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Abstract

Objective　To  establish  and  validate  a  novel  diabetic  retinopathy  (DR)  risk-prediction  model  using  a
whole-exome sequencing (WES)-based machine learning (ML) method.

Methods　WES was performed to identify potential single nucleotide polymorphism (SNP) or mutation
sites in a DR pedigree comprising 10 members.  A prediction model  was established and validated in a
cohort  of  420  type  2  diabetic  patients  based  on  both  genetic  and  demographic  features.  The
contribution of each feature was assessed using Shapley Additive explanation analysis. The efficacies of
the models with and without SNP were compared.

Results　WES revealed that seven SNPs/mutations (rs116911833 in TRIM7, 1997T>C in LRBA, 1643T>C
in  PRMT10, rs117858678  in C9orf152, rs201922794  in  CLDN25, rs146694895  in  SH3GLB2,  and
rs201407189  in  FANCC)  were  associated  with  DR.  Notably,  the  model  including rs146694895 and
rs201407189 achieved  better  performance  in  predicting  DR  (accuracy:  80.2%;  sensitivity:  83.3%;
specificity: 76.7%; area under the receiver operating characteristic curve [AUC]: 80.0%) than the model
without these SNPs (accuracy: 79.4%; sensitivity: 80.3%; specificity: 78.3%; AUC: 79.3%).

Conclusion　 Novel  SNP  sites  associated  with  DR  were  identified  in  the  DR  pedigree.  Inclusion  of
rs146694895 and rs201407189 significantly enhanced the performance of the ML-based DR prediction
model.
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INTRODUCTION

D iabetic  retinopathy  (DR)  is  a  major  cause
of  blindness  in  adults[1].  The  global
diabetic  patients’ number  was  estimated

to be 536.6 million in 2021, and is expected to rise to
be  783.2  million  in  2045[2].  Approximately  one-third
of  patients  develop  DR[3].  Therefore,  developing  a
reliable  risk  assessment  method  for  the
development  of  DR  to  facilitate  early  intervention

and prevention of the disease is necessary.
Previous  development  of  risk  assessment  models

for  DR  relied  on  classical  statistical  methods  to
integrate  multiple  risk  factors  associated  with  the
condition[4,5].  However, these risk-prediction methods
for DR exhibit limited efficacy due to their suboptimal
predictive  performance.  In  recent  years,  machine
learning  (ML)  methods  have  demonstrated  powerful
self-learning abilities and improved disease prediction
accuracy[6]. Previously reported ML prediction models
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primarily include demographic factors[7,8].
Genetic  factors  are  widely  recognized  as

important contributors to the progression of DR[9-11].
However,  only  a  few  studies  have  employed  ML
methods  that  incorporate  identified  genetic  risk
factors.  In  the  case  of  age-related  macular
degeneration,  the  inclusion  of  genetic  factors
enhances the accuracy of predictive models[12,13].

Thus, the present study aimed to investigate the
effect  of  an  ML  prediction  model  for  DR  while
including  the  genetic  risk  factors  identified  in  a  DR
pedigree using whole-exome sequencing (WES). 

METHODS
 

Study Participants and Clinical Evaluation

The  DR  pedigree,  including  probands  and  the
type 2 diabetes mellitus (T2DM) cohort, was selected
from the Desheng Diabetic  Eye Study,  the details  of
which  have  been  previously  described[14].  The  study
protocol  was approved by the Ethics Committees of
Beijing  Chao-Yang  Hospital  and  Beijing  Tongren
Hospital  and  adhered  to  the  tenets  of  the
Declaration  of  Helsinki.  Written  informed  consent
was obtained from all participants before enrolment
in the study. Diabetes was defined as a self-reported
history  of  physician-diagnosed  T2DM  treated  with
insulin, oral hypoglycemic agents, or diet only; or by
a  fasting  plasma  glucose  (FPG)  concentration  of  7.0
mmol/L (126 mg/dL) or more in at least two previous
examinations;  or  a  random  plasma  glucose
concentration  of ≥ 11.1  mmol/L  (200  mg/dL).  An
overview of the study design is shown in Figure 1.

All  the  participants  underwent  a  standardized
evaluation  consisting  of  a  questionnaire,  ocular  and
anthropometric  examinations,  and  laboratory  tests.
Laboratory  tests,  including  fasting  plasma  glucose
(FPG),  glycosylated  hemoglobin  A1c  (HbA1c),
creatinine,  uric  acid,  lipid  profile  (levels  of  total
cholesterol,  triglycerides,  and  high-density  and  low-
density  lipoprotein  cholesterol),  and  urine
albuminuria  (UMALB)  were  conducted  for  all  420
participants.  Venous  blood  samples  were  obtained
from  all  participants,  stored  at −80  °C  until  DNA
extraction.

