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Abstract

Objective     The aim of this study was to explore the role and mechanism of ferroptosis in SiO2-induced
cardiac injury using a mouse model.

Methods     Male  C57BL/6  mice  were  intratracheally  instilled  with  SiO2 to  create  a  silicosis  model.
Ferrostatin-1  (Fer-1)  and  deferoxamine  (DFO)  were  used  to  suppress  ferroptosis.  Serum  biomarkers,
oxidative  stress  markers,  histopathology,  iron  content,  and  the  expression  of  ferroptosis-related
proteins were assessed.

Results     SiO2 altered  serum  cardiac  injury  biomarkers,  oxidative  stress,  iron  accumulation,  and
ferroptosis  markers  in  myocardial  tissue.  Fer-1  and DFO reduced lipid  peroxidation and iron overload,
and alleviated SiO2-induced mitochondrial damage and myocardial injury. SiO2 inhibited Nuclear factor
erythroid  2-related  factor  2  (Nrf2)  and  its  downstream  antioxidant  genes,  while  Fer-1  more  potently
reactivated Nrf2 compared to DFO.

Conclusion     Iron  overload-induced  ferroptosis  contributes  to  SiO2-induced  cardiac  injury.  Targeting
ferroptosis  by  reducing  iron  accumulation  or  inhibiting  lipid  peroxidation  protects  against  SiO2
cardiotoxicity, potentially via modulation of the Nrf2 pathway.
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INTRODUCTION

S ilicosis  is  a  chronic  progressive
occupational  lung  disease  primarily
characterized by extensive nodular  fibrosis

in  the  lungs,  resulting  from  long-term  inhalation  of
significant amounts of crystalline silica (SiO2) dust[1,2].
The structure and function of lung tissue in patients
with  silicosis  are  impaired  to  varying  degrees.  In
severe  cases,  it  can lead to  the loss  of  occupational
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capacity  and  even  progress  to  pulmonary  heart
disease,  cardiac  failure,  and  respiratory  failure[3,4].
Damage  to  alveolar  epithelial  cells,  lung  tissue
remodeling, fibrosis, and the underlying mechanisms
induced by SiO2 have been the focus of occupational
disease  research  worldwide[5].  However,  the  effects
of SiO2 exposure on other organs such as the heart,
liver,  kidneys,  and  brain  have  not  been  extensively
investigated.  Clinical  examinations  have  shown  that
patients  with  silicosis  often  exhibit  impaired  right
ventricular  contractile  function,  elevated pulmonary
arterial  pressure,  reduced  respiratory  function,
worsening  disease  severity,  and  eventually  heart
failure[6,7].

Nanosized  SiO2 has  attracted  more  attention
regarding  its  detrimental  effects  on  the  body
compared  to  conventional  microsized  SiO2

[8-10].
Research has shown that nanosized SiO2 deposition
in  organs  such  as  the  lungs,  liver,  cardiovascular
system,  kidneys,  and  testes  can  lead  to  cellular
membrane damage, oxidative stress, inflammation,
and  genetic  toxicity[11-13].  In  contrast,  microsized
SiO2 can  barely  enter  the  bloodstream  directly
through the alveolar and capillary walls, potentially
causing  indirect  damage  to  other  organs,  such  as
changes  in  peripheral  blood  lymphocyte
subpopulations,  immunoglobulins,  oxidative  stress
markers,  and  inflammatory  mediators[14,15].
Patients  with  silicosis  and  animal  models  have
shown  increased  blood  iron  levels  and  the
abnormal  expression  of  iron-related  transport
proteins,  suggesting  SiO2 affects  body  iron
metabolism[16,17].  Ferroptosis,  an  iron-dependent
cell  death  process  characterized  by  lipid
peroxidation  and  reactive  oxygen  species  (ROS)
accumulation,  is  involved  in  various  diseases[18].
Glutathione  peroxidase  4  (GPX4)  and
prostaglandin-endoperoxide  synthase  2  (PTGS2),
also  known  as  cyclooxygenase-2  (COX-2),  are
recognized  markers  of  ferroptosis[19].  Nuclear
factor  erythroid  2-related  factor  2  (Nrf2),  a
transcription factor that responds to oxidative and
electrophilic  stress,  regulates  several  iron
metabolism  genes[20,21].  Studies  have  shown  that
ferroptosis  is  involved  in  the  development  of  lung
fibrosis  in  SiO2-induced  silicosis  mouse
models[17,22,23].  However,  it  is  unclear  whether
conventional microsized SiO2 causes abnormal iron
metabolism  in  the  blood  and  organs,  thereby
inducing ferroptosis. Therefore, this study aimed to
examine myocardial ferroptosis in a silicosis mouse
model  and  provide  insights  into  the  mechanisms
underlying SiO2-induced myocardial damage. 

