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Abstract

Objective　 High-altitude  hypoxia  exposure  often  damages  hippocampus-dependent  learning  and
memory. Nogo-A is an important axonal growth inhibitory factor. However, its function in high-altitude
hypoxia and its mechanism of action remain unclear.

Methods　 In  an in  vivo study,  a  low-pressure  oxygen  chamber  was  used  to  simulate  high-altitude
hypoxia,  and  genetic  or  pharmacological  intervention  was  used  to  block  the  Nogo-A/NgR1  signaling
pathway.  Contextual  fear  conditioning  and  Morris  water  maze  behavioral  tests  were  used  to  assess
learning and memory in rats, and synaptic damage in the hippocampus and changes in oxidative stress
levels  were  observed. In  vitro,  SH-SY5Y  cells  were  used  to  assess  oxidative  stress  and  mitochondrial
function  with  or  without  Nogo-A  knockdown  in  Oxygen  Glucose-Deprivation/Reperfusion  (OGD/R)
models.

Results　Exposure to acute high-altitude hypoxia for 3 or 7 days impaired learning and memory in rats,
triggered  oxidative  stress  in  the  hippocampal  tissue,  and  reduced  the  dendritic  spine  density  of
hippocampal  neurons.  Blocking  the  Nogo-A/NgR1  pathway  ameliorated  oxidative  stress,  synaptic
damage, and the learning and memory impairment induced by high-altitude exposure.

Conclusion　Our results demonstrate the detrimental role of Nogo-A protein in mediating learning and
memory  impairment  under  high-altitude  hypoxia  and  suggest  the  potential  of  the  Nogo-A/NgR1
signaling  pathway  as  a  crucial  therapeutic  target  for  alleviating  learning  and  memory  dysfunction
induced by high-altitude exposure.
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INTRODUCTION

H ypobaric  hypoxic  environment  in  high-
altitude  areas  can  lead  to  various
neurological  impairments,  and  high

altitude  has  a  substantial  impact  on  learning  and
memory  (L&M)[1].  Increasing  numbers  of  people

have  recently  traveled  to  high-altitude  regions,
leading  to  an  increase  in  the  prevalence  of  altitude
illnesses in various countries[2-3].  The human brain is
highly  susceptible  to  oxygen deprivation,  and under
hypoxic  conditions,  neurons  respond  to  a  lack  of
oxygen,  undergo  adaptive  adjustments  in
morphology,  and  function  to  ensure  the  continuity
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of  brain  functions[4-5].  However,  acute  hypoxia  can
disrupt  the  delicate  balance  between  adaptive
neuroplasticity  and  pathological  changes.  Acute
hypoxia  can  increase  the  neuronal  oxidative  stress
response,  resulting  in  damage  of  the  brain
function[6].  The  hippocampus,  which  plays  a  crucial
role  in  long-term  spatial  memory,  is  particularly
vulnerable to oxygen deprivation[7].

Nogo-A is a myelin-enriched protein that inhibits
axonal  regeneration  in  the  central  nervous  system
after  injury[8-10].  Nogo-A  is  encoded  by  Reticulon  4
(RTN4)[11].  In  adulthood,  Nogo-A  is  predominantly
expressed  in  the  glial  cells  and  neurons  located  in
brain  areas  with  strong  plasticity,  such  as  the
hippocampus  and  olfactory  bulb[12-13].  Nevertheless,
Nogo-A  overexpression  is  involved  in  several
cognitive  impairment  disorders  and  exacerbates
oxidative stress[14-17]. Evidence indicates that Nogo-A
levels  increase  in  the  hippocampal  and  neocortical
neurons  of  patients  with  Alzheimer’s  disease  and
increase with age[18]. In addition, suppressing Nogo-A
can enhance synaptic plasticity and improve memory
and cognitive functions[12]. Moreover, the expression
of  Nogo-A  and  its  receptor  NgR1  is  upregulated  in
the ischemic cortex of neonatal rats, and the use of a
Nogo-A-specific  antibody  could  improve  long-term
neurological  outcomes  after  stroke[19-20].  However,
despite  increasing  evidence  linking  Nogo-A,  NgR1,
and  hypoxia  with  cognitive  impairment,  it  remains
unclear  whether  Nogo-A  is  associated  with  L&M
under high-altitude hypoxia (HH) conditions.

Based  on  previous  studies,  we  hypothesized
that  HH  impairs  L&M via Nogo-A/NgR1.  To  verify
this  hypothesis,  we  used  a  low-pressure  oxygen
chamber  to  simulate  high-altitude  conditions  and
evaluated  the  L&M  of  rats  using  contextual
conditioning  fear  and  Morris  water  maze  tests.
Genetic and pharmaceutical approaches were used
to  block  the  Nogo-A/NgR1  pathway,  and  oxidative
stress  and  dendritic  spine  density  in  the
hippocampal  region  were  measured.  This  study
systematically  validated  the  involvement  of  the
Nogo-A/NgR1  pathway  in  L&M  impairment
following  high-altitude  exposure,  providing  a  new
theoretical  guidance  for  the  treatment  of  high-
altitude L&M disorders. 

