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Abstract

Objective    To examine the precise function of influenza A virus target genes (IATGs) in malignancy.

Methods    Using multi-omics data from the TCGA and TCPA datasets,  33 tumor types were evaluated
for  IATGs.  IATG  expression  in  cancer  cells  was  analyzed  using  transcriptome  analysis.  Copy  number
variation  (CNV)  was  assessed  using  GISTICS  2.0.  Spearman’s  analysis  was  used  to  correlate  mRNA
expression  with  methylation  levels.  GSEA  was  used  for  the  enrichment  analysis.  Pearson’s  correlation
analysis was used to examine the association between IATG mRNA expression and IC50. The ImmuCellAI
algorithm was used to calculate the infiltration scores of 24 immune cell types.

Results    In 13 solid tumors, IATG mRNA levels were atypically expressed. Except for UCS, UVM, KICH,
PCPG, THCA, CHOL, LAMI, and MESO, most cancers contained somatic IATG mutations. The main types
of CNVs in IATGs are heterozygous amplifications and deletions. In most tumors, IATG mRNA expression
is  adversely  associated  with  methylation.  RT-PCR  demonstrated  that EGFR, ANXA5, CACNA1C, CD209,
UVRAG were upregulated and CLEC4M was downregulated in KIRC cell  lines, consistent with the TCGA
and GTEx data.

Conclusion    Genomic  changes  and  clinical  characteristics  of  IATGs  were  identified,  which  may  offer
fresh perspectives linking the influenza A virus to cancer.
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INTRODUCTION

T he  global  cancer  burden  continues  to
increase.  There  were  approximately  19.3
million  new  cancer  cases  and  nearly  10

million  cancer  deaths  worldwide  by  2020[1].
Additionally, 15%–20% of all cancer cases are caused
by viruses[2]. Extensive research has been conducted
to  elucidate  the  link  between  viruses  and  cancer.
Multiple human oncogenic viruses, such as hepatitis
B  (HBV)  and  C  (HCV),  human  tumor  virus  (HPV),
Epstein-Barr virus (EBV), and Kaposi sarcoma herpes
virus  (KSHV),  are  strongly  associated  with  diverse
cancer  types[3-6].  The  influenza  A  virus  (IAV)  is  a
zoonotic  pathogen  that  circulates  continuously  in
several  avian  and  mammalian  hosts,  including
humans.  It  is  the  major  cause  of  respiratory
infections  worldwide  and  remains  a  serious  and
persistent  threat  to  global  public  health[7,8].
Currently,  it  is  the  only  influenza  virus  with  clear
evidence of influenza pandemics[9].  According to the
U.S.  Centers  for  Disease  Control  and  Prevention
(CDC),  influenza caused 9–41 million cases of  illness
in  the  U.S.  each  year  between  2010  and  2020
(https://www.cdc.gov/flu).  The  currently  prevalent
IAV  caused  the  2009  pandemic,  which  emerged  in
spring  and  quickly  spread  worldwide  (http://www.
cdc.gov/h1n1flu/).  Influenza  viral  infection  also
causes  severe  complications,  especially  in  patients
with  lung  cancer,  by  altering  the  tumor
microenvironment  (TME),  which  may  promote  lung
cancer  progression  and  disrupt  the  response  to
antineoplastic therapy[10].

Influenza viruses pose a risk to human health and
numerous  studies  have  revealed  their  tumorigenic
potential[11,12]. In 1993, a study reported that in vitro
cultured  Madin-Darby  canine  kidney  (MDCK)  and
HeLa  cells  exhibited  a  series  of  specific  apoptotic
phenotypes  following  human  IAV  infection.  This
suggests that influenza viruses can induce apoptosis
in  cultured  tumor  cells in  vitro[13].  Preexisting
influenza  A  immunity  could  be  used  for  cancer
immunotherapy  by  delivering  influenza  A-related
peptides  to  targeted  tumors[14].  However,  the
relationship  between  IAV  and  cancer  remains
unclear  compared  with  that  between  IAVs  and
validated  oncoviruses.  Thus,  the  role  of  influenza-A
virus target genes (IATGs) in human host tumors also
needs further exploration.

In  this  study,  we  identified  six  target  genes  of
influenza A virus—epidermal growth factor receptor
(EGFR),  Annexin  5  (ANXA5),  C-type  lectin  domain
family 4 member (CLEC4M), cluster of differentiation

209  (CD209),  UV  radiation  resistance-associated
gene  protein  (UVRAG),  and  calcium  voltage-gated
channel  subunit  alpha1  C  (CACNA1C)—from  the
VThunter  database.  Except  the CACNA1C,  the  other
five  IATGs  participate  in  the  evasion of IVA into  the
host cells. Stimulation of the EGFR signaling pathway
facilitates  the  internalization  of  IAV  through
endocytosis and uptake by host cells[15-17]. ANXA5 is a
member  of  the  family  of  proteins  that  bind  to
calcium  or  phospholipids.  It  binds  to  three  distinct
strains  of  influenza  A  virus  and  assists  in  viral  entry
into  host  cells[18].  CLEC4M  and  CD209  are  members
of the C-type lectin domain family that facilitate the
binding and entry of IVA into cells, regardless of the
presence of sialic acid on the cell surface[19]. UVRAG,
a  gene  associated  with  resistance  to  UV  radiation,
acts as a tumor suppressor by promoting autophagy,
which  plays  a  vital  role  in  facilitating  the  entry  of
negative-stranded  RNA  viruses,  such  as  influenza  A
virus,  independent  of  interferon  (IFN)  or
autophagy[20]. However, in contrast to the other five
IATGs, the knockdown of CACNA1C by siRNA did not
decrease  viral  titers  compared  to  controls  in  A549
cells,  a  pulmonary  epithelial  cell  line[21].  Further
studies  are  needed  to  explore  the  underlying
association between CACNA1C and IVA.