The  DR  family  was  selected  based  on  the
following  criteria:  (1)  more  than  two  generations
with  T2DM  members,  (2)  three  or  more  DR
members,  (3)  inclusion  of  at  least  one  diabetic-
without  retinopathy  (DWR)  patient  who  had  T2DM
for more than four years, (4) healthy members older
than 45 years,  and (5)  the  fundus  photograph of  all

included  family  members  should  be  graded.  Sixty
Chinese  families  with  DR  were  recruited  for  the
study.  One  family  was  selected  for  further  analysis
(Table  1).  The  family  pedigree  is  shown  in Figure  2.
Patients with one non-T2DM, one DWR, and four DR
of the second-generation DR pedigree were selected
for whole exome sequencing (WES).

The ML dataset was collected from the Desheng
Diabetic Eye Study cohort. Based on the duration of
diabetes  and  the  grading  of  fundus  photographs,
patients from the cohort were assigned to the DWR
group if they had more than 10 years of T2DM with
no  signs  of  DR  (microaneurysms,  hemorrhages,  and
exudates) or if they had more than 15 years of T2DM
with  fewer  than  five  microaneurysms.  Patients  with
five  or  more  microaneurysms  in  at  least  one  eye
were assigned to the DR group. Patients who did not
meet the DWR or DR criteria were excluded from the
study.  The  duration  of  diabetes  was  defined  as  the
interval  between the  first  diagnosis  of  diabetes  and
the  time  of  enrollment  in  the  present  study.  One
hundred  ninety-eight  patients  with  DWR  and  222
patients with DR were randomly recruited. 

Gene Detection Methods

Genomic  DNA  was  isolated  from  the  leukocytes
using  a  TIANamp  Blood  DNA  Kit  (Tiangen  Biotech,
Beijing,  China).  DNA  concentration  was  measured
using a NanoDrop 2000 spectrophotometer (Thermo
Scientific,  Wilmington,  DE,  United  States).  All  DNA
samples  passing  initial  quality  checks  at  a
concentration  of ≥ 50  ng/μL  were  collected  for
further sequencing. 

Whole-exome Sequencing

Genomic DNA from six selected individuals  from
the  DR  pedigree  was  subjected  to  WES  using  a
commercial  service  provided  by  the  Beijing
Genomics Institute, Shenzhen, China.

Exonic  DNA  libraries  were  enriched  by
hybridizing  genomic  DNA  samples  with  the
NimbleGen  2.1  M-probe  sequence  capture  array[15].
The  libraries  were  sequenced  on  an  Illumina  HiSeq
2000  platform,  generating  90-bp  reads  for  each
sample. Sequence reads were aligned to the human
genome  using  the  SOAP  Aligner  (v2.21)  software.
SOAPsnp  software  generated  genotypes  for  each
position in the target region.  High confidence single
nucleotide  polymorphism  (SNP)  sites  (quality ≥ 20
and depth ≥ 8X) were selected for further analysis. 

Mutation Analysis

SNP  sites,  coding  DNA  sequences,  and  indels
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Figure 1. Overview of the study design. The probands in the diabetic retinopathy (DR) pedigree and the
type 2 diabetes mellitus (T2DM) cohort were derived from the Desheng Diabetic Eye Study. We collected
clinical  data through questionnaires and obtained venous blood samples from all  participants.  Genomic
DNA  was  extracted  from  leukocytes.  We  identified  seven  single  nucleotide  polymorphisms  (SNPs)  and
mutations  associated  with  DR  in  the  pedigree  using  whole-exome  sequencing  (WES).  The  dataset’s
participants  were  genotyped  for  these  SNPs  employing  Sequenom  MassARRAY  technology  (Bioyong
Technologies, Beijing, China). For the T2DM cohort, 70% of the data was allocated for training and 30%
for  validation.  We  assessed  various  machine  learning  algorithms,  including  the  linear  support  vector
machine  (SVM),  random  forest,  logistic  regression,  K-nearest  neighbor,  decision  tree,  multi-layer
perceptron,  linear  discriminant  analysis,  multinomial  naive  Bayes,  and  AdaBoost.  Model  efficacy  was
evaluated by accuracy, sensitivity, specificity, the area under the receiver operating characteristic curve
(AUC), and the kappa statistic.
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were  identified  using  SAMtools  and  BCF  tools.
Variants  with  a  minor  allele  frequency  (MAF)  lower
than 1% or absent in the East Asian population from
gnomAD and EXAC databases were retained.

The  Polyphen2  uses  sequence- and  structure-
based predictive algorithms, and predicts if a change
is  damaging  (>  0.85),  possibly  damaging  (0.85–0.15)
or  benign  (<  0.15).  The  SIFT  tool  mainly  assesses  a
change being damaging (≥ 0.95) or tolerated (< 0.95),
through  analyzing  the  conserved  sequence  in
different  species.  Variants  identified  by  WES  in  the

Chinese  family  with  DR  were  validated  by
polymerase  chain  reaction  (PCR)  and  Sanger
sequencing  using  specific  primers.  Mutations
detected  in  the  DR  family  were  subjected  to  co-
segregation analysis to determine their causality. 