MATERIALS AND METHODS
 

Animals

Male Sprague-Dawley rats (200–250 g, 8-week-
old) obtained from Peking University were used in

this study. Female rats were excluded to avoid the
influence of estrogen. Nogo-A-/- rats were donated
by  Professor  Wang  Jun  of  the  School  of  Basic
Medical  Sciences  at  Peking  University.  Rats  were
housed  in  plastic  cages  at  23  ±  2  °C,  50%–60%
humidity,  with  a  12-h  light/dark  cycle.  They  were
provided  with  food  and  water ad  libitum.  All
experiments  were  approved  by  the  Animal  Care
and Utilization Committee of the Peking University
Health  Science  Center.  All  experimental
procedures  and  treatments  were  performed  in
accordance  with  the  national  guidelines  stated  in
the “Guidelines  for  the  Ethical  Treatment  of
Experimental  Animals” issued  by  the  Ministry  of
Science  and  Technology  of  the  People’s  Republic
of China. 

High-altitude Model Establishment

Rats were placed in a hypobaric chamber (ProOx-
810,  Tawang  Technology)  and  exposed  to  high-
altitude  hypoxia  environment  (20.8% O2,  54.02  kPa,
equal  to  5,000  m  high  altitude)  for  3  or  7  days.
Throughout  the  experiments,  every  effort  was
exerted to minimize the number of animals used and
alleviate their suffering. 

Contextual Fear Conditioning

On the training day, the rats were placed in fear
conditioning  chambers  for  a  2-min  acclimation
period.  Seven  intermittent  inescapable  electric  foot
shocks (0.7 mA, 2 and 120 s interval) were delivered.
After the final foot shock, the rats were left in a fear
box for an additional 3 min. Twenty-four hours after
training,  during  the  contextual  fear  test  phase,  the
fear-conditioned rats were reintroduced to the same
fear-conditioning  chamber  for  5  min  of  free
exploration  each  day.  Spontaneous  activity  was
recorded  and  analyzed  using  a  Super  Fear
Conditioning  Analysis  System  (SuperFcs)  (XinRuan,
Shanghai, China). 

Morris Water Maze (MWM)

Rats were trained in a circular water tank with a
diameter of 160 cm. Colorful and differently shaped
cards  were  pasted  onto  the  walls  of  the  pool
surrounding  the  water  maze  to  provide  extra  maze
cues. Each subject was tested in four trials/day for 4
consecutive  days  with  a  15-min  intertrial  interval.  If
the participants did not reach the platform hidden 1
cm  underwater  within  60  s,  they  were  manually
guided. The platform was removed during the probe
trial.  All  trials  were  analyzed  using  the  Morris
software (Mobile Datum). 
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Drugs and Administration

For  stereotaxic  injection,  the  rats  were
anesthetized  with  isoflurane  and  placed  in  a
stereotaxic  instrument  (68028,  RWD).  Adeno-
associated  viruses  (AAVs)  (108  VG/mL,  2  μL)  for
Nogo-A  knockdown  (the  Nogo-A-shRNA  sequence
was  determined  as:  GGAAGCATGTGAAAGTGAACT),
and  control  viruses  were  simultaneously  injected
into  both  sides  of  the  hippocampus
(Anteroposterior: −3.8 mm; Mediolateral: ± 3.0 mm;
Dorsoventral: −3.2  mm  from  bregma)  according  to
the  atlas  of  Paxinos  and  Watson (2007).  AAVs  were
purchased  from  WZ  Biosciences  Inc.  Twenty  days
after  virus  injection,  modeling  and  behavioral  tests
were  conducted.  The  effect  of  Nogo-A  protein
knockdown in the hippocampal tissue was validated
using Western blotting after completion of the tests.

A  cannula  system  was  used  for  chronic  drug
infusion  into  the  hippocampus  with  repeated
injections  for  3  or  7  days.  NEP1-40  (10  μg/μL,
2  μL/day,  MedChemExpress)  or  JTE-013  (10  μg/μL,
2  μL/day,  MedChemExpress)  was  microinjected at  a
rate  of  0.1  μL/min.  The  control  group  received
vehicle.  Intracranial  drug  delivery  continued
throughout  the  modeling  period  at  a  fixed  time
every  day.  We  adapted  the  drug  concentration  and
delivery  method  from  that  described  by  Fang  PC  et
al. and Sancho-Alonso M et al.[21,22]. 