Recently,  the  development  of  omics  technology
has  led  to  unparalleled  attempts  to  identify  gene
alterations  that  reveal  the onset  and progression of
a  vast  array  of  diseases,  including  cancer.
Consequently, analyses based on omics technologies
in genomics,  transcriptomics,  and other omics fields
have  been  focused  on  and  hailed  to  discover
potential  molecular  targets  for  the  development  of
new  drugs[22].  In  this  study,  we  systematically
analyzed  the  characteristics  of  IATGs  in  thirty-three
cancers  at  the  genomic  and  clinical  levels.  Genomic
and  epigenetic  alterations  result  in  aberrant
expression of influenza A virus receptors. In addition,
these  changes  were  strongly  associated  with
signature-related  signaling  pathway  activation,
clinical  survival,  and  immune  infiltration  in  tumors.
Targeting  influenza  A  virus  receptors  may  be  a
plausible  approach  for  exploring  new  cancer
treatment options. 

MATERIALS AND METHODS
 

IATGs Identification

Six  IATGs  (EGFR,  ANXA5,  CLEC4M,  CD209,
UVRAG,  and CACNA1C)  were  retrieved  from  the
VThunter  database  (URL:  https://db.cngb.org/
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VThunter/).  Selected “Orthomyxoviridae” from  the
“Virus  Family” dropdown  menu  and “Influenza  A
virus” from  the “Virus” dropdown  menu,  then  the
target genes of Influenza A virus were shown in the
“Target  Gene” dropdown  menu.  The  VThunter
database  is  an  up-to-date  and  accessible  database
specifically  created  to  examine  and  analyze  the
manifestations  of  viral  receptors  in  the  tissues  of
various  animal  species  at  the  single-cell  level.  This
database  identified  107  viral  receptors  in  142  viral
species  and  acquired  accurate  expression  profiles
using  285  scRNA-seq  datasets,  which  cover
2,100,962 cells from 47 distinct animal species[23]. 

Cell Culture and qRT-PCR

We procured human kidney renal cell carcinoma
cell  lines  (786-O,  ACHN,  and  Caki-1)  and  HK-2,  a
proximal  tubular  cell  line  derived  from  the  normal
kidney  from  the  American  Type  Culture  Collection
(ATCC,  VA,  USA).  The  primers  were  synthesized  by
Sangon  Biotech  (Shanghai,  China).  Cells  were
cultured  and  collected  for  qRT-PCR  analysis  as
described  previously[24,25].  Briefly,  50,000  cells  from
each of the cell lines indicated above were plated in
6-well  plates.  Total  RNA  was  collected  and  isolated
from cell cultures after the cells reached confluence
using the TRIzol reagent (Invitrogen, NY, USA). iScript
cDNA synthesis reagent (Bio-Rad, Hercules, CA, USA)
was used to synthesize cDNA. β-actin was utilized as
an internal  control.  The primer sequences are listed
below. 

Data Set Download and Processing

Public databases were accessed to acquire tumor
sample-related data from The Cancer Genome Atlas
(TCGA)  (https://portal.gdc.cancer.gov/)[26],  and
mRNA sequencing, clinical, single-nucleotide variants
(SNV), copy number variants (CNV), and methylation
data  from  the  GSCA  database  (http://bioinfo.life.
hust.edu.cn/GSCA)[27].  The  details  have  been
described  previously[24-25].  Reverse  phase  protein

array  (RPPA)  data  retrieved  from  The  Cancer
Proteome  Atlas  (TCPA)  database  were  used  for
pathway  analysis[28].  The  correlation  between  gene
expression  and  drug  sensitivity  was  based  on  the
Genomics  of  Drug  Sensitivity  in  Cancer  (GDSC)
database[29].  Samples  collected  from  thirty-three
cancer  types  were  included  in  pan-cancer  analysis.
Detailed  cancer  types  and  cases  are  listed  in
Supplementary  Table  S1 (available  in  www.
besjournal.com). 

Differential Expression and Prognostic Analysis

Only  fourteen  cancer  types  were  included
(COAD, ESCA, LUSC, KIRC, HNSC, PRAD, BRCA, BLCA,
THCA,  STAD,  KIRP,  LUAD,  LIHC,  and  KICH)  in  the
mRNA expression analysis. The criterion was that the
paired tumor and normal samples collected from the
list  of  cancer  types were more than ten.  The mRNA
expression  values  in  TCGA  are  expressed  as
normalized RSEM values. Fold change was calculated
as  mean  (tumor)/mean  (normal),  as  described
previously[24,25].  Moreover,  the  tumor  samples  were
classified  into  two  groups  (high  and  low)  based  on
the  median  values  and  further  analyzed  for  the
correlation between expression and survival. 