Cohort Genotyping

Study participants in the dataset were genotyped
for  SNP  sites  using  the  Sequenom  Mass  ARRAY
(Bioyong  Technologies,  Beijing,  China).  Quality
control  measures  included  MAF  <  0.05,  genotyping

 

Table 1. Clinical features of the index patient and other family members

Family individual Age (years) Sex DM disease Age onset (years) DM duration (years) HbA1c (%) DR disease

II2 64 Male DM 40 24 7.1 NPDR

II4 61 Female DM 49 12 9.3 NPDR

II6 60 Male DM 56 4 6.7 DWR

II8 57 Female DM 41 16 7.8 NPDR

II9 60 Male DM 44 16 6.1 DWR

II10 54 Female DM 36 18 7.9 PDR

II12 52 Female NDM — — 5.1 —

II13 54 Male NDM — — 5.2 —

III2 33 Male NDM — — 4.8 —

III5 16 Female NDM — — 4.6 —

　 　 Note.  DM,  diabetes  mellitus;  NDM,  non-diabetes;  HbA1c,  glycosylated  hemoglobin;  DR,  diabetic
retinopathy;  NPDR,  non-proliferative  diabetic  retinopathy;  DWR,  diabetes  without  retinopathy;  PDR,
proliferative diabetic retinopathy.
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Proband

DM Normal

II1 II2
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Figure 2. Pedigree  of  the  family  showing  diabetes  status  of  each  member.  Circles  represent  female
participants and squares male participants. A slash through the symbol indicates that the family member
is deceased. Black symbols indicate patients with diabetic retinopathy (DR). Dashed symbol represented
individuals with diabetes mellitus (DM) but without DR.
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success  <  80%,  and  failed  Hardy-Weinberg
equilibrium (HWE) test in control samples (P < 0.001,
Pearson goodness-of-fit test). 

Feature Selected Strategy

Feature  selection  was  performed  using  least
absolute  shrinkage  and  selection  operator  (LASSO)
regression  algorithms.  The  model  training  features
included  specific  SNP  loci  and  ten  clinical  variables:
age  at  examination,  biological  sex  (male  or  female),
FPG,  HbA1c,  UMALB,  insulin  usage,  oral  glucose
tolerance test (OGTT) results,  therapeutic approach,
monthly  income,  and  educational  level.  Age  was
recorded on the day of the examination, and sex was
recorded as  assigned at  birth.  Insulin  use  and OGTT
results  were  categorized  into  two groups  (usage/no
use  and  tested/not  tested,  respectively).  The
therapeutic  approaches  were  classified  into  three
groups:  dietary  control,  exercise,  and
pharmacotherapy. Monthly income was divided into
six  brackets  ranging  from  no  income  to  more  than
4,000  Chinese  Yuan  (CY).  Educational  level  was
divided  into  junior  school  or  lower  and  high  school
or higher. 

Machine Learning Model Construction

We  utilized  Python  3.9  and  the  SKLearn  ML
package  for  model  development.  The  feature
contributions  were  assessed  using  the  Shapley
Additive  explanation  (SHAP)  approach.  A  linear
support vector machine (SVM) served as the primary
algorithm,  partitioning  the  data  into  70% training
and  30% validation  sets.  We  also  examined
additional  machine  learning  algorithms,  including
random  forest,  logistic  regression,  K-nearest
neighbor, decision tree, multilayer perceptron, linear
discriminant  analysis,  multinomial  naive  Bayes,  and
AdaBoost.  The  model  efficacy  was  measured  using
accuracy,  sensitivity,  specificity,  area  under  the
receiver  operating  characteristic  curve  (AUC),  and
kappa statistics. 

Statistics

Statistical  analyses  were  performed  using  R
(version 4.2.2) and R Studio (version 2023.06.1). The
package  used  was  EpiCalc  (version  2.8.1.1,  2009).
Chi-square  test  or  Fisher’s  exact  test  was  used  to
compare  categorical  data  between  the  two  groups.
Parametric  variables  were  analyzed  using  t-tests.
Nonparametric  data  were  assessed  using  the
Kruskal-Wallis  rank-sum  test.  Binomial  logistic
regression  was  used  for  the  multivariate  analysis.
The odds ratio (OR) and 95% confidence intervals (CI)

were calculated. The statistical significance level was
set at P < 0.05. 

