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Abstract

Objective     To investigate the role of sea-level cerebral blood flow (CBF) in predicting acute mountain
sickness (AMS) using three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL).

Methods    Forty-eight healthy volunteers reached an altitude of 3,650 m by air after undergoing a head
magnetic  resonance  imaging  (MRI)  including  3D-pCASL  at  sea  level.  The  CBF  values  of  the  bilateral
anterior  cerebral  artery  (ACA),  middle  cerebral  artery  (MCA),  posterior  cerebral  artery  (PCA),  and
posterior inferior cerebellar artery (PICA) territories and the laterality index (LI) of CBF were compared
between  the  AMS  and  non-AMS  groups.  Statistical  analyses  were  performed  to  determine  the
relationship  between  CBF  and  AMS,  and  the  predictive  performance  was  assessed  using  receiver
operating characteristic (ROC) curves.

Results     The mean cortical  CBF in women (81.65 ± 2.69 mL/100 g/min) was higher than that in men
(74.35 ± 2.12 mL/100 g/min) (P < 0.05). In men, the cortical CBF values in the bilateral ACA, PCA, PICA,
and right MCA were higher in patients with AMS than in those without. Cortical CBF in the right PCA best
predicted AMS (AUC = 0.818). In women, the LI of CBF in the ACA was different between the AMS and
non-AMS groups and predicted AMS with an AUC of 0.753.

Conclusion     Although the mechanism and prediction of AMS are quite complicated, higher cortical CBF
at sea level,  especially the CBF of the posterior circulatory system, may be used for prediction in male
volunteers using non-invasive 3D-pCASL.
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INTRODUCTION

C urrently,  an  increasing  number  of  people
travel  to  high  altitudes.  The  incidence  of
acute  mountain  sickness  (AMS)  ranges

between  25% and  94% depending  on  ascent  rates,
altitudes  reached,  and  susceptibilities[1].  AMS

typically  occurs  in  unacclimatized  individuals  after
rapidly  ascending  to  altitudes  above  2,500  m.  It  is
characterized  by  headache,  fatigue,  gastrointestinal
symptoms,  and  dizziness,  as  defined  by  the  Lake
Louise Score (LLS) (2018)[2]. To date, studies on AMS
prevention and treatment comprise the bulk of AMS
research,  whereas  those  on  AMS  prediction
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comprise  a  minority.  Appropriate,  reliable,  and
timely  prediction  would  help  avoid  unnecessary
risks. Previous studies on predicting AMS occurrence
have  applied  and  evaluated  several  parameters,
methods,  and  hypotheses,  such  as  the “tight  fit”
hypothesis[3,4],  baseline  anxiety  score[5],  EEG-
detected  regional  right  temporal  cerebral
dysfunction[6],  arterial  oxygen  saturation  and
breathing  frequency  (accuracy,  78%–80%)[7],  heart
rate, pulse pressure, and arterial elastance measured
using  ambulatory  blood  pressure  device[8],  machine
learning  model  trained  on  physiological  and
environmental  parameters  (accuracy,  0.886–
0.998)[9],  serum levels of matrix metalloproteinase-9
and  substance-P  (area  under  the  curve  [AUC],
0.709)[10],  serum  uric  acid  levels  (AUC,  0.817)  and
platelet  distribution  width  (AUC,  0.844)[11],
differential  gene  expression  (AUC,  0.833–0.989)[12],
circulating  microRNAs  (AUC,  0.986)  and  salivary
microRNA  (AUC,  0.811)[13,14],  plasma  concentrations
of biomarkers (AUC, 0.704–0.908)[15], and so on.

Notably,  previous  studies  have  predominantly
used  cardiovascular  and  respiratory  indicators  and
gene  expression  levels  for  predicting  AMS.  While
some studies on AMS occurrence have used cerebral
blood  flow  (CBF)  values,  thus  far,  no  study  has
attempted to predict AMS using sea-level CBF.