MATERIALS AND METHODS
 

Reagents

Crystalline  silica  particles  (particle  size  1–5  μm,
purity  >  99.5%)  were  provided  by  U.S.  Silica
Company (Frederick, MD, USA). Ferrostatin-1 (Fer-1)
(≥ 95%,  HPLC)  was  obtained from Sigma-Aldrich  (St.
Louis,  MO,  USA),  and  deferoxamine  (DFO)  was
purchased  from  Medchem  Express  (Shanghai,
China).  Superoxide  dismutase  (SOD)  and  iron  stain
assay  kits  were  obtained  from  Solarbio  Science  and
Technology  Corp.  (Beijing,  China).  Lactate
dehydrogenase  (LDH)  and  mouse  aspartate
aminotransferase  (AST)  assay  kits  were  purchased
from  Jiancheng  Corp.  (Nanjing,  China).  A  Prussian
blue  staining  kit  was  purchased  from  Solarbio
Science  and  Technology  Corp.  (Beijing,  China).
Primary antibodies  against  glutathione peroxidase 4
(GPX4)  (1:1,000  for  western  blot),  nuclear  factor
erythroid  2-related  factor  2  (Nrf2)  (1:1,000  for
western blot), heme oxygenase 1 (HO-1) (1:1,000 for
western  blot),  NAD(P)H  quinone  dehydrogenase
1 (NQO1) (1:1,000 for western blot), xCT (1:1,000 for
western blot), and β-actin (1:1,000 for western blot)
as  well  as  the  secondary  antibody  used  for
immunoblotting  were  purchased  from  Affinity
Biosciences  (Jiangsu,  China).  Prostaglandin-
endoperoxide  synthase  2  (PTGS2)  (1:1,000  for
western blot) was obtained from Proteintech Group
(Wuhan,  China).  The  iron  colorimetric  assay  kit  was
purchased  from  Dojindo  Molecular  Technologies
(Tokyo, Japan). 

Animal Models

SPF male C57BL/6 mice (18–20 g, 6–8 weeks old)
were  obtained  from  Beijing  Huafukang
Biotechnology  Co.,  Ltd.  (Beijing,  China).  After
acclimating  for  1  week  ,  the  mice  were  randomly
divided  into  four  experimental  groups  (n =  8  per
group).  A  silicosis  mouse  model  was  established  by
intratracheal  instillation  of  SiO2 (dissolved  in  sterile
saline)  at  a  dose  of  50  μL  (50  mg/mL)  as  previously
described[23].  Sterile  saline  was  administered  to  the
control  group  via  intratracheal  instillation.  Twenty-
eight  days  after  SiO2 administration,  eight  mice  in
the SiO2 group were administered Ferrostatin-1 (Fer-
1)  (1  mg/kg) via intraperitoneal  injections  (SiO2 +
Fer-1  group)  and  an  additional  eight  mice  were
administered  deferoxamine  (DFO)  (20  mg/kg)  every
2 d (SiO2 + DFO group). This regimen was maintained
up  to  the  56th  day,  after  which  the  treatment  was
discontinued.  The  animals  were  euthanized  for
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tissue  collection  on  the  84th  day  after  initial  SiO2
administration[24-26],  and  blood  and  tissue  samples
were  collected  for  subsequent  experiments.  All
animal  procedures  complied  with  the  Guide  for  the
Care  and  Use  of  Laboratory  Animals  of  the  North
China  University  of  Science  and  Technology  and
were  approved  by  the  Animal  Care  and  Use
Committee of North China University of Science and
Technology (Protocol No. 2023-SY-014). 