RESULTS
 

SNP Identification in the DR Pedigree

Within  the  DR  pedigree  comprising  ten
members,  we  identified  seven  SNP  sites  and
mutations (rs116911833 in TRIM7, 1997T>C in LRBA,
1643T>C  in  PRMT10,  rs117858678  in  C9orf152,
rs201922794  in  CLDN25,  rs146694895  in  SH3GLB2,
and rs201407189 in FANCC). These genetic variations
were  present  in  DR-afflicted  individuals,  but  absent
in DWR or non-T2DM subjects. The characteristics of
these SNP sites and mutations, such as their location
in  the  coding  DNA  sequence,  SNP  sites,  allele
frequencies,  and  predictive  impact  scores  from SIFT
and PolyPhen2, are detailed in Table 2.

The  percentages  of  calorie  sources
(carbohydrate, fat, and protein) were analyzed using
multiple  logistic  regression.  After  adjusting  for
multiple  factors,  including  sex,  ethnicity,  use  of
insulin,  glycosylated  hemoglobin,  hypertension,  and
exercise,  dietary  vitamin  E  [OR (95% CI):  0.97  (0.95,
1.00), P =  0.036]  and  selenium  [OR (95% CI):  0.98
(0.96,  1.00), P =  0.017]  intakes  were  inversely
associated with the risk of DR (Table 2). 

Features Selected for ML Training

The  demographic  and  clinical  features  selected
for  ML  training  in  the  T2DM  cohort  of  420  patients
are shown in Table 3. These features, including age,
FPG,  HbA1c,  UMALB,  monthly  income,  insulin  use,
therapeutic  interventions,  and  educational  level,
demonstrated  statistically  significant  differences
between the DR and non-DR groups (P < 0.05, T-test,
Fisher’s exact test, and Kruskal-Wallis rank-sum test,
respectively).  Conversely,  sex  showed  no  significant
difference  (P =  0.65,  chi-squared  test).  SNP
rs146694895 exhibited significant variation (P = 0.02,
Fisher’s  exact  test),  whereas rs201407189 did  not
(P =  0.82,  Fisher’s  exact  test).  All  features  have  all
been  selected  through  LASSO  regularization,
ensuring  no  collinearity  issues  are  present  among
them; the lambda figures are shown in Figure 3. 

Algorithms of ML Models for Predicting DR

During the evaluation of different ML algorithms,
the  SVM  algorithm  outperformed  the  others,
achieving  the  highest  accuracy,  sensitivity,
specificity,  AUC,  and  kappa  values  for  the  test  set
(80.2%,  83.3%,  76.7%,  80.0%,  and  60.1%,
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respectively), as presented in Table 4. 

Influence of SNP Sites on ML Models

The rs146694895 and rs201407189 were
observed  enhanced  the  performance  of  ML  models
for  DR  prediction  (Table  5).  Other  identified  SNP
sites  and  mutations  did  not  contribute  significantly
to predictive accuracy and were thus excluded from
the feature set. 

Contribution of Each Parameter

The  final  model  for  predicting  DR  incorporated
both  demographic  data  and  selected  SNP  sites
(rs146694895 and rs201407189). The contribution of
each parameter  as  quantified  by  the SHAP values  is
shown in Figure 4. 

Performance and Application

The  performance  of  the  SVM  model  is  depicted
through  a  confusion  matrix  and  receiver  operating
characteristic  curve  in Figures  5.  To  facilitate  the
practical  application  of  this  model,  we  developed  a
web-based  application  for  DR  prediction  that  is
accessible  on  DR  Prediction  Model  Web  Server.  This
tool allows users to input 12 features into designated
fields and receive DR predictions (Figure 6). 

DISCUSSION

In  the  present  study,  we  identified  seven  novel
SNP sites in seven genes associated with DR, using a
DR  pedigree.  Subsequently,  an  ML  model  for
predicting  DR,  including  both  demographic  and

genetic  factors,  was  established  and  tested.  The
inclusion  of rs146694895  in  SH3GLB2 and
rs201407189  in  FANCC improved  model
performance.

The  identified  7  SNP  sites  and  mutations  have
not  been  reported  previously.  Multiple  candidate
genes have been proposed to be associated with the
development  of  DR[9-11].  However,  previous  studies
involving  linkage  analyses,  candidate  gene  studies,
and underpowered genome-wide association studies
have  found  limited  or  inconsistent  genetic  signals
that  cannot  be  replicated  across  multiple
cohorts[16-18].  The  heritability  of  DR  attributed  solely
to  common  genetic  variants  is  estimated  to  be  7%,
based  on  studies  involving  distantly  related
individuals[10].  However,  heritability  estimates  from
specific family studies ranged from 18% to 52%[19,20].
Thus,  identifying  DR-associated  genes  in  the  DR
pedigree  is  more  efficient.  Therefore,  we  first
attempted  to  identify  DR-associated  genes  in  a  DR
pedigree using WES.

To date, only a few studies have reported on the
utilization of machine learning analysis for assessing
DR  risks[7,8