High-altitude  headache  (HAH)  is  the  most
common  symptom  among  patients  with  AMS.  A
previous  study  demonstrating  the  association
between  HAH  and  hemodynamics  indicated  that
HAH occurrence is influenced by CBF values and not
systemic  hemodynamics[16].  Bian  et  al.  investigated
the  potential  significance  of  CBF  in  AMS,
emphasizing  that  AMS  was  associated  with
alterations  in  cerebral  hemodynamics  in  the
posterior  circulation,  particularly  an  increase  in
cerebral  blood  velocity[17].  In  addition,  our  previous
study  that  compared  CBF  values  measured  using
three-dimensional  pseudo-continuous  arterial  spin
labeling  (3D-pCASL)  found  differences  in  CBF
variations  at  high  altitudes  between  participants
with  AMS  and  those  without[18].  All  these  studies
suggest  a  potential  correlation  between  AMS  and
cerebral hemodynamics. Therefore, we hypothesized
that  baseline  sea-level  CBF  measurements  may
demonstrate predictive value for AMS.

Three-dimensional  pCASL  can  be  used  to
quantitatively measure CBF values without the need
for  contrast  media  injection.  It  has  been  widely
applied  in  the  diagnosis  and  prognostication  of
central  nervous  system  diseases,  including
headaches  and  vasculopathy[19,20].  In  this  study,  we

investigated  the  predictive  value  of  sea-level  CBF
values  for  AMS  based  on  CBF  analysis  at  sea  level
using the 3D-pCASL in healthy volunteers. 

METHODS

This  study  was  approved  by  the  Medical  Ethics
Committee  of  our  hospital  (S2015-014-02)  and
conformed to  the Declaration of  Helsinki  standards.
Written  informed  consent  was  obtained  from  all
participants. 

Participants

Forty-eight  potential  travelers  were  recruited  as
participants.  The  inclusion  criteria  were  as  follows:
healthy  volunteers  aged  between  18  and  40  years
(28.83  ±  4.85  years);  no  history  of  head  trauma,
mental  or  psychological  illness,  cerebrovascular
disease,  headaches,  sleep  disorders,  diabetes,
hypertension,  etc.;  no  alcohol  or  drug  dependency;
right-handedness;  sea-level  resident  who  have  not
traveled to  altitudes  above 1,500 m within  the  past
12  months;  and  no  intracranial  or  carotid  artery
stenosis  on  magnetic  resonance  (MR)  angiography.
The exclusion criteria include MR scanner-associated
claustrophobia,  artifacts  in  the  scan  caused  by  the
presence of metal foreign bodies, and head motion.
The participants avoided consuming therapeutic and
preventive  drugs,  alcohol,  and  caffeine-containing
foods or drinks during the trial period. 

Data Acquisition
 

Magnetic  Resonance  Scanning　 Participants
underwent  cerebral  magnetic  resonance  imaging
(MRI)  and  3D-pCASL  at  sea  level.  Images  were
obtained  using  a  3.0T  MR  scanner  (Discovery  MR
750, GE Healthcare, Milwaukee, WI, USA) with an 8-
channel  head  coil  (in  vivo)  at  sea  level  (50  m).  The
participants were instructed to lie in the scanner for
5  min  before  initiating  the  procedure.  All
participants underwent 3D-pCASL with the following
parameters:  512  sampling  points  on  eight  spirals,
repetition  time  (TR)  =  4,844  ms,  echo  time  (TE)  =
10.5  ms,  post-labeling  delay  (PLD)  time  =  2025  ms,
bandwidth=  ±  62.5  kHz,  slice  thickness  =  4  mm,
number  of  slices  =  36,  field  of  view  (FOV)  =  24  cm,
number of excitations (NEX) = 3, acquisition time = 4
min 41 s. 

Procedures　 MR  data  of  the  participants  were
acquired  at  sea  level  36  h  before  traveling  to  high
altitude.  Data  on  physiological  variables  including
age, height, weight, systolic blood pressure, diastolic
blood  pressure,  heart  rate,  and  blood  oxygen
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saturation were recorded.
The  participants  were  transported  to  a  high

altitude of 3,650 m by air. The LLS was recorded 8 h
after  arrival  at  a  high  altitude.  The  LLS  comprises
four  parts:  headache,  gastrointestinal  symptoms,
fatigue, and dizziness. The severity of each symptom
is  rated  on  a  scale  of  0–3  (none  =  0,  mild  =  1,
moderate = 2, and severe = 3)[2]. AMS was defined as
a  total  score  of  at  least  three  points,  with  a
headache score of at least one point. Based on AMS
scores,  the  participants  were  divided  into  AMS  and
non-AMS groups. 