Single Nucleotide Variant Analysis

SNV  and  clinical  survival  data  from  thirty-three
cancers  were  extracted  from  TCGA  database.  Using
the  unique  barcoding  of  each  specimen,  SNV  and
clinical  survival  data  were  merged.  Mutated  tumor
specimens were identified based on the presence of
certain  mutated  genes.  For  the  survival  analysis,  at
least  two  groups  with  two  or  more  samples  were
included.  The  survival  rate  of  the  R  package  was
used  to  match  the  survival  time  and  status.
Differences  in  survival  between  the  wild-type  and
mutant  groups  were  determined  using  the  Cox
proportional  hazards  model  and  log-rank  test.  Eight
mutation  types  were  included  in  the  analysis:
deleterious  mutations,  missense  mutations,

 

Table 1. Primers

Gene Forward sequence 5'-3' Reverse sequence 5'-3'

EGFR TTGCCGCAAAGTGTGTAACG GTCACCCCTAAATGCCACCG

CACNA1C AATCGCCTATGGACTCCTCTT GCGCCTTCACATCAAATCCG

CLEC4M GAGTAACCGCTTCTCCTGGATG CGCACAGTCTTCATTCCCGCTA

ANXA5 AACCCTCTCGGCTTTATGATGC CGCTGGTAGTACCCTGAAGTG

CD209 TCAAGCAGTATTGGAACAGAGGA CAGGAGGCTGCGGACTTTTT

UVRAG CTTGGGTCAGCAGATTCATGC CATCGTAAGAATTGCGAACACAG
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nonsense  mutations,  frame-shift  insertions,  splice-
sites,  frame-shift  deletions,  in-frame  deletions,  and
in-frame insertions. 

Copy Number Change Analysis

CNV  data  from  thirty-three  cancer  types  were
collected  from  TCGA  and  analyzed  using  GISTICS
2.0[30].  The  GISTIC  database  was  used  to  identify
significantly  altered  regions  of  amplification  or
deletion  in  the  patient  cohorts.  This  study  explored
the copy number level  of each gene in the gene set
in each pan-cancer cancer based on the GISTIC score
derived  from  GISTIC  and  then  summarized  the  four
types  of  GISTIC  scores:  homozygous  deletion,
heterozygous  deletion,  heterozygous  amplification,
and  homozygous  amplification.  Spearman’s
correlation  analysis  was  performed  by  merging  the
mRNA  expression  data  with  raw  CNV  data[31].  The
false  discovery  rate (FDR)  was used to adjust  the P-
value. A log-rank test was performed to examine the
differences  in  survival  between  groups.  SNV  data
and  clinical  survival  data  were  merged  using
specimen  barcoding.  For  the  survival  analysis,  at
least  two  groups  with  two  or  more  samples  were
included.  The R  package for  survival  was  used to  fit
survival  time  and  status  within  each  group.  A  log-
rank test  was performed to test  survival  differences
between the groups. 

Methylation Analysis

Methylation  analysis  was  performed  based  on
the  chosen  fourteen  cancer  types  with  more  than
ten  paired  tumors  and  adjacent  normal  tissues.
Differences  in  methylation  levels  between  tumor
and  normal  samples  were  determined  using
Student’s  t-test.  Spearman  analysis  was  used  to
determine  the  correlation  between  the  mRNA
expression  and  methylation  levels  of  the  genes.
Median  methylation  data  were  used  for  survival
analysis  after  categorizing  tumor  samples  into  two
groups (hypermethylated and hypomethylated). The
FDR was also used to adjust the P-value. 

Cell Signaling Pathway Activity Evaluation

Calculations  were  performed  on  ten  cancer-
related  cell  signaling  pathways  for  thirty-three
cancer  types,  including  the  TSC-mTOR  pathway,
receptor  tyrosine  kinases  (RTKs),  Ras/Raf/MAPK
pathway,  PI3K-AKT  pathway,  hormone  estrogen
receptors  (ERs),  androgen  receptor  (AR),  EMT,  DNA
damage,  cell  cycle,  and  apoptotic  pathways[32].  The
activity  scores  of  the  listed  pathways  and  gene
expression  between  pathways  (activation  and

repression)  were  determined  using  the  median
pathway scores[33].

First,  all  included  data  were  grouped  into  high
and  low  expression  groups  based  on  median  gene
expression  values.  A t-test  was  used  to  determine
the  difference  in  pathway  activity  scores  (PAS)
between the groups, and FDR was used to adjust the
P-value. When PAS of the group with gene A in high
expression was greater than PAS of the other group
with gene A in low expression, gene A might activate
a  verified  signaling  pathway;  otherwise,  it  might
have a repressive effect on this pathway[33]. 

Enrichment Analysis of IATGs in Tumors

Gene set enrichment analysis (GSEA) calculations
were  performed  using  the  R  package  fgsea[34].  By
using  the  normalizing  entrichment  scores  (NES),
GSEA  considered  the  differences  in  the  sizes  of  the
IATG  gene  sets  and  correlations  within  the
expression  datasets.  NES  was  used  to  compare  the
results of the analyses across gene sets. 