Serum Biomarkers of Cardiac Injury

The  level  of  serum  creatine  kinase  isoenzymes
(CK)  was  measured  using  an  automatic  biochemical
analyzer  (ADVIA®  2400,  Siemens  Ltd.,  China).  The
enzyme activities of lactate dehydrogenase (LDH) and
aspartate  aminotransferase  (AST)  in  the  serum  were
detected using quick,  sensitive,  and convenient  assay
kits according to the manufacturers’ instructions. 

Oxidative Stress

Malondialdehyde  (MDA)  concentrations  were
quantified using  a  Lipid  Peroxidation MDA Assay Kit
(Beyotime,  Jiangsu,  China).  This  method  utilizes  the
interaction  between  MDA  and  thiobarbituric  acid
(TBA)  to  measure  absorbance  at  532  nm.  The  MDA
values  were  determined  using  a  standard  curve
derived  from  the  reference  standards  of  the  kit
under  identical  conditions.  Commercial  assay  kits
(Solarbio, Beijing, China) were used to measure SOD
concentrations.  This  assay  relies  on  SOD’s  ability  to
eliminate  O2

−,  which  in  turn  reduces  nitrogen  blue
tetrazolium,  forming  a  blue-colored  methanogen.
The  SOD  activity  was  assessed  based  on  the
absorbance of blue methanogens at 560 nm. 

Histopathology

Hematoxylin  and  eosin  (H&E)  and  Prussian  blue
staining  were  performed  as  previously  described[27].
Briefly,  after overnight fixation in 4% formaldehyde,
murine  hearts  were  embedded  in  paraffin  and  cut
into 5-μm sections. Cardiac tissues were transversely
sectioned from the middle segment and stained with
H&E.  For  Prussian  blue  staining,  cardiac  sections
were deparaffinized at 60 °C for 1 h and hydrated in
distilled  water.  Equal  volumes  of  potassium
ferrocyanide  and  hydrochloric  acid  were  mixed  to
prepare  a  working  iron  stain  solution.  The  cardiac
tissues were then incubated in the working solution
for  3  min.  The  samples  were  viewed  under  a  light
microscope (Olympus, Japan). 

Transmission Electron Microscopy

Fresh myocardium samples (1 mm3) were quickly

and carefully collected from the left ventricle of the
mice  and  placed  in  pre-labeled  tubes  containing
glutaraldehyde  fixative  solution  for  4  h.  Cardiac
tissues  were  then  subjected  to  permeation,
dehydration,  and  overnight  embedding.  Samples
were  viewed  using  a  transmission  electron
microscope (HITACHI, Japan). 

Non-heme Iron in Serum and Cardiac Tissue

Blood samples were collected and centrifuged at
3,000  rpm  (4  °C)  for  15  min  to  obtain  serum.
Absorbance was measured at 560 nm, and the non-
heme  iron  content  of  unknowns  was  calculated  by
drawing  a  standard  curve,  the  results  of  which  are
presented  in  milligrams  of  iron  per  deciliter  of
serum. Non-heme iron levels in cardiac tissues were
detected using the chromogen method, as described
previously[27],  and  the  results  are  presented  in
micrograms of iron per gram of cardiac tissue. 

Quantitative Real-Time PCR and Western Blot

Quantitative  real-time  PCR  and  western  blotting
were  performed  as  previously  described[23].  The
mRNA and protein expression levels of target genes
were  normalized  to  β-actin.  The  primer  sequences
used for the qRT-PCR are listed in Table 1. 

Statistical Analysis

All  statistical  analyses  were  performed  using
SPSS  (version  23.0)  software.  Results  are  presented
as  the  mean  ±  standard  error  of  the  mean  (SEM).
Comparisons  among  multiple  groups  were  analyzed
via  one-way  analysis  of  variance  (ANOVA)  followed
by  Tukey’s  post-hoc  test,  whereas  comparisons
between two groups were evaluated using Student’s
t-test.  A P-value  <  0.05  was  considered  statistically
significant. 