Data Processing

Original  images  transferred  to  the  workstation
were processed for CBF mapping using Functool 3D-
ASL. The arterial territories as ROI were sketched by
a  blinded  observer  (blinded  to  the  symptoms)  with
7-year  experience  in  neuroradiology  using  ITK-SNAP
software  in  terms  of  the  definition  in  a  previous
study[21,22].  The  ROI  measurement  consisted  of
cortical  CBF  values  in  the  anterior  cerebral  artery
(ACA),  middle  cerebral  artery  (MCA),  posterior
cerebral  artery  (PCA),  and  posterior  inferior
cerebellar artery (PICA) territories.  The CBF value of
each  ROI  was  auto-extracted  using  the  software.
Laterality  index  (LI)  of  the  CBF  was  calculated  in
different  arterial  territories  using the Equation[23]: LI
=  (LCBF - RCBF)/(LCBF +  RCBF).  In  this  study,  the  LI  was
calculated  by  multiplying  by  1,000.  Three  months
later,  the  ROI  sketching  procedures  were  repeated
by  the  same  observer  and  performed  by  another
blinded  observer  with  2-year  experience  in

neuroradiology. 

Statistical Analysis

Statistical  analyses  were  performed  using  the
SPSS  (version  26.0),  MedCalc,  and  GraphPad  Prism
software  (version  10.1.2).  Normality  tests  were
performed  for  all  continuous  quantitative  variables.
All variables were normally distributed except the LI
of  CBF  in  the  MCA  in  men  and  the  LI  of  CBF  in  the
PICA  in  women.  T-tests  and  nonparametric  tests
were used to assess differences in CBF or LI scores in
CBF  between  the  two  groups.  Spearman’s
correlation  analysis  was  also  performed.  Univariate
logistic  regression  analysis  was  used  to  select  the
AMS  predictors.  The  predictive  ability  was  assessed
using a receiver operating characteristic (ROC) curve.
P significance  was  set  at P <  0.05.  Intraclass
correlation  coefficient  (ICC)  analysis  was  used  to
evaluate interobserver and intraobserver agreement
levels  for  sketching  the  ROI  of  different  arterial
territories. 

RESULTS
 

Demographic Characteristics

Forty-eight volunteers (23 males and 25 females;
age range, 19–39 years) were enrolled in this study.
The age (31.36 ± 4.59 years vs. 28.36 ± 4.05 years, P
= 0.096)  and  the  incidence  (47.83% vs.  56.00%, P  =
0.773)  of  AMS  showed  no  significant  difference
between  men  and  women.  Detailed  information  is
presented  in Table  1.  The  Spearman  correlation

 

Table 1. Demographics and physiological indicators in men and women

Parameters
Men (n = 23) 　 Women (n = 25) 　

Non-AMS AMS P Non-AMS AMS P

Number (%) 12 (52.17) 11 (47.83) 　 11 (44.00) 14 (56.00) 　

Age (year) 29.17 ± 4.80 31.36 ± 4.59 0.276 26.55 ± 5.45 28.36 ± 4.05 0.350

SaO2 (%) 97.17 ± 0.58 97.36 ± 0.67 0.459 97.82 ± 0.98 97.79 ± 0.43 0.912

Height (cm) 176.42 ± 4.87 173.18 ± 5.17 0.137 162.73 ± 4.50 162.21 ± 4.89 0.790

Weight (kg) 73.17 ± 10.47 74.23 ± 9.03 0.798 60.45 ± 14.07 55.71 ± 6.62 0.275

BMI (kg/m2) 23.53 ± 3.41 24.74 ± 2.70 0.361 22.95 ± 6.16 21.15 ± 2.07 0.315

Systolic blood pressure (mmHg) 117.67 ± 10.16 120.36 ± 13.05 0.584 107.09 ± 12.31 107.07 ± 7.57 0.996

Diastolic blood pressure (mmHg) 80.67 ± 6.89 78.91 ± 8.60 0.593 71.27 ± 7.81 72.79 ± 7.15 0.619

Heart rate (beats/min) 75.08 ± 6.67 77.73 ± 8.14 0.402 75.27 ± 10.68 70.36 ± 8.32 0.208

Mean CBF (mL/100 g/min) 69.67 ± 9.40 79.47 ± 8.73 0.017* 82.89 ± 17.43 80.68 ± 9.95 0.692

　　Note. Data  are  mean  ±  SD.  AMS,  acute  mountain  sickness;  BMI,  body  mass  index;  SaO2,  blood  oxygen
saturation; CBF, cerebral blood flow. *Statistical significance was attributed as P < 0.05.
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coefficient between HAH severity and LLS was 0.662
(P < 0.01) in men and 0.626 (P < 0.01) in women. 