Drug Sensitivity Analysis

The IC50 values of 265 selected compounds with
PubChem ID and the corresponding gene expression
data  in  the  GDSC2 dataset  were  collected  from 860
tumor  cell  lines  from  the  Genomics  of  Drug
Sensitivity  in  Cancer  database  (GDSC;  URL:
https://www.cancerrxgene.org/).  Compounds
without  valid  PubChem  ID  were  excluded  from  the
study.  These  compounds  are  cytotoxic
chemotherapeutics  and  targeted  therapeutics  that
are  acquired  from  commercial  sources,  academic
researchers,  and  biopharmaceutical  companies.  The
pathways  targeted  by  these  compounds  included
ABL  signaling,  apoptosis  regulation,  cell  cycle,
chromatin  histone  acetylation/methylation,
cytoskeleton,  kinases,  DNA  replication,  EGFR
signaling,  ERK/MAPK  signaling,  genome  integrity,
hormone-related pathways, IGF1R signaling, immune
response,  JNK  and  p38  signaling,  metabolism,
mitosis,  and  other  unclassified  pathways.  Pearson
correlation analysis was performed to determine the
relationship  between  the  mRNA  expression  of  the
gene  and  the  IC50  of  the  drug.  The P-value  was
adjusted  using  FDR.  A  positive  correlation  implies
that high gene expression suggests drug resistance. 

Analysis between IATGs and Immunity

The ImmuCellAI  algorithm was used to  calculate
the infiltration of 24 immune cell lines and expressed
as  a  correlation  coefficient[35].  The  association  of
immune  cell  infiltration  with  the  GSVA  scores  of
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IATGs  was  analyzed  using  Spearman’s  correlation
with P-value adjusted by FDR. A set of marker genes
for  three  immune-related  pathways,  including
chemotactic  cytokines,  the  MHC  class  I  antigen
presentation pathway,  and immunostimulators,  was
obtained  from  the  TISIDB  database[36].  The
relationship  between  IATGs  and  the  three  immune-
related  pathways  was  analyzed  using  the  GEPIA2
database (Pearson’s coefficient)[37]. 

Differential Expression of IATGs in KIRC and Normal

RNA-sequencing  expression  profiles  and
corresponding  clinical  information  for  IATGs  in  KIRC
were downloaded from the TCGA dataset, while those
for  normal  control  group  were  downloaded  from
GTEx  database  (https://gtexportal.org/�home/)[38].  The
test  for  differential  expression  of  genes  was
performed using the Wilcoxon rank sum test. 

Statistical Analysis

Unless  otherwise  stated,  all  statistical  analyses
were  performed  using  the  GraphPad  Prism  (version
8.0.1)  and  R  software  (version  4.0.2).  Correlation
analysis  was  conducted  using  the  Spearman’s
correlation test. Survival risk and HR were calculated
using the Cox proportional risk model. The “survival”
R  program  was  used  to  examine  the  two  groups’
survival  time  and  survival  status.  The  log-rank  test
was  used  for  comparative  analysis.  The  rank  sum
test was used to identify data from both groups, and
a P-value  <  0.05  or  FDR ≤ 0.05  was  considered
statistically  significant.  Genes and cancer types with
a P-value  of  less  than  0.05  were  shown.  The
significance  of  the  differences  between  the  two
subgroups  was  evaluated  using  the  Mann–Whitney
U test (n < 5). One-way ANOVA and Bonferroni’s post
hoc  tests  were  used  to  perform  multiple
comparisons. P <  0.05  was  deemed  statistically
significant.  Independent  qRT-PCR  analyses  were
performed in triplicates. 

RESULTS
 

Identification of Influenza A Target Genes

Six  IATGs  were  retrieved  from  the  VThunter
database: EGFR,  ANXA5,  CACNA1C,  CLEC4M, CD209,
and UVRAG. The following analyses were performed
based on the six identified IATGs (Figure 1). 

Significant  Differences  in  the  Expression  of  IATGs
between Tumor and Normal Tissues

Expression  and  survival  analyses  of  the  IATGs

were  performed  to  identify  their  clinical  impact  on
cancer.  IATGs were aberrantly  expressed in  13 solid
tumors,  including  BRCA,  COAD,  LUSC,  BLCA,  LUAD,
KICH, LIHC, PRAD, KIRP, STAD, KIRC, THCA, and HNSC
(FDR ≤ 0.05; Figure  2A).  Specifically,  the  expression
CACNA1C, UVRAG,  and CLEC4M,  was  significantly
downregulated.  In  contrast, EGFR and ANXA5
expression levels were markedly elevated in multiple
cancers  (FDR ≤ 0.05; Figure  2A).  Furthermore,  the
hazard  ratios  (HR)  of ANXA5 in  LUSC,  STAD,  BLCA,
HNSC, MESO, LIHC, LGG, and CLEC4M in LUSC, STAD,
THCA,  THYM,  and  KIRC; CACNA1C in  LUSC,  STAD,
UVM, KIRP, MESO, and OV; EGFR in BLCA, PAAD, and
SARC; CD209 in UVM; and UVRAG in UCEC were > 1
(P ≤ 0.05; Figure  2B),  suggesting  that  the  aberrant
expression  of ANXA5, CLEC4M, CACNA1C,  and EGFR
are risk factors for the listed cancer types. However,
CLEC4M in ESCA, CACNA1C in LIHC, LGG, ESCA, EGFR
in KIRC, CHOL, CD209 in SKCM, UVRAG in MESO, and
LGG had risk < 1 (P ≤ 0.05; Figure 2B), indicating that
these  genes  are  protective  factors  for  the  listed
cancer  types.  Overall,  aberrant  expression  of  IATGs
may  affect  tumorigenesis  and  the  prognosis  of
diverse cancer types. 