RESULTS
 

Myocardial Injury in SiO2-Exposed Mice

Although  extensive  research  exists  on  lung
injuries caused by SiO2, reports on myocardial tissue
damage induced by SiO2 are relatively scarce.

In  the  present  study,  we  developed  a  silicosis
mouse  model  and  observed  fibrotic  nodules  in  the
lung tissues of  the mice in the 84-day model  group.
In contrast, no significant changes were observed in
the  control  group,  as  presented  in  the  scientific
hypothesis diagram (Figure 1A) and Hematoxylin and
eosin  (H&E)  staining  of  lung  tissue  from  mice  with
silicosis (Figure 1B).
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In  the  present  study,  we  observed  found
myocardial  damage  in  silicotic  mice  after  84  d  of
exposure  to  SiO2.  We  found  significant  increases  in
the levels of biochemical indicators CK, AST, and LDH
in the serum of the model group compared to those
in  the  control  group  (Figure  2A–C).  However,  no
significant  histopathological  changes  were  observed
upon  examination  with  H&E  staining  under  an
optical  microscope  (Figure  2D).  Compared  to  the
control  group,  the  cardiomyocytes  in  the  model
group  exhibited  disorganized  mitochondrial
arrangement,  mitochondrial  shrinkage,  and
disappearance  of  cristae  (Figure  2E).  Subsequently,
we  examined  oxidative  damage-related  markers  in
the  serum  and  myocardial  tissues  of  the  mice.  The
results  showed  increased  levels  of  MDA  and
decreased  levels  of  SOD  in  the  serum  and
myocardium  of  the  model  group  compared  with
those in the control group (Figure 2F–I). Although no
pathological  changes  were  observed  in  the
myocardial  tissue  of  SiO2-exposed  mice,

 

Table 1. Primer used for qRT-PCR

qPCR Primers Sequence 5’–3’

GPX4 F CGAGCTCGTGTGTGGCTGTTCCCCAGG

GPX4 R CCAAGCTTCAGGAAGCAACATTTACTTG

PTGS2 F TGCTGTTCCAACCCATGTCA

PTGS2 R TGTCAGAAACTCAGGCGTAGT

Nrf2 F TGAAGCTCAGCTCGCATTGA

Nrf2 R TGCTCCAGCTCGACAATGTT

HO-1 F TGCTAGCCTGGTGCAAGATACT

HO-1 R AGGCCACATTGGACAGAGTT

xCT F TGCAATCAAGCTCGTGAC

xCT R AGCTGTATAACTCCAGGGACTA

NQO1 F GCTGCCATGTACGACAACGG

NQO1 R ATGCCACTCTGAATCGGCCA

β-actin F TGGGACGATATGGAGAAGAT

β-actin R ATTGCCGATAGTGATGACCT

 

Nrf2

Oxida�ve
stress

Transferrin
IronTf

Fe3+

Fe2+

Transferrin
receptor

Lipid peroxida�on

Ferroptosis

Myocardial
injury

Control Silica

A

B

Figure 1. Establishing an silicosis  mouse model  after  exposure to SiO2 for  84 d.  (A)  Scientific  hypothesis
diagram. (B) Lung tissue of control mice and mice with silicosis. H&E staining (200× magnification, n = 3).
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mitochondrial  organelles  were  damaged,  indicating
potential  injury  to  the  myocardium.  This  may  be
associated  with  SiO2-induced  myocardial  oxidative
stress, either directly or indirectly. 

Myocardial  Ferroptosis  in  Mice  Caused  by  SiO2
Exposure

To  further  investigate  the  effects  and
mechanisms  of  SiO2 on  the  myocardial  tissue,  we
examined  the  iron  content  in  the  serum  and
myocardial  tissue.  The  results  showed  that  non-
heme iron levels in both the serum and myocardium
of SiO2-exposed mice were higher than those in the
control  group  (Figure  3A and  B).  Prussian  blue