The Relationship between CBF and AMS

The  mean  cortical  CBF  in  women  (81.65  ±  2.69
mL/100 g/min) was higher than that in men (74.35 ±
2.12 mL/100 g/min) (P < 0.05).

The CBF features of the male and female groups
are shown in Figure 1.

In  men,  the  mean  cortical  CBF  was  significantly
higher in the AMS group than in the non-AMS group
(Table 1), and regional CBF was significantly higher in
the AMS group in most arterial territories (Table 2).

In  women,  no  significant  mean  cortical  CBF
difference  was  found  between  the  AMS  and  non-
AMS  groups,  but  the  LI  of  CBF  in  the  ACA  was
significantly  different  between  the  AMS  and  non-
AMS groups (Table 2). 

 
Predictor  Selection  (Univariate  Logistic  Regression
Analysis) 

All  variables  with  statistically  significant
differences  (P <  0.05)  in  the t-tests  and
nonparametric  tests  were  selected  for  univariate
logistic regression analysis (Table 3). 

Prediction Ability Assessment (ROC Curve Analysis)

After  predictor  selection  by  univariate  logistic
regression  analysis,  the  predictive  ability  of  the
variables  (if P <  0.05,  univariate  logistic  regression
analysis)  was  evaluated,  and  the  variable  with  the
largest  area  under  the  ROC  curve  (AUC)  was
considered the best  predictor  for  AMS (Table  4 and
Figure  2).  In  men,  the  CBF  of  the  right  PCA  best
predicted AMS (AUC = 0.818, accuracy = 86.96%). In
women, the performance of LI in the ACA was good
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for  AMS  prediction,  with  an  AUC  of  0.753  and  an
accuracy of 76.00%. 

Intraobserver and Interobserver Agreement

The intra- and inter-observer agreements for ROI
sketching  of  the  different  arterial  territories  were
excellent  (ICCs:  0.939–0.990  and  0.951–0.985,
respectively). 

DISCUSSION

The present study observed significantly elevated

sea-level  CBF  values  in  most  arterial  territories
among  men  in  the  AMS  group.  Moreover,  the  LI  of
the ACA could predict AMS in women. Hormones are
important  factors  affecting  CBF  between  sexes,  as
studies  have  shown  that  estrogen  has  a
neuroprotective  effect  by  stabilizing  energy
metabolism  in  the  vascular  endothelium[24,25].  It
protects  against  reperfusion  injury  and  ameliorate
CBF  during  ischemia[26].  It  can  also  relieve
vasospasms  and  help  reduce  fluctuations  in
hemodynamics[27].  Since  CBF  in  women  is  relatively
stable  and  is  not  easily  affected  by  changes  in  the

 

Table 2. CBF Features in the Non-AMS and AMS groups

Variables
Men (n = 23) 　 Women (n = 25) 　

Non-AMS AMS P Non-AMS AMS P

R ACA 71.55 ± 9.95 81.80 ± 10.47 0.025* 90.98 ± 20.71 94.25 ± 11.55 0.620

L ACA 75.15 ± 8.85 84.05 ± 9.86 0.033* 93.69 ± 19.78 91.12 ± 9.98 0.676

R MCA 64.39 ± 9.28 73.92 ± 10.24 0.029* 83.56 ± 16.94 79.87 ± 10.20 0.506

L MCA 63.75 ± 8.45 70.25 ± 7.02 0.059 82.16 ± 14.91 79.01 ± 8.12 0.506

R PCA 60.58 ± 9.68 70.86 ± 8.58 0.014* 82.91 ± 19.29 79.76 ± 14.46 0.645

L PCA 61.89 ± 10.69 71.13 ± 8.42 0.033* 86.16 ± 19.95 81.55 ± 14.70 0.512

R PICA 53.65 ± 8.45 61.76 ± 8.84 0.035* 72.40 ± 17.82 69.93 ± 10.73 0.672

L PICA 52.73 ± 8.91 60.21 ± 7.47 0.042* 71.29 ± 14.50 69.91 ± 8.81 0.772

LI ACA 25.52 ± 37.44 13.88 ± 31.56 0.431 15.45 ± 32.47 −16.14 ± 27.10 0.014*

LI MCA −15.09
(−20.54, 13.44)