Somatic Mutations in IATGs

All  cancer  cells  harbored  somatic  mutations.  A
certain  number  of  these  somatic  alterations,
generally  known  as “driver” mutations,  confer
selective  cell  subgroup  growth  advantages  and  are
causally  linked  to  oncogenesis[39,40].  Thus,  the  SNV
data associated with IATGs were further analyzed to
determine the mutation frequency and type in each
cancer.  The  data  showed  that  somatic  mutations  in
IATGs  existed  in  most  cancer  types,  except  UCS,
DLBC,  UVM,  KICH,  PCPG,  THCA,  CHOL,  LAMI,  and
MESO  (Figure  3A).  Among  them, CACNA1C in  SKCM
and EGFR in GBM had the highest SNV frequencies of
up  to  20%,  which  presented  with  the  darkest
labeling  color  (Figure  3A).  Next,  we  focused  on
missense  mutations,  which  are  the  predominant
somatic  mutations.  SNV  percentage  analysis
revealed  the  following  gene  mutation  rates:
CACNA1C (46%), EGFR (40%), UVRAG (11%),  CD209
(9%), CLEC4M (9%), and ANXA5 (7%) (Figure 3B). The
high  frequency  of  mutations  in  IATGs  was  observed
in  these  cancer  types,  including  STAD,  SKCM,  GBM,
PAAD, and LUSC (Figure 3B). Furthermore, the HRs of
UVRAG, CACNA1C,  and EGFR in  UCEC were  <  1  (P ≤
0.05, Figure  3C),  indicating  that  they  are  protective
factors for these cancer types. However, the HRs for
EGFR and CD209 in  LGG, EGFR in  COAD,  and
CACNA1C in  KIRP  were  >  1  (P ≤ 0.05, Figure  3C),
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suggesting  that  these  genes  are  risk  factors  for
certain  cancer  types.  Collectively,  these  findings
revealed a substantial difference in survival between
patients  with  mutant  and  non-mutated  IATG genes,
which  may  affect  the  prognosis  of  patients  with
cancer. 

Copy Number Variation of IATGs

CNV  refers  to  the  phenomenon  in  which  the
number  of  copies  of  a  specific  DNA  segment  varies
among  individuals.  Changes  in  copy  number  are
closely  associated  with  cancer  initiation  and
progression[41].  Therefore,  the  changes  in  CNV  were
analyzed for IATGs. This showed that the major types

of CNV in the IATGs were heterozygous amplifications
and  deletions  (Figure  4A).  The  largest  percentage  of
heterozygous  amplification  and  deletion  was
respectively  found  for  EGFR  and  UVRAG  in  TGCT,
while THCA and LAML had the lowest mutation rates,
compared to other cancer types (Figure 4A).

Additionally, CACNA1C expression in KIRC,  LUSC,
and  BRCA,  and CD209 expression  in  TGCT  and  ACC
were  negatively  correlated  with  CNV  (FDR ≤ 0.05,
Figure 4B). However, in most tumors, UVRAG, EGFR,
and ANXA5 expression  levels  were  positively
correlated  with  CNV  (FDR ≤ 0.05, Figure  4B).
Specifically, EGFR, ANXA5, CACNA1C, CLEC4M,
CD209 and UVRAG in  UCEC; UVRAG, ANXA5,
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CACNA1C, CLEC4M, CD209 in  KIRC; UVRAG, ANXA5,
CLEC4M, CD209 in  ACC; EGFR, CLEC4M, CD209 in
HNSC; EGFR, UVRAG, ANXA5 in  KIRP; ANXA5,

CACNA1C in  LAML; UVRAG, ANXA5 in  MESO; EGFR,
UVRAG in  CHOL,  LGG; EGFR in  GBM,  LUAD,  LUSC;
CACNA1C in KICH and PCPG; UVRAG in PAAD all had
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a HR which  was  greater  than  1  and  defined  as  risk
factors  (P ≤ 0.05, Figure  4C).  In  contrast, EGFR in
LAML and MESO; CLEC4M, CD209 in CESC, ANXA5 in
COAD and THCA, and CACNA1C in THYM had HR less
than  1  and  were  defined  as  protective  factors  (P ≤
0.05, Figure  4C).  Together,  these  findings  illustrate
that  the  vast  majority  of  CNV  in  IATGs  are
heterozygous  amplifications  and  deletions  that
correlate with tumor progression and prognosis. 

Methylation Analysis of IATGs

DNA  methylation  is  the  key  regulator  of  gene
expression.  Aberrant  DNA  methylation  profiles  are
generally  linked  with  cancer  events[42,43].  Therefore,
we  investigated  the  methylation  status  of  IATGs  in
various  cancer  types.  First,  the  mRNA  expression  of
most  IATGs  was  negatively  correlated  with  their
methylation  levels  in  most  tumors,  whereas CD209
in THYM, HNSC, SKCM, and STAD, as well as CLEC4M
in  SKCM,  were  positively  correlated  with  their
methylation  levels  (FDR ≤ 0.05, Figure  5A).  Second,
hypermethylation  of  UVRAG  in  MESO  and  UCEC,  as
well  as  EGFR  in  KIRC  was  associated  with  low
survival, with HRs greater than 1, indicating they are
risk  factors  (P ≤ 0.05, Figure  5B).  In  contrast,
hypermethylation  of UVRAG in  LGG; EGFR in  LGG
and BLCA; CLEC4M in SARC, STAD, and MESO; CD209
in  LGG,  UVM,  SARC,  and  SKCM; CACNA1C in  LGG,
UVM,  KIRP,  and  STAD;  and ANXA5 in  LGG,  BLCA,
LIHC,  SKCM,  LUAD,  GBM,  KIRC,  and  HNSC  were
associated  with  high  survival  and  were  defined  as
protective  factors  (HR <  1, P ≤ 0.05, Figure  5B).
Finally,  the methylation of  IATGs in  different  cancer
types  was  highly  heterogeneous.  More
hypermethylated  than  hypomethylated  genes  were
found  in  BRCA,  UCEC,  and  LUAD  (FDR ≤ 0.05,
Figure  6A).  In  contrast,  HNSC,  ESCA,  PAAD,  THCA,
LUSC,  LIHC,  and  KIRC  exhibited  more
hypomethylated genes (FDR ≤ 0.05, Figure 6A). 