staining  also  revealed  iron  deposition  in  the
myocardial tissues of SiO2-exposed mice (Figure 3C).
We  then  examined  the  ferroptosis  markers  GPX4
and  PTGS2  (Figure  3D–F,  H,  and  I).  The  results
showed  that  both  mRNA  and  protein  expression  of
GPX4  were  lower,  whereas  the  mRNA  and  protein
expression  of  PTGS2  were  higher  in  the  myocardial
tissue  of  SiO2-exposed  mice  than  in  the  control
group.  Additionally,  transmission  electron
microscopy  revealed  a  disordered  arrangement,
swelling, and loss of mitochondria in the myocardial
cells of SiO2-exposed mice (Figure 2E).  These results
suggest  that  ferroptosis  is  activated  in  the  cardiac
tissues of SiO2-exposed mice. 
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Figure 2. Myocardial  damage  in  mice  injected  with  SiO2 (50  mg/mL)  after  84  d.  (A–C)  Creatine  kinase
isoenzymes (CK), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels in serum (n =
6). (D) Hematoxylin and eosin (H&E) staining for cardiac tissues histopathology (n = 3). (E) Transmission
electron micrograph of mitochondria in cardiomyocytes (the yellow asterisks indicate the disappearance
of mitochondrial cristae). (F–G) The serum and cardiac malondialdehyde (MDA) levels in indicated groups
(n =  6).  (H–I)  The  serum  and  cardiac  superoxide  dismutase  (SOD)  levels  in  indicated  groups  (n =  6).
Asterisks indicate significant differences at *P < 0.05, **P < 0.01, and ***P < 0.001.
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Effects of Fer-1 and DFO Intervention on Ferroptosis
in Vivo

We administered Fer-1 and DFO in SiO2-exposed
mice.  Fer-1  inhibits  iron-dependent  lipid
peroxidation, whereas DFO is an iron chelator that is
widely  used  to  reduce  iron  accumulation  and
deposition  in  tissues.  Following  Fer-1  and  DFO
intervention, there was a significant decrease in the
levels of CK, LDH, and AST in the serum compared to
SiO2-exposed  mice  (Figure  4A–C),  as  well  as
decreased MDA levels  and increased SOD activity in
the  serum  and  myocardial  tissues  (Figure  4D–G).
Electron  microscopy  showed  that  both  Fer-1  and
DFO  improved  the  disordered  arrangement  and
swelling  of  mitochondria  in  SiO2-induced  mouse
myocardium  (Figure  4H).  Fer-1  intervention  did  not

improve myocardial  iron deposition in  SiO2-exposed
mice,  whereas  DFO  significantly  reduced  non-heme
iron  levels  in  the  peripheral  blood  and  myocardium
of  SiO2-exposed  mice  (Figure  4I–K).  Furthermore,
both  ferroptosis  inhibitors  significantly  decreased
PTGS2  protein  and  mRNA  expression  levels  and
increased GPX4 protein and mRNA expression levels
in  the  myocardium  (Figure  4L–P).  These  results
demonstrate  that  DFO  and  Fer-1  have  protective
effects  against  ferroptosis  in  SiO2-induced  mouse
myocardial cells. 

Changes  Nrf2  Pathway  in  Myocardial  Induced  by
SiO2

This study further evaluated the changes in Nrf2
and  its  downstream  proteins  in  the  myocardium  of
SiO2-exposed  mice  following  intervention  with
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ferroptosis  inhibitors.  The  results  showed  that
compared  to  the  control  group,  the  expression  of

Nrf2 and its downstream proteins HO-1, NQO1, and
xCT  decreased  in  the  myocardial  tissue  of  SiO2-
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exposed  mice  (Figure  5A–E),  as  well  as  the  mRNA
expression  of  Nrf2  and  HO-1  (Figure  5F–I).
Interestingly, although both Fer-1 and DFO increased
the  mRNA  and  protein  expression  of  Nrf2,  HO-1,
NQO1,  and  xCT  in  the  myocardium  of  SiO2-exposed
mice,  there were still  differences  in  Nrf2 expression
between  the  control  and  SiO2 groups.  Compared
with the DFO intervention group,  Fer-1 intervention
was  better  able  to  activate  the  expression  of  Nrf2
and  its  downstream  proteins  in  the  myocardium  of
SiO2-exposed mice. 