−25.64
(−64.00, 13.51) 0.288 −6.84 ± 31.23 −4.07 ± 24.62 0.807

LI PCA 7.30 ± 26.29 1.85 ± 27.26 0.630 17.01 ± 24.71 9.10 ± 26.41 0.449

LI PICA −9.71 ± 34.95 −11.53 ± 30.09 0.895 1.31
(22.08, −23.37)

−3.10
(−20.27, 12.29) 0.936

　　Note. Data are mean ± SD, and median (interquartile range); Unit of CBF: mL/100g/min; R, right; L,  left;
CBF,  cerebral  blood flow; ACA,  anterior  cerebral  artery;  MCA, middle cerebral  artery;  PCA,  posterior  cerebral
artery; PICA, posterior inferior cerebellar artery; LI, laterality index; AMS, acute mountain sickness. *Statistical
significance was attributed as P < 0.05.
 

Table 3. Univariate logistic regression analysis in men and women

Gender Variables 　 OR P 95% CI

Men R ACA 1.127 0.051 1.000−1.270

　 L ACA 1.129 0.059 0.996−1.281

　 R MCA 1.108 0.045* 1.002−1.224

　 R PCA 1.135 0.031* 1.012−1.272

　 L PCA 1.115 0.056 0.997−1.247

　 R PICA 1.129 0.057 0.996−1.279

　 L PICA 1.132 0.066 0.992−1.291

Women LI ACA 0.965 0.027* 0.935−0.996

　　Note. R, right; L, left; CI,  confidence interval; OR,  odds ratio; ACA, anterior cerebral artery; MCA, middle
cerebral  artery;  PCA,  posterior  cerebral  artery;  PICA,  posterior  inferior  cerebellar  artery;  LI,  laterality  index.
*Statistical significance was attributed as P < 0.05.
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external  environment,  this  may  explain  why  CBF
does  not  work  for  AMS  prediction  in  women,  and
that  may  be  the  reason  for  the  different  prediction
indices in men and women.

Compared with previous studies, the advantages
of  our  approach  are  as  follows:  an  MRI-based  ASL
scan  is  non-invasive  without  any  intravenous
injection  of  contrast  media,  and  MRI  has  been
clinically  applied  for  many  years  and  is  widely
accessible in major cities in China. Furthermore, our
experiment  was  designed  based  on  the  following
aspects: 1. Ascent rate: Rapid ascent by air instead of
by  car,  train,  or  even  on  foot[5,6,10,11,14,15] was
conducted  in  our  study  to  avoid  gradual
acclimatization  to  hypoxia  and  to  ensure  the
evaluation  of  AMS  by  LLS.  2.  Subjects:  Potential
tourists  with  inclusion  and  exclusion  criteria  were
selected  as  volunteers  instead  of  professional
mountaineers  or  random  subjects  without
controlling  for  influencing  factors[6,10,12,28].  3.  Real-
world high altitude: The LLS was evaluated at 3650 m

instead of in a simulation chamber with normobaric
hypoxia[3,7,13].  4.  Data  acquisition:  To  predict  AMS in
advance, our data were collected at sea level before
exposure  to  hypoxia  compared  with  those  of
previous studies[6,7,9,10].

To the best of our knowledge, only a few studies
have  demonstrated  associations  between  sea-level
CBF  and  AMS,  and  some  of  our  findings  are
consistent  with  previous  results  indicating  that  the
sea-level  velocities  of  the  left  VA  and  right  MCA  in
the HAH group were higher than non-HAH group[16].
Arterial  velocities  or  diameters  are usually  regarded
as indicators of cerebral blood flow[29-31]. In addition,
Feddersen et al. measured the baseline CBF velocity
of  the  MCA,  and  although  they  did  not  perform  a
statistical  analysis,  the  data  indicated  that  CBF
velocities  were  indeed  higher  in  the  AMS  group[6];
similar  results  at  sea  level  were  reported  in  good-
performance  climbers  and  bad-performance
climbers[32].