Analysis  of  the  Relationship  between  IATGs  and
Cancer Related Pathways

In this study, the relationship between IATGs and
cancer-related pathways was analyzed.  All  six  IATGs
included  in  this  study,  except  CLEC4M,  were
significantly  involved  in  classical  cancer-related
signaling  pathways.  The detailed signaling  pathways
were  as  follows:  apoptosis,  cell  cycle,  DNA damage,
EMT,  hormone  AR,  hormone  ER,  PI3K/AKT,
RAS/MAPK,  RTK,  and  TSC/mTOR.  The  numbers  in
each cell in Figure 6B indicated the percentage of the
gene  associated  with  a  specific  pathway  in  cancers.
The  major  pathways  affected  by  the  UVRAG

regulation were DNA damage (19%) and EMT (16%).
The  major  pathways  involved  in  EGFR  were  RTK
activation  (31%)  and  DNA  Damage  inhibition  (28%).
For  CD209,  the  affected  pathways  were  apoptosis
(28%)  and  EMT  (34%)  activation.  For  CACNA1C,  the
main  pathways  were  apoptosis  (31%)  and  cell  cycle
(41%)  inhibition;  for  ANXA5,  the  main  pathways
involved  were  EMT  activation  (44%)  and  Hormone
AR inhibition (28%) (Figure 6B). These results suggest
that  IATGs  play  a  vital  role  in  the  regulation  of
cancer-related signaling pathways. 

IATGs and Tumor Drug Resistance Analysis

Drug  resistance  remains  a  major  challenge  in
cancer  therapy.  Overcoming  this  resistance  is
extremely  urgent.  Two  chemotherapeutic  drugs
(tanespimycin  and docetaxel),  which  can  be  applied
to  several  cancer  types,  were  negatively  correlated
with  the  expression  of EGFR and ANXA5 but
positively  correlated  with  the  expression  of
CACNA1C, UVRAG, CLEC4M,  and CD209 (FDR ≤ 0.05,
Figure  6C).  Furthermore,  the  resistance  of  the
following drugs,  including BHG712,  THZ-2-102-1,  TL-
1-85, TPCA-1, ZSTK474, AR-42, AT-7519, BMS345541,
BX-912, CAY10603, CP466722, I-BET-762, JW-7-24-1,
KIN001-102,  KIN001-260,  Methotrexate,  NG-25,
NPK76-II-72-1,  Navitoclax,  OSI-027,  PHA-793887,  PI-
103,  PIK-93,  QL-XI-92,  TG101348,  Tubastatin  A,
Vorinostat,  and  WZ3105  were  negatively  correlated
with EGFR, ANXA5 expression  and  positively
correlated  with UVRAG, CLEC4M and CD209
expression,  respectively  (FDR ≤ 0.05, Figure  6C).
These results suggest that the aberrant expression of
IATGs  may  involve  in  tumor  resistance  to
chemotherapy or targeted drug. 

Summary  of  Gene  Set  Enrichment  Scores  in  IATGs
Tumors

The  NES  obtained  from  the  GSEA  reflects  the
degree  of  specific  gene  enrichment.  The  NES  of
IATGs  was  upregulated  in  HNSC,  THCA,  and  ESCA,
which was more likely to be enriched in these three
cancer types, but was downregulated in LUSC, BLCA,
PRAD,  KIRP,  LUAD,  COAD,  LIHC,  and  BRCA,  which
were  considered  to  have  a  lower  possibility  of
enrichment  in  these  cancer  types  (FDR ≤ 0.05,
Figure 6D). 

Relationship between IATGs and Immunization

Currently,  cancer  immunotherapy  is  widely
applied  to  treat  diverse  types  of  cancer  with  good
prognosis[44,45].  Therefore,  it  is  important  to  explore
the  link  between  IATGs  and  immunity.  As  shown  in
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Figure 7A, based on the GSVA scores of IATGs, IATGs
were positively correlated with the infiltration score
in most tumor types as well as with the expression of
markers  of  immune  infiltrating  cells  such  as  CD4+ T
cells,  natural  killer  cells  (NK),  natural  killer  T  cells
(NKT),  T  follicular  helper  cells  (Tfh),  central  memory
T  cells  (TCM  cells),  dendritic  cells  (DCs),  Inducible