Quantitative Real-time PCR

Total RNA was extracted from the tissues using a
Total  RNA  Extraction  Kit  (Vazyme,  RC101-01)
according  to  the  manufacturer’s  protocol.  The  RNA
was  immediately  used  to  generate  cDNA  using  a
cDNA  Synthesis  Kit  (Vazyme,  R223-01).  The  relative
expression of mRNAs was determined using Taq Pro
Universal SYBR qPCR Master Mix (Vazyme, R323-01).
All  results  were  normalized  to  β-actin  gene
expression  using  the  comparative  threshold  cycle
(2−ΔΔCT)  method,  and  control  samples  were  used  to
calculate  the  relative  values.  Each  reaction  was
performed  in  triplicate  and,  3–4  rats  per  condition
were  analyzed.  All  experiments  were  performed
using  a  Quant  Studio  1  Real-Time  PCR  System
(Thermo,  USA)  according  to  the  manufacturer’s
protocol.  β-actin  forward  primer:  5′-ACGGA
CCAGAGCGAAAGCAT-3′,  β-actin  reverse  primer:  5′-
TGTCAATCCTGTCCGTGTCC-3′.  Shank1  (Qiagen,
QT00183351),  Shank2  (Qiagen,  QT02350509),
Shank3  (Qiagen,  QT01568812),  PSD95  forward
primer:  5′-TAGGGCCCTGTTTGATTACG-3′,  PSD95
reverse primer: 5′-TGGCCTTTAACCTTGACCAC-3′. 

Golgi Staining

A  Golgi  apparatus  staining  kit  PK401  (FD  Rapid
GolgiStainTM Kit)  was  used  to  analyze  the  density  of
neuronal  dendritic  spines  within  the  hippocampal
region.  Brain  tissues  were  selected  and  soaked  in
Golgi staining solution at 25 °C or 2 weeks. The slides
were  prepared  according  to  the  manufacturer’s
instructions. To quantify the dendritic spine density,
we  reconstructed  the  3D  model  of  the  spines  using
Laser  Scanning  Confocal  Microscopy  then  analyzed
straight  terminal  branches  meeting  a  length
exceeding  10  μm.  Two  or  three  brain  slices  were
used  from  each  group  of  rats,  and  two  or  three
dendritic spines were sampled from each brain slice
for  statistical  analysis.  ImageJ  software  (National
Institutes of Health) was used to analyze the number
of 10-μm length dendritic spines. 

Immunoblotting Analysis In Vivo Experiments

Brain  tissue  samples  were  prepared  in  RIPA  lysis
buffer (P0013B; Beyotime). Protein concentrations were
determined  using  bicinchoninic  acid  assay  (Beyotime,
P0012).  Proteins  were  separated  using  sodium  dodecyl
sulfate-polyacrylamide  gel  electrophoresis  and
transferred  onto  nitrocellulose  membranes.  The
nitrocellulose  membrane  was  incubated  with  the
primary  antibody  solution  at  4  °C  overnight.  Secondary
antibodies  conjugated  to  horseradish  peroxidase  were
then incubated for 2 h at 25 °C. The protein levels were
detected  using  an  Enhanced  Chemiluminescence
solution.  Densitometry  analysis  was  performed  using
ImageJ  software.  The  primary  antibodies  used  in  this
study  were  as  follows:  Nogo-A  (CST,  13401S),  NgR1
(Abcam,  ab184556),  S1PR2  (Proteintech,  21180-1-AP),
and β-actin (Bioss, bsm-33036M). 

Measurement  of  Superoxide  Dismutase  (SOD)
Activity  and  Malondialdehyde  (MDA),  Reactive
Oxygen Species (ROS) Levels and GSH/GSSG Ratio in
Tissues

To  detect  the  total  antioxidant  and  oxidant
capacity,  the  levels  of  malondialdehyde  (MDA),
reactive  oxygen  species  (ROS),  glutathione
(GSH)/oxidized  glutathione  (GSSG)  ratio,  and
superoxide dismutase (SOD) activity were measured
according to  the manufacturer’s  protocol.  The MDA
(Beyotime, S0131S), ROS (YaJi  Biological,  YS470515),
SOD  (Beyotime,  S0101S),  and  GSH/GSSH  assay  kits
(Beyotime, S0053) were used. 

Cell Culture

Human  neuroblastoma  SH-SY5Y  cell  line  was
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obtained  from  the  Institute  of  Biophysics  of  the
Chinese  Academy  of  Sciences.  The  cells  were
cultured  in  DMEM/F12  (Gibco™,  11320033)
supplemented with 10% fetal bovine serum (Gibco™,
A5669701)  in  a  humidified  incubator  containing  5%
CO2 at 37 °C. 

OGD/R Models

Cells  were  incubated  in  glucose-free  DMEM
(Gibco™, 11966025) in a hypoxic incubator (Ox-101C,
Shanghai  Tawang  Technology,  China)  with  a  gas
composition of 1% O2,  5% CO2,  and 94% N2 at 37 °C
for 6 h. Thereafter, glucose-free DMEM was replaced
with  complete  medium.  The  cells  were  then
returned  to  an  incubator  with  5% CO2 for  24  h  to
initiate reoxygenation. 

