58,59],

Continued
 

Sample Protein Mutation AA HLA types Identity Length (AA) %Rank Affinity (nmol/L) Drugs

SCCP19T VCPIP1 D434N HLA-C14:02 LVANVHQYF 9 1.247 361.85 −

SCCP19T VCPIP1 D434N HLA-A01:01 LVANVHQYFY 10 0.643 448.15 −

SCCP28T ZBED4 E664K HLA-B15:02 KMIALDLQPY 10 1.429 89.83 −

SCCP28T ZBED4 E664K HLA-C12:03 IAKMIALDL 9 0.66 132.87 −

SCCP28T ZBED4 E664K HLA-A11:12 VAKKITSLIAK 11 1.798 386.39 −

SCCP28T ZBED4 E664K HLA-A11:01 VAKKITSLIAK 11 1.798 386.39 −

　　Note. AA, amino acids. HLA, human leukocyte antigen.
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whereas FOSL2 is  closely  related  to  the  occurrence
of  ovarian  cancer,  lung  cancer,  and  breast
cancer[60,61,62].  The  results  indicate  that  these  two
genes  may  play  crucial  roles  in  the  occurrence  and
development  of  tumors.  However,  further  studies
are needed to validate these findings and to develop
these factors as potential biomarkers for CSCC.

Antigen  presentation  plays  a  crucial  role  in  the
human  immune  response  to  cancer.
Immunotherapies  for  cancer  are  often  based  on
targeting  antigens  presented  by  major
histocompatibility  complex/HLA  molecules[63].
Significant  advances  have  been  made  in
immunotherapy strategies for the treatment of solid
tumors (such as breast  cancer,  prostate cancer,  and
non-small  cell  lung  cancer).  However,  the  currently
available  approaches  are  not  sufficient  to  cure  CC.
Neoantigens are optimal targets for immunotherapy
and  are  up-and-coming  therapeutic  options.  We
identified 4960 neoantigens  in  this  study and found
that  the  number  of  neoantigens  was  positively
correlated  with  the  number  of  somatic  non-
synonymous  mutations,  whereas  it  showed  no
obvious  correlation  with  clinical  stage. HDAC6 and
DPP10 are  two  potential  neoantigen  genes  that  are
detected  in  the  early  stage  of  CSCC. HDAC6 is  a
unique  HDAC  family  member  that  regulates  the
Ras/MAPK/ERK,  PI3K/Akt,  and  Wnt  signaling
pathways,  which  are  associated  with  cellular
proliferation and are activated in most tumors[64]. Liu
et  al.  suggested  that DPP10 inhibits  colon  cancer
stem cell proliferation by regulating microRNAs such
as  miR-127-3p[65].  A  previous  study  demonstrated
that DPP10 methylation  levels  are  significantly
correlated with cervical neoplasia progression[66]. We
found  that  almost  every  neoantigen  was  present  in
one  sample,  further  highlighting  the  difficulty  in
ubiquitous  neoantigen  identification  in  CSCC.  We
used  RNA-seq  data  to  examine  the  expression  of
neoantigens  and  found  that  five  potential
neoantigen genes (including PIK3CA, MUC16, USP28,
CIC,  and CDKL5)  were  expressed.  Further  extended
clinical  studies  are  needed  to  determine  whether
these  genes  are  of  value  for  CSCC  immunotherapy.
The validation with two available neoantigen-related
public  databases  (TSNAdb  and  CTdatabase)
identified  114  neoantigens  involving  27  genes  that
may  serve  as  candidate  targets  for  neoantigen
vaccines. 

CONCLUSION

In  this  study,  the  comprehensive  genomic

characteristics  of  CSCC  were  determined  using  WES
data.  WES  and  RNA-seq  data  were  used  to  narrow
the  scope  of  neoantigens  for  individualized
immunotherapy  in  CSCC.  Further  experimental
verification  is  needed  to  obtain  effective
neoantigens. 
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