regulatory  T  cells  (iTreg),  and  macrophages.  On  the
contrary,  IATGs  were  negatively  correlated  with  the
expression  of  markers  of  effector  memory  T  cells
(TEM cells), neutrophils, B cell, and naive CD4+ T cells
(*P value ≤ 0.05;  #:  FDR ≤ 0.05).  Furthermore,
correlation analysis of IATGs and immunostimulatory
pathways  using  the  GEPIA2  database  revealed  a
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Figure 7. Immunoassay of IATGs. (A) Relationship between immune cell  infiltration and IATG Score.  The
significance of P values and FDR is summarized in a heat map based on the Pearman correlation analysis
between  input  gene  set  GSA  scores  and  immune  cell  infiltration.  Blue  dots  represent  unfavorable
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denotes the correlation, and R > 0 shows that the correlation is positive. (C) IATGs are correlated with the
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(D)  IATGs  are  correlated  with  the  chemokine  immune  pathway. R denoted  the  relationship  between
variables, and R > 0 showed that the correlation was positive. IATGs, influenza-A virus target genes.
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positive  correlation  between  IATGs  and  the
immunostimulator  (Figure  7B, R =  0.48),  MHC
immune  (Figure  7C, R =  0.36),  and  chemokine
immune  pathways  (Figure  7D, R =  0.40).  Taken
together, these results suggest that IATGs are closely
linked to tumor immunity and affect tumor immune
pathways that influence tumor progression. 

Confirmation  of  the  Transcript  Expression  of  IATGs
in KIRC

To  increase  the  reliability  of  the  analyses,  we
further  confirmed  the  gene  expression  of  ITAGs,
including EGFR, ANXA5, CACNA1C, CLEC4M, CD209,
and UVRAG,  by  qRT-PCR  in  kidney  clear  cell
carcinoma  (KIRC).  KIRC  is  one  of  the  most  common
cancer  types  and  was  chosen  as  the  representative
cancer  type  in  this  study.  The  HK-2  cell  line  is  a
normal kidney epithelial  cell  line that was used as a
control.  The  786-O,  ACHN,  and  Caki-1  cell  lines  are
the  kidney  carcinoma  cell  lines  were  used.  RT-PCR
results  in  the  KIRC  cell  lines  showed  that EGFR,
ANXA5, CACNA1C, CD209, UVRAG were upregulated,
and CLEC4M were  downregulated,  which  was
consistent  with  the  data  analyzed  from  the  TCGA
and GTEx databases (Figure 8). 

DISCUSSION

Progress  made  in  clinical  research  on  viral
therapeutics  suggests  that  developing  viral-targeted
cancer  techniques  is  a  promising  complement  to
conventional  therapy.  However,  after  viral  therapy,
the  alterations  and  interactions  in  solid  tumors  are
complicated  and  may  be  influenced  by  various
factors[46]. Furthermore, the interaction between IAV
and  malignancies  is  not  well  understood  and
requires  further  study  and  evaluation.  By  mining
data  from  multi-omics  analyses,  we  fully  and
systematically  described  IATGs  in  samples  from
thirty-three  kinds  of  cancer.  Our  findings  not  only
highlight  the  probable  association  between  IATGs
and tumors but  also illuminate the entire picture of
the relationship between influenza A and tumors.

We investigated the genetic signature of IATGs in
thirty-three  cancer  types.  We  observed  that  IATGs
are  involved  in  carcinogenesis,  and  their  expression
affects tumor prognosis. As shown in Figure 9, IATGs
were  frequently  aberrantly  expressed  in  multiple
cancer types in three different situations. First, while
the low and high expression levels of ANXA5 seem to
be  evenly  distributed  in  the  investigated  types  of
cancers,  the  overexpression  of ANXA5 is  often
positively  correlated  with  poor  prognosis.  Second,

CACNA1C and CLEC4M are  more  frequently
downregulated in many tumor types; however, their
overexpression  is  more  positively  correlated  with
poor prognosis. Third, there was no clear correlation
between  the  high  and  low  expression  profiles  of
EGFR, CD209,  and UVRAG in  multiple  cancers,  nor
between their expressions and prognosis.

Moreover,  our  genetic  study  indicated  a  high
prevalence of  SNV, CNV, and IATG methylation.  The
mutation frequency and type of  SNV in each cancer
were analyzed in this study, which showed that SNV
was  observed  in  most  cancer  types  except  UCS,
DLBC,  UVM,  KICH,  PCPG,  THCA,  CHOL,  LAMI,  and
MESO. However, these IATGs have only been shown
to  be  associated  with  prognosis  in  a  few  cancers
(Figure  9),  probably  because  of  the  relatively  low
SNV  data  from  the  limited  number  of  specimens
included in this study.

Furthermore,  as  shown  in Figure  9,  there  were
three  different  situations  for  the  relationship
between the expression of CNV and IATGs. First, the
expression  of EGFR, ANXA5,  and UVRAG is  closely
related  to  the  CNV  of  these  three  IATGs  in  most
tumor types, and their expression always presents a
positive  correlation  with  CNV.  Second,  the
expression of CLEC4M was positively correlated with
the  expression  of  CNV,  but  only  in  three  types  of
tumors.  Third,  the remaining two IATGs, CD209 and
CACNA1C,  were  also  associated  with  CNV in  several
tumors.  However,  their  expression  displayed  both
positive and negative correlations with CNV. Overall,
this  suggests  that  CNV  in  IATGs  most  likely
upregulate  their  expression  and  promote
carcinogenesis in a few cases.

The epigenetic analysis used in Figure 9 revealed
notable  findings.  The  methylation  of EFGR,
CACNA1C, ANXA5,  and UVRAG in  most  tumors
negatively correlated with their expression, whereas
the  methylation  status  of CD209 and CLEC4M was
only linked to their expression in a few tumor types.
Both  hypermethylation  and  hypomethylation  of
CD209 and CLEC4M can  negatively  regulate  their
expression depending on the cancer type. However,
negatively regulated by hypermethylation was more
common  than  hypomethylation.  Abnormally  high
methylation  levels  promote  the  downregulation  of
IATGs  in  a  higher  proportion  of  cases  and  are
associated with longer survival in various tumors.