RNA Interference by shRNA for In Vitro Experiments

Cells  were  cultured  until  they  reached  a
confluency  of  50%–60% prior  to  transfection.
Transfection  was  performed  using  LV-Nogo-A-
targeting  shRNA  (CAAATCCTAGGGAAGAAATAAT
TCAA�GAGATTATTTCTTCCCTAGGATTTGTTTTTT)  or
scrambled  shRNA  (WZ  Biosciences  Inc.,  Shandong,
China), according to the manufacturer’s instructions.
The  efficacy  of  shRNAi  was  confirmed  by  western
blotting. 

Nogo-P4 Administration

Cells treated with shRTN4 were plated in 24-well
plates then treated with Nogo-P4 (ADI, cat#Nogo-P4)
or  Rtn-P4  (ADI,  cat#  Nogo-RTN4)  at  concentrations
of  100  μg/mL.  The  cells  were  subjected  to  OGD/R
modeling after 12 h. 

Immunofluorescence

Cells  were  fixed  with  4% paraformaldehyde  for
10  min  and  blocked  by  incubation  with  10% goat
serum  for  20  min.  This  was  followed  by  overnight
incubation at 4 °C with the primary antibody (Nogo-
A,  Abcam,  ab62024).  The  cells  were  then  incubated
with the secondary antibody (Abcam, ab150077) for
2 h at 25 °C. Nuclei were stained with DAPI (Abcam,
ab104139). 

Immunoblotting Analysis for In Vitro Experiments

After  treatment,  the  cells  were  lysed  in  RIPA
buffer  containing  a  protease  inhibitor  cocktail,  and
the procedure was performed as described for tissue
preparation  in  vivo.  Antibodies  against  Nogo-A  (Cell
Signal  Technology,  13401S),  NgR1  (Abcam,
ab184556),  and  β-Actin  (Bioss,  bsm-33036M)  were
utilized in Western blot. 

Transmission Electron Microscopy (TEM)

The mitochondria of the cells were examined by
TEM.  The  cells  were  first  fixed  with  2.5%
glutaraldehyde solution for  2 h then post-fixed with
1% osmium  tetroxide  solution  for  1  h.  After
dehydration  with  a  series  of  alcohols,  the  samples
were embedded in Epon resin and stained with lead
citrate  and  uranyl  acetate.  Electron  micrographs
were obtained (JEM-1400, Japan). 

Measurement  of  the  Mitochondrial  Membrane
Potential

According  to  the  instruction  manual  of  the  JC-1
detection  kit  (C2006,  Beyotime),  the  cells  were
supplemented  with  JC-1  staining  working  solution
and cultured for 20 min at 37 °C. After centrifugation
for  3  min,  the  mitochondrial  membrane  potential
was  measured  using  flow  cytometry  (Cytoflex,
Beckman). 

Examination of Intracellular ROS Generation

Following  the  instructions  of  the  ROS  detection
kit  (S0063,  Beyotime),  cells  were  treated  with
5  µmol/L  dihydroethidium  solution,  incubated  at
37 °C for 30 min, then centrifuged to remove excess
solution.  Cells  were  resuspended  in  phosphate-
buffered saline and analyzed using a flow cytometer
to measure fluorescence intensity. 

Statistics and Data Collection

All  data  were  expressed  as  mean  ±  standard
error of the mean (sem). All statistical analyses were
performed  using  GraphPad  Prism  version  10.0
software.  Student’s t-test  or  one-way  ANOVA  was
used  to  compare  data.  Pairwise  comparisons
between groups were conducted using Tukey’s post-
hoc  test.  Each  result  contained  at  least  three
replicates of reproducibility and variation. 

RESULTS
 

Exposure  to  High-altitude  Hypoxia  Impaired  L&M
and  increased  Oxidative  Stress  in  the  Rat
Hippocampus