DISCUSSION

In  a  SiO2-induced  mouse  model  of  pulmonary
fibrosis,  we  observed  significant  changes  in  serum
biomarkers  (such  as  CK  and  AST)  associated  with
myocardial  injury.  We  then  attempted  to  observe
the  extent  of  myocardial  damage  in  SiO2-exposed
mice,  but  no  significant  pathological  changes  in  the
myocardial tissue were found 84 d after establishing
silicosis mouse models. However, interestingly, upon
observing  the  ultrastructure,  we  noticed  that  the
mitochondria  in  the  myocardial  cells  were  swollen
with disappearing cristae. In this study, we provided
explanations  for  myocardial  injury  in  SiO2-exposed
mice  from  the  perspective  of  iron-dependent  cell
death and identified potential preventive targets for
clinical  manifestations  such  as  pulmonary  heart
disease  and  late-stage  heart  failure  in  patients  with

silicosis.
In  clinical  practice,  there  is  a  time  lag  between

the  occurrence  of  cardiac  symptoms  (e.g.,  acute
myocardial  infarction)  and  eventual  mortality  in
populations  occupationally  exposed  to  SiO2

[28,29].
Therefore, the effects of SiO2 on the myocardium are
generally  observed  during  the  late  stages  of
silicosis[30,31].  Although some reports  have  shown an
increased risk of coronary artery disease mortality in
individuals  occupationally  exposed  to  SiO2,  valid
measures of the cause of mortality are lacking, with
endpoint  definitions  not  distinguishing  between
first-time  and  recurrent  events  and  obscuring  the
onset  time.  This  overlooked  the  effect  of  SiO2 on
myocardial injury[32,33]. Our results showed significant
changes  in  peripheral  blood  biomarkers  associated
with  the  myocardium  (CK,  AST,  and  LDH).  This  is
consistent  with  studies  that  reported  changes  in
myocardial  injury  biomarkers  in  rats  exposed  to
nanosized SiO2

[31,34]. Furthermore, the observation of
myocardial  cell  morphological  damage  after  SiO2
exposure showed significant mitochondrial structural
effects.  Mitochondria  are  the  main  energy  source
and  play  an  important  role  in  maintaining  normal
cellular  physiology;  however,  they  are  prone  to
damage  under  adverse  environmental  factors,
leading  to  dysfunction,  cellular  impairment,  and
adverse reactions such as autophagy, apoptosis, and
necrosis,  negatively  affecting  organismal  health[35].
Recent studies have reported that SiO2 treatment of
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rat myocardial cells causes mitochondrial membrane
depolarization  and  a  55% decrease  in  ATP
production,  along  with  glutathione  depletion  and
hydrogen  peroxide  production,  suggesting  that  SiO2
increases oxidative stress and impairs mitochondrial
function  and  energy  supply[14,36].  Once  particulate
matter  enters  the  bloodstream  through  the  blood-
gas barrier, ultrafine particles may affect myocardial
cells,  causing  ischemia  or  heart  failure[37].  However,
current research on the effects of conventional SiO2
particle on myocardial cells is limited to SiO2-induced
pulmonary  inflammation,  which  leads  to  systemic
inflammation[38].  We  showed  that  SiO2 exposure
increased  the  blood  non-heme  iron  content  and
myocardial  accumulation,  causing  iron-dependent
myocardial  cell  death,  providing  new  insights  into
conventional  SiO2-induced  myocardial  injury
mechanisms.