Despite  accumulating  evidence  regarding  AMS
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Figure 2. ROC  curves  of  cortical  CBF  in  the  right  MCA  (AUC  =  0.750)  and  right  PCA  (AUC  =  0.818)  for
predicting AMS in men (A) and LI of cortical CBF in the ACA (AUC = 0.753) for predicting AMS in women
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Table 4. Predictive vapacity sssessment in AMS in men and women

Gender Variables AUC (95% CI) Se (%) Sp (%) PPV (%) NPV (%) YI Cutoff Accuracy (%)

Men R MCA 0.750 (0.542−0.958) 63.64 83.33 77.78 71.43 0.470 > 71.106 73.91

　 R PCA 0.818 (0.619−1.000) 81.82 91.67 90.00 84.62 0.735 > 66.468 86.96

Women LI ACA 0.753 (0.558−0.948) 85.71 63.64 75.00 77.78 0.494 ≤ 6.751 76.00

　　 Note. Unit  of  CBF  in  Cutoff:  mL/100  g/min;  AUC:  area  under  the  curve; CI:  confidence  interval;  PPV:
positive  predictive  value;  NPV:  negative  predictive  value;  YI:  Youden  index;  R:  right;  ACA:  anterior  cerebral
artery;  MCA: middle cerebral  artery;  PCA: posterior cerebral  artery;  LI:  laterality index;  AMS: acute mountain
sickness.
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and  its  related  factors,  its  mechanisms  of  action
remain elusive[33]. As well known, CBF is dynamically
regulated  by  many  factors,  including  changes  in
cerebral  metabolic  activity,  sympathetic  nerve
activity and so on[34].

Considering  the  brain’s  limited  oxygen  storage
capacity,  its  already  inordinate  metabolism  would
undoubtedly  be  exacerbated  during  hypoxia[35],
which  indicates  a  high  demand  for  oxygen  in  the
brain  to  maintain  normal  work  due  to  insufficient
partial  pressure of oxygen. Cerebral  oxygen delivery
depends on the combined effect of CBF and arterial
oxygen  content  (CaO2),  and  a  reduction  in  CaO2
causes  a  CBF  increase[36].  Classically,  the  CBF  is
adjusted according to the metabolic demands of the
brain[37]. Therefore, a higher sea-level CBF indicates a
higher  metabolic  demand  or  relatively  lower  CaO2.
Increased  oxygen  consumption  during  hypoxia
stimulus[16] and  insufficient  oxygen  necessitate
compensatory  adaptations  in  physiological
functioning,  including  an  initial  quicker  increase  in
CBF and a subsequent slower increase in hemoglobin
mass  and  concentration[35].  Therefore,  CBF  surges
compensate  for  the  acute  ascent  to  high  altitudes.
Based  on  the  evidence  above,  we  considered  that
individuals  with  higher  sea-level  CBF  might  desire
more  oxygen,  thus  increasing  the  CBF  to  provide
sufficient  oxygen  and  nutrients  to  the  brain  during
hypoxia.  That  might  cause  the  increase  of  cerebral
blood  volume  and  subsequent  increase  of
intracranial  pressure,  leading  to  headache  and  AMS
in  terms  of  the “tight-fit” hypothesis[29-31].  Just  as
Cochand  revealed  that  individuals  with  AMS  might
be inherently more vulnerable to higher intracranial
pressure[38].

There  is  a  traditional  hypothesis  that  sparse
sympathetic  innervation  in  the  posterior  fossa  may
lead  to  an  inclination  toward  high  perfusion[39,40].
Sympathoexcitation during hypoxia[41,42] may lead to
higher perfusion in those with higher sea-level CBF in
the  cerebellum,  consequently  higher  intracranial
pressure and susceptibility to headache and AMS at
the plateau, as mentioned above.