After acute HH exposure, the freezing time in the
contextual  fear  memory  test  was  significantly
reduced (P < 0.05) (Figure 1A, B), suggesting that HH
exposure  detrimentally  affects  the  ability  of  rats  to
acquire  contextual  fear.  To  further  study  the
damaging  effects  of  the  HH  environment  on
hippocampus-dependent  L&M,  we  conducted  an
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Figure 1. The effects of HH exposure on contextual fear conditioning test and Morris Water Maze (MWM)
behavior  in  rats.  (A)  Schematic  illustration  of  the  strategy  for  a  contextual  fear  conditioning  test.  (B)
Freezing  time  in  context  test  was  measured  after  electric  shock  training.  (Bars  represent  mean  ±  sem.
Student’s t-test, *P < 0.05, N = 10). (C) Schematic illustration of the strategy for the MWM test pattern.
(D)  Escape  distance  to  the  platform,  (E)  mean  swimming  speed  of  the  rats  in  the  training  phase,  (F)
primary escape latency, (G) time spent in the target quadrant, and (H) number of target entries of rats in
the test phase of the MWM. (I) Representative picture of a rat track plot in the MWM test phase (data
are shown as mean ± sem, N = 12, Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant).
(J)  Quantification  of  ROS  levels,  (K)  MDA  levels,  (L)  SOD  activity,  and  (M)  ratio  of  GSH-to-GSSG  in
hippocampus  homogenates  after  HH  exposure.  SOD,  superoxide  dismutase;  MDA,  activity  and
malondialdehyde; ROS, reactive oxygen species; Ctrl, control; HH, high-altitude hypoxia. (Bars represent
mean ± sem. Statistical significance was assessed using Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001,
N = 6).
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MWM  test  (Figure  1C).  The  results  showed
prolonged  swimming  distances  during  the  training
and testing days (P < 0.05, P < 0.001, P < 0.01, ns, P <
0.01,  and P <  0.05,  respectively)  (Figure  1D);
however, there was no change on motor ability (ns)
(Figure  1E).  The  subsequent  spatial  probe  test
showed  that  the  primary  escape  latency  (the  time
taken  by  the  rats  to  reach  the  original  platform
location for the first time) was noticeably extended,
and the percentage of the target quadrant time and
number of target quadrant crossings in the HH group
were  significantly  decreased  compared  to  those  in
the  control  group (P <  0.01, P <  0.05,  and P <  0.01,
respectively) (Figure 1F–I).

HH  exposure  can  induce  oxidative  stress
reactions[21].  Because  the  hippocampus  plays  an
important  role  in  regulating  the  contextual  fear
response  and  spatial  L&M,  we  selected  this  brain
region for further testing. Compared with the control
group,  ROS  and  MDA  levels  in  the  hippocampal
homogenates  of  rats  in  the  HH  group  were
significantly  increased  (P <  0.01  and P <  0.05,
respectively) (Figure 1J, K), whereas SOD activity and
the GSH/GSSG ratio were significantly decreased (P <
0.05 and P < 0.001, respectively) (Figure 1L, M). 

High-altitude  Hypoxia  Exposure  Increased  the
Expression of Nogo-A and NgR1 in the Hippocampus
and  Reduced  Dendritic  Spine  Density  in
Hippocampal Neurons

To determine the involvement of Nogo-A and its
receptor  in  L&M  impairment  under  HH  conditions,
immunoblotting was performed on rat  hippocampal
tissues.  The  results  showed  a  significant  increase  in
the  protein  expression  of  Nogo-A  and  NgR1,  the
receptor  of  the  Nogo66  domain,  in  the  rat
hippocampal tissues after 3 days of exposure to HH,
whereas  the  expression  of  S1PR2,  the  receptor  of
NogoΔ20,  remained  unchanged  (P  < 0.01, P  < 0.05,
and  ns,  respectively)  (Figure  2A and  B).  Nogo-A  is
expressed  in  neurons  in  highly  plastic  central
nervous  system  regions,  such  as  the  hippocampus
and cortex, and has a substantial impact on neuronal
morphology and function[22]. Therefore, we explored
the  dendritic  spine  density  of  hippocampal  neurons
and  the  mRNA  levels  of  postsynaptic  density
proteins.  Golgi  staining  revealed  a  significant
decrease  in  dendritic  spine  density  in  hippocampal
pyramidal  neurons  after  HH  exposure  (P <  0.01)
(Figure  2C,  D).  PSD95  is  instrumental  in  the
maintenance  of  synaptic  plasticity  and  long-term
potentiation  (LTP)[23].  Similarly,  Shank  protein  is  a
scaffolding  protein  predominantly  located  in  the

postsynaptic  sites  of  glutamatergic  synapses  in  the
central  nervous  system[24].  In  our  study,  qPCR
revealed  significant  decreases  in  Shank1,  Shank2,
Shank3, and PSD95 mRNA levels in the hippocampal
tissues of rats after HH exposure (P < 0.01, P < 0.05,
P < 0.01, and P < 0.01, respectively) (Figure 2E). 

Knockdown  of  Nogo-A  Expression  in  the
Hippocampus  Ameliorated  High-altitude  Hypoxia-
induced  Learning  and  Memory  Impairment  and
Reduced Oxidative Stress Levels