Ferroptosis  is  a  form  of  regulated  cell  death
characterized  by  iron  accumulation  and  lipid
peroxidation[39]. Recent studies have shown that iron
plays  an  important  regulatory  role  in  diseases  such
as  myocardial  ischemia-reperfusion  injury,
cardiomyopathy,  and  heart  failure[40,41].  Iron
overload-induced  myocardial  damage  is  known  as
iron  overload  cardiomyopathy,  in  which  free
intracellular iron enters the mitochondria, generates
ROS,  and  causes  oxidative  stress  and  lipid
peroxidation[42].  We  found  that  SiO2 exposure  in
mice  increased  cardiac  iron  levels  and  altered  the
expression  of  ferroptosis  markers  GPX4  and  PTGS2.
Intervention with Fer-1 or DFO in SiO2-exposed mice
showed  that  DFO  reduced  peripheral  and  cardiac
iron  levels  and  Fer-1  inhibited  lipid  peroxidation,
which  alleviated  SiO2-induced  cardiac  damage,  and
restored  mitochondrial  morphology  and  cardiac
injury  serum  biomarkers.  Similarly,  the  inhibition  of
ferroptosis  in  cardiac  diseases  such  as
hemochromatosis  and  ischemic  heart  disease  can
alleviate disease progression[43,44].  Numerous studies
have  demonstrated  that  certain  natural  compounds
such  as  resveratrol  and  salidroside,  can  alleviate
cardiac injury by inhibiting ferroptosis. However, the
mechanisms  underlying  these  effects  are  not  yet
fully  understood[45,46].  Therefore,  mitigating  SiO2-
induced  cardiac  toxicity  by  regulating  the  iron
concentration  could  provide  preventative  and
treatment strategies.

Ferroptosis  is  characterized  by  iron
accumulation,  increased  lipid  peroxidation,  and
inability  to  reduce  lipid  peroxides.  Many  ferroptosis
cascade  components  are  Nrf2  target  genes,
indicating  their  critical  mediating  roles[20,47].  We

found  changes  in  Nrf2  pathway  expression  in  SiO2-
exposed cardiac tissues. DFO intervention to reduce
blood  and  cardiac  iron  levels  activated  Nrf2
expression  less  than  Fer-1,  which  is  potentially
related  to  Nrf2  regulation  of  iron  storage,
metabolism,  and  transport  proteins[48].  During  iron
accumulation,  Nrf2-mediated  HMOX1  expression
catalyzes heme cleavage to form biliverdin,  CO,  and
Fe2+,  which  may  act  as  a  ferroptotic  driver[49].  Nrf2
facilitates  iron  accumulation  and  defense
transcription[50],  and  Nrf2  pathway  components,
such  as  peroxiredoxins,  are  efficient  cardiovascular
ROS  scavengers[51].  Therefore,  pharmacological  Nrf2
modulation  to  induce  or  inhibit  ferroptosis  may  be
important for SiO2-induced organ damage.

In silicotic  mice,  no myocardial  histopathological
changes  were  observed  after  84  d  of  exposure;
however,  late-stage  clinical  silicosis  can  cause  heart
failure. We plan to prolong SiO2 exposure to observe
its  long-term  effects  and  conduct  clinical  studies  to
compare patients. Previous studies have shown that
conventional  microsized  SiO2 can  cause
inflammation,  pulmonary  hypertension,  and  right
ventricular structural and functional changes[6,52]. We
plan to further investigate mechanisms such as  iron
accumulation-induced  pulmonary  arterial
endothelial damage to improve our understanding of
SiO2-induced myocardial injury.

In  conclusion,  we  demonstrated  that  SiO2
exposure  increases  peripheral  and  myocardial  iron
levels,  causing  myocardial  ferroptosis  and  altering
the  expression  of  Nrf2  and  its  downstream  genes.
These  data  will  enable  the  exploration  and
development  of  new  clinical  SiO2 treatment  and
prevention strategies. 

CONCLUSION

In  conclusion,  this  study demonstrated that  iron
overload-mediated  ferroptosis  is  a  critical
mechanism  contributing  to  SiO2-induced  cardiac
injury  in  a  silicosis  mouse  model.  Intervention  with
the  ferroptosis  inhibitors,  ferrostatin-1  and
deferoxamine  alleviated  SiO2-induced  mitochondrial
damage  and  cardiotoxicity  by  reducing  lipid
peroxidation  and  iron  overload,  respectively.  These
findings  suggest  that  inhibition  of  ferroptosis  by
modulating  iron  homeostasis  or  lipid  peroxidation
may  be  an  effective  therapeutic  strategy  to  protect
against  SiO2-induced  cardiotoxicity.  Overall,  this
study  elucidated  the  key  role  of  iron-dependent
ferroptosis in SiO2-triggered cardiac injury, providing
novel  insights  into  the  mechanisms  of  SiO2
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cardiotoxicity,  which may reveal  new approaches to
prevent cardiac complications in silicosis. 
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