Relationship  between  CBF  increase  and
functional activation. It has been suggested that HAH
might share similar mechanisms with migraines[16] in
which  headache  is  closely  correlated  with  the
functional  interference  of  the  occipital  cortex  and
cerebellum[43].  Moreover,  previous  studies  have
demonstrated  close  correlations  between  brain
regions and their  corresponding functions,  including
the  relationship  between  the  cerebellum  and  pain
perception  regulation[44,45],  anterior  frontal  and

temporal  cortex  and  pain  processing[46,47],  cingulate
and  pain  stimulus[48,49],  medial  temporal  gyrus  and
sensitivity  to  chronic  hypoxia[50],  frontal  island  and
dyspnea  and  homeostasis  maintenance  at  high
altitude,  frontal  insular  cortex  and  aerobic
capacity[51-54].  As  it  has  been  suggested  that  the
cerebral  metabolism  rate  is  coupled  with  cerebral
blood flow[55],  we considered that hyperperfusion in
the  above-mentioned  regions  might  indicate
hypermetabolism, and thus, higher sensitivity to pain
perception and hypoxia.

Based  on  the  aforementioned  explanation,  we
assumed  that  AMS  is  associated  with  higher  CBF
values,  which  is  in  agreement  with  previous
studies[16,30,56].  Our  results  showed  great  agreement
with  those  of  Jansen  et  al.  in  that  cerebellar  CBF  in
bad-performance  climbers  was  consistently  higher
than that in good-performance climbers[32],  and was
also consistent with their conclusion that the CBF of
people  with  AMS  was  higher  than  that  of  those
without AMS[57].

In  this  study,  CBF  in  the  right  PCA  was  the  best
predictor of AMS in men, with an AUC of 0.818. Our
results showed that the posterior circulatory system
plays  a  significant  role  in  AMS  prediction.  This  was
consistent  with  Bian’s  finding  of  a  close  correlation
between  the  posterior  circulation  system  and  AMS
score[17].  In  addition,  it  was demonstrated that  both
higher  baseline  bilateral  VA  velocities  in  HAH  and
increased  VA  and  BA  velocities  under  hypoxia[16]

implied  strong  associations  between  the  posterior
circulation  system  and  HAH.  In  our  study,  a
correlation  was  found  between  HAH  and  AMS,
suggesting that our results are consistent with those
of  Bian.  In  addition,  previous  study  has  indicated
that after arrival and short stay at high altitude, CBF
was  inclined  to  increase  in  the  posterior  arterial
territories[58], and a “tight” posterior fossa was more
vulnerable to headache syndrome[29,30],  thus causing
higher susceptibility of AMS.

Our results showed no differences in the cortical
CBF between the groups of women. That may be due
to the fact that women normally possess significantly
higher  CBF  than  men[59].  Unlike  the  results  in  men,
the best predictor of  AMS in women was related to
the  ACA  instead  of  the  posterior  circulatory  system
in  the  present  study.  Although  our  study  revealed
different  results  from  those  of  Bian  et  al.,  previous
findings on frontal headache during hypoxia[60,61] and
increased velocity of the ACA at high altitudes might
indicate  the  role  of  the  ACA  and  its  asymmetry  in
AMS in women[16].

In  this  study,  only  the  LI  of  CBF  in  the  ACA

Acute mountain sickness prediction 893



showed good predictive ability for AMS, with an AUC
of  0.753  in  women.  The  asymmetry  of  the  isonym
artery may be of great importance in predicting AMS
in women, probably caused by the amplified effects
of  the anatomical  asymmetry of  arteries  during CBF
regulation  under  hypoxia,  as  previously
speculated[16]. Our results indicated that women may
be  more  sensitive  to  the  effects  of  arterial
asymmetry,  and  the  specific  mechanism  warrants
further investigation.

Although  this  study  is  the  first  to  predict  AMS
using  ASL,  it  has  some  limitations.  First,  the  sample
size  was  relatively  small.  Future  studies  with  larger
sample sizes are needed, although this  is  logistically
challenging.  Second,  only  young  participants  were
included. Third, only one PLD (2025 ms) was applied,
and  multi-PLD  should  be  used  in  future  studies  to
acquire more CBF data for analysis. 

CONCLUSION

Sea-level  cortical  CBF  acquired  using  3D-pCASL
can be used to predict AMS. A higher CBF in specific
regions  of  the  posterior  circulatory  system  would
result in a higher risk of AMS in men. The asymmetry
of  the  isonym  artery  may  play  a  role  in  predicting
AMS in women. 
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