To precisely determine the function of Nogo-A in
the hippocampal region of the HH model, stereotaxic
injection  of  AAV  expressing  a  specific  targeted  rat
RTN4  shRNA  was  performed  at  designated  rat
hippocampal  coordinates  (Figure  3A).  The
knockdown  efficiency  of  AAV-shRTN4  was  validated
using Western blotting, and the results showed that
the  knockout  efficiency  of  AAV-shRTN4  at  the
protein level exceeded 50% (P < 0.05) (Figure 3B, C).
Compared  to  that  of  the  scrambled/HH  group,  the
freezing  time  of  rats  in  the  shRTN4/HH  group  was
markedly  increased  in  the  contextual  fear  test  (P <
0.05)  (Figure  3D).  In  the  MWM  experiment,
shRTN4/HH  rats  exhibited  improved  L&M,  as
evidenced  by  a  reduction  in  swimming  distances
during  training  and testing  days  (P < 0.05, P < 0.01,
P<  0.01, P <  0.01, P <  0.001,  and P <  0.001,
respectively)  (Figure  3E),  reduction  in  the  primary
escape  latency  (P <  0.01)  (Figure  3F),  higher
percentage of time spent in the target quadrant (P <
0.05)  (Figure  3G),  and  compared  to  that  of  the
control group, the number of entries into the target
quadrant  of  rats  in  shRTN4/HH  group  exhibited  no
significant difference (P < 0.05) (Figure 3H).

Injections  of  AAV-shRTN4  significantly  reduced
the  increase  in  ROS  and  MDA  levels  in  the
hippocampal  homogenates  of  HH-induced  rats  (P <
0.05  and P <  0.05,  respectively)  and  significantly
increased SOD activity  and the GSH/GSSG ratio  (P <
0.05 and P < 0.05, respectively) (Figure 4A and D). In
addition,  after  exposure  to  HH,  the  density  of
dendritic  spines  in  hippocampal  pyramidal  neurons
in  rats  with  shRTN4  interference  significantly
increased (P < 0.05) (Figure 4E, F). 

Knockout  of  Nogo-A  Improves  Learning  and
Memory in Rats Exposed to High-altitude Hypoxia

To  further  investigate  the  role  of  Nogo-A  in  the
L&M impairment induced by HH exposure,  we used
Nogo-A-/- rats  (Figure  5A).  Under  normal  conditions
(normoxic  and  normobaric),  Nogo-A-/- rats  did  not
show  any  changes  in  contextual  fear  or  spatial
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memory  learning  in  the  MWM  test  compared  to
those  of  WT  rats,  indicating  that  Nogo-A  knockout
did  not  impair  fear  memory  acquisition  or  spatial
memory  learning.  After  exposure  to  HH,  Nogo-A-/-

rats  exhibited enhanced L&M in the contextual  fear
test  compared  with  that  of  WT  rats  (P <  0.05)
(Figure 5B). In the MWM tests, we found that the KO

rats  showed  significantly  better  L&M  performance.
In  the  probe  trial,  KO  rats  displayed  reduced
swimming  distance,  shortened  time  to  find  the
original  platform  location,  increased  time  spent  in
the  target  quadrant,  and  improved  accuracy  (P <
0.05, P <  0.05, P <  0.05,  and P <  0.01,  respectively)
(Figure 5C–G). The results of behavioral tests suggest
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levels  normalized  to  β-actin.  Bars  represent  mean  ±  sem.  Statistical  significance  was  assessed  using
Student’s t-test. *P < 0.05, **P < 0.01, ns, not significant (N = 5). (C) The dendritic spines of hippocampal
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that  Nogo-A  knockout  mitigated  the  HH-induced
impairment of L&M caused by HH. 

Knockdown of Nogo-A in SH-SY5Y Cells Ameliorated
OGD/R-induced Changes in Oxidative Stress

Oxidative  stress  was  induced  in  SH-SY5Y  cells
in  vitro  using  the  OGD/R  model.  We  confirmed
Nogo-A expression in these cells (Figure 6A) using
LV-Nogo-A shRNA to reduce Nogo-A levels, which
was  validated  by  immunoblotting  (Figure  6B).
Flow  cytometry  revealed  that  although  the  ROS
levels in the OGD/R+/shRTN4+ group were higher
than  those  in  the  OGD/R- group  (P < 0.001)
(Figures  6C,  D),  a  significant  decrease  in  ROS
levels  was  observed  in  the  OGD/R+/shRTN4+
group  compared  to  those  in  the  shRTN4- group
following OGD/R modeling (P < 0.001) (Figure 6C,
D).  Cellular  oxidative  stress  can  lead  to  iron-
mediated  mitochondrial  death,  which  is
characterized  by  reduced  mitochondrial  volume,
increased  double-membrane  density,  and
decreased or absent mitochondrial cristae[25]. The

morphology  of  mitochondria  was  observed  using
TEM  to  investigate  the  impact  of  Nogo-A
knockdown  on  OGD/R-induced  mitochondrial
ferroptosis  in  SH-SY5Y  cells.  After  OGD/R,  the
mitochondria  in  the  control  group  showed
smaller  size,  increased  membrane  density,  and
thicker  cristae,  whereas  the  shRNA  group
exhibited  improvement  in  mitochondrial  volume
and  membrane  density  (Figure  6E).  The
mitochondrial  inner  membrane  has  a  negative
potential  difference  known  as  the  mitochondrial
membrane  potential  (Δψm),  which  is  commonly
monitored  to  assess  mitochondrial  function[26].
JC-1 was used to evaluate the Δψm by measuring
the  percentage  of  JC-1  monomers.  Compared  to
that  of  the  shRTN4- group,  the  shRTN4+  group
exhibited a significantly decreased percentage of
JC-1  monomers  in  the  OGD/R  model  (P <  0.001)
(Figure  6F).  These  findings  are  consistent  with in
vivo results,  in  which  AAV-shRNA  interference
was  used  to  suppress  Nogo-A  expression  in  the
hippocampus. 
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Nogo-P4  Exacerbated  Mitochondrial  Morphology
and Function Damage in SH-SY5Y Cells Treated with
shRTN4 in the OGD/R Model