In summary, based on the analysis of the genetic
and  epigenetic  changes  in  IATGs,  CNV  is  positively
linked  with  IATGs  expression,  while  methylation  is
negatively  linked  in  most  cases,  which  promotes  or
hinders  tumor  formation  in  some  way  or  other.
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Despite  the  systematic  identification  of  the  genetic
and  epigenetic  characteristics  of  IATGs,  the  present

study  did  not  examine  post-translational
modifications  (PTMs)  of  IATG  proteins.  PTMs  are
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essential  for  modulating  protein  functions  in
numerous cellular processes. The integration of PTM
data  into  the  analysis  is,  therefore,  an  objective  of
the subsequent phase of work.

Regarding  cancer-associated  signaling  pathways,
different  IATGs  are  connected  to  different  signaling
pathways  related  to  cancer  and  induce  uneven
activation or  inhibition.  It  has  been established that
modulation  of  NF-κB  signaling  by  EBV  and  KSHV  is
not  only  critical  for  viral  infections,  but  also
contributes to the formation of malignant tumors[47].
In  contrast,  EGFR,  UVRAG,  CD209,  CACNA1C,  and
ANXA5  are  involved  in  the  activation  of  the  EMT
pathway.  Thus,  these  data  show  that  IATGs
represent  a  network  of  interactions  among  cancer-
related signaling pathways that may be implicated in
driving tumor growth.

Furthermore,  the present  study investigated the
role  of  IATGs  in  tumor  immunity  using  the  GSVA
score  of  IATGs  and  found  that  IATGs  are  closely
related  to  immune  infiltrating  cells  and  that  they
work  together  to  play  a  part  in  maintain  the
immunological  homeostasis  of  the  body.  Further
research  indicated  that  IATGs  were  positively
associated  with  three  immunological  pathways,
namely  the  immunostimulant  route,  MHC  pathway,
and  chemokines,  which  may  imply  the  promoting
influence  of  high  IATG  expression  on  tumor
immunity  and  that  high  IATG  expression  may  limit
tumor progression. Moreover, previous studies have
revealed  that  viruses,  such  as  EBV,  might  interfere
with  the  tumor  immune  environment  and
consequently  affect  tumor  progression[48].  The
results  of  the  present  immunological  analysis  may
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Figure 9. Gene-based two-dimensional  map (heat  map)  of  the correlation between related factors.  Red
signifies an uptrend adjustment, a positive correlation, or a positive presence. Blue represents negative
correlation  and  down-regulation.  White  represents  a  correlation  that  is  insignificant,  nonexistent,  or
absent. (A) EGFR, (B) CD209, (C) CACNA1C, (D) ANXA5, (E) CLEC4M, (F) UVRAG.
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reveal  the  mechanism  by  which  IAV  regulates  the
tumor  immune  milieu  and  consequently  alters  the
tumor  through  IATGs.  However,  to  gain  a  more
comprehensive  understanding  of  the  correlation
between  IATGs  and  immunity,  it  is  possible  to
further  include  and  subdivide  the  tumor  specimens
undergoing  analysis  into  treated  and  untreated
groups.  This  would  enable  the  examination  of  the
effects  of  anti-cancer  drugs  on  IATGs  expression
levels  and  the  immune  microenvironment.  In  this
study, IATGs were also found to be related to tumor
resistance to several anticancer drugs or compounds
(Figure 6).  Therefore,  targeting IATGs is  a  promising
strategy for cancer treatment.

The  main  drawback  of  this  study  is  that  there
has not been enough investigation into the effects
of  IAV  on  tumors via IATGs.  Existing  research
results  are  still  limited.  To validate  the correlation
between  IATGs  and  IAV,  further  wet  experiments
should be performed to acquire more reliable and
substantial evidence. However, the findings of this
study are important and provide fresh insights into
the  mechanisms  of  tumor-ATG  interactions.  In
addition,  changes  in  IATGs  exist  at  all  regulatory
levels,  including  genetic  and  epigenetic
modifications,  mRNA  expression,  immune
infiltration  microenvironment,  and  pathway
connectivity.  These  alterations  may,  in  turn,
contribute  to  variations  in  the  pharmacological
effects,  therapy  response,  and  patient  survival.
Moreover,  the  results  of  this  study  indicate  the
genomic  and  clinical  characteristics  of  IATGs  in
tumors,  revealing  the  close  relationship  between
IAV  and  pan-cancer,  and  that  IAV  may  influence
tumorigenesis and prognosis through IATGs, which,
together with the immune correlation, will provide
new  ideas  with  a  good  reference  for  virotherapy
and immunotherapy in tumors. 

CONCLUSION

In  conclusion,  we  explored  the  genomes  of
IATGs  and  their  clinical  characteristics  in  thirty-
three  forms  of  cancer.  Our  results  demonstrated
that  SNV,  CNV,  and  methylation  of  IATGs  have
important  pan-cancer  significance,  including  their
links  to  various  crucial  cancer-related  pathways.
The  expression  of  IATGs  correlates  with  tumor
prognosis,  immunity,  and  drug  resistance,
revealing a picture of tumor and metapneumovirus
interactions  that  will  aid  in  the  development  of
new tumor-targeted therapies, viral therapies, and
immunotherapies. 
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