Nogo-P4  is  an  inhibitory  peptide  sequence
composed  of  25  amino  acids  (residues  31–55  of

Nogo-66)  and  is  the  active  fragment  of  Nogo-66[27].
The  corresponding  non-inhibitory  peptide,  Rtn-P4,
was used as a control. We confirmed the expression
of NgR1 in SH-SY5Y cells  (Figure 7A).  We found that
in  SH-SY5Y  cells  treated  with  shRTN4,
supplementation  with  Nogo-P4  significantly
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increased cellular ROS levels after OGD/R (P < 0.001)
(Figure  7B).  Furthermore,  we  observed  a  smaller
mitochondrial volume, increased membrane density,
and an increased percentage of JC-1 monomers (P <
0.05) (Figure 7C, D). 

Learning and Memory Impairment Induced by High-
altitude  Hypoxia  Exposure  is  Mediated  through
Nogo-A/NgR1

We  treated  rats  with  the  antagonists,  NEP1-40
and JTE-013.  These two compounds selectively  bind
to the receptors NgR1 and S1PR2, which correspond
to  the  functional  domains  Nogo66  and  NogoΔ20  of
Nogo-A.  In  contrast  to  those  in  the  control  group,
rats  treated  with  NEP1-40  (10  μg/μL,  2  μL/day)
showed substantial increase in the freezing behavior
during the contextual fear test after HH exposure (P
<  0.01)  (Figure  8A).  NEP1-40  rats  also  showed
improved  learning  and  spatial  memory  after  HH

exposure in the MWM test, with better performance
than  that  of  the  vehicle  group  during  probe  testing
(P < 0.001, P < 0.01, P < 0.001, P < 0.01, respectively)
(Figure 8B–F). No difference was observed in the JTE-
013 (10 μg/μL, 2 μL) group compared to the vehicle
control  group  (ns,  ns,  ns,  and  ns,  respectively)
(Figure 8B–F). 

DISCUSSION

The  potential  harm  of  HH  exposure  on  L&M
behavior  has  been  well-documented[28],  but  the
underlying  mechanism  is  not  fully  understood.  To
investigate  the  effects  of  high-altitude  hypoxia  on
the  structure  and  function  of  the  hippocampus,  we
utilized  a  low-pressure  oxygen  chamber  designed
with  altitude  as  the  control  parameter,  which
allowed  the  regulation  of  chamber  pressure  to
simulate real high-altitude hypoxic environments for
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animal  modeling.  Currently,  no  unified  method  is
available  for  constructing  animal  models  of  high-
altitude hypoxia, and researchers often use different
altitudes for animal modeling based on experimental
purposes.  Although  regions  above  2,500  m  in
altitude  are  referred  to  as  plateau  areas,  the
incidence of acute mountain sickness increases with
altitude (from approximately 7% at 2,200 m to over

50% at 4,559 m), and cognitive impairments, such as
learning  and  memory  deficits,  only  appear  above
4,000  m  in  altitude[29-30].  Moreover,  there  are
differences  in  hypoxia  tolerance  between  rodents
and  humans.  Although  few  populations  in  the  real
world  live  above  5,000  m  in  altitude,  we  used  this
parameter  to  create  a  model  of  learning  and
memory  impairment  caused  by  hypoxia  at  low
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Figure 8. The  effects  of  Nogo66  and  NogoΔ20  antagonists  on  rat  behavior  after  exposure  to  HH.  (A)
Freezing  time (%)  in  the  context  test  was  measured after  electric  shock  training.  Statistical  significance
was assessed using one-way ANOVA followed by Tukey post hoc tests. **P < 0.01, ns, not significant (N =
12).  (B)  Swimming distance to the platform. Statistical  significance was analyzed using one-way ANOVA
followed by Tukey post hoc tests. **P < 0.01 vs. Vehicle HH, ***P < 0.001 vs.  Vehicle HH, ###P < 0.001 vs.
Vehicle Ctrl (N = 12). (C) primary escape latency, (D) time spent in the target quadrant, and (E) number of
target entries in the probe testing phase. (F) Representative swimming tracks in the Morris Water Maze
(MWM) test. Ctrl, control; HH, high-altitude hypoxia. Statistical significance was analyzed using one-way
ANOVA followed by Tukey post hoc tests. **P < 0.01, ***P < 0.001, ns, not significant (N = 12).
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pressure.
In the present study, we found that HH exposure

significantly increased the expression of Nogo-A and
NgR1  in  the  hippocampus.  Nogo-A  and  its  receptor
play  crucial  roles  in  modulating  synaptic  plasticity
through  the  regulation  of  LTP  and  long-term
depression  (LTD)[31].  Nogo-A  and  its  receptor  NgR1
are present at synapses in pyramidal cells in the CA1
and  CA3  regions  of  the  hippocampus[31] and  in
neurons of the motor cortex[32]. An overexpression of
NgR1  in  hippocampal  neurons  is  associated  with  a
reduction  in  synaptic  quantity,  which  is  thought  to
stem  from  the  inhibition  of  new  synapse
formation[33]. This finding aligns with the observation
that  NgR1  knockout  rats  display  an  increase  in  the
number  of  synapses  in  hippocampal  pyramidal
neurons[33-34].  Because  Nogo-A  is  overexpressed  in
the rat hippocampal region, we proposed that Nogo-
A/NgR1  signaling  is  activated  in  the  hippocampus
following  HH  exposure.  Our  findings  demonstrated
that  ablation  of  the  Nogo-A  gene  and  shRNA-
mediated  interference  markedly  ameliorated  the
L&M deficits induced by HH exposure.

It  is  important  to  consider  that  the  functions  of
Nogo-A  may  extend  beyond  neurons,  because  the
AAV injected into the hippocampus is not specific to
neurons  and  interference  from  glial  cells  cannot  be
ruled out despite validation in SH-SY5Y cells. Nogo-A
is  expressed  not  only  in  hippocampal  neurons  but
also  in  glial  cells.  Nogo-A  knockdown  in
oligodendrocytes  almost  completely  protected
against  oxidative  stress  induced  by  exogenous
H2O2

[17]. Considering the important role of Nogo-A in
mediating  oxidative  stress  and  neuronal  damage  in
other  cells,  further  research  is  needed  to  use
targeted  Nogo-A  knockout  methods  in  neurons  and
glial cells to clarify its cell-specific effects.

Exposure  to  high-altitude  hypoxia  increases  ROS
levels[21].  As  oxidative  stress  has  been  widely
accepted  as  a  considerable  factor  in  alterations  in
L&M[35],  changes  in  oxidative  stress-related
indicators were examined in this study. We observed
that  the  shRNA-mediated  knockdown  of  Nogo-A  in
the  hippocampus  markedly  decreased  oxidative
stress levels and enhanced L&M after exposure.

We  postulate  that  the  synaptic  damage  in
hippocampal  neurons  is  intricately  linked  to  the
onset  of  mitochondrial  oxidative  stress  in  this
specific  brain  region.  In  neurons,  mitochondria  are
crucial  for  maintaining  energy  homeostasis  in
metabolically  demanding  cellular  regions,  such  as
axons  and  synapses[36].  Mitochondria  provide  the
necessary  ATP  for  synaptic  functions,  including

synaptic  assembly,  action  potential  generation,
synaptic  vesicle  mobilization,  and  Ca2+ buffering[37].
Our  data  showed  that  SH-SY5Y  cells  exhibit  basal
Nogo-A and NgR1 expression levels. In this study, we
observed  that  mitochondrial  volume  contraction,
increased  membrane  density,  and  loss  of  cristae  in
SH-SY5Y  cells  with  low  Nogo-A  expression  were
improved  after  OGD/R.  However,  this  improvement
was  reversed  when  Nogo-P4  was  supplemented.
These  findings  further  confirm  our  previous
hypothesis  that  the  NogoA/NgR1  pathway  is
involved  in  the  neuronal  oxidative  stress  response.
Oxidative  stress-induced  mitochondrial  dysfunction
is  believed  to  impair  synaptic  plasticity[38].  The
induction  of  hydrogen  peroxide  production  in
neurons  could  reduce  LTP,  which  is  consistent  with
our  findings[39].  However,  we  did  not  conduct
additional experiments using antioxidants to validate
the  relationship  between  mitochondrial  oxidative
stress and synaptic damage.

In  summary,  our  results  demonstrate  that
exposure  to  HH  impairs  the  L&M  of  rats  in
contextual  fear  and MWM behavioral  tests.  Genetic
knockout  of  Nogo-A,  specific  knockdown  of  Nogo-A
in  the  hippocampal  region,  and  pharmaceutical
inhibition  of  NgR1  alleviated  L&M  impairments
caused  by  HH.  In  addition,  we  found  that  the  HH-
induced  activation  of  Nogo-A/NgR1  causes  synaptic
damage  in  neurons  through  the  oxidative  stress
pathway.  This  study  enhances  our  understanding  of
Nogo-A function and provides a new perspective for
therapeutic  interventions  for  cognitive  impairments
related to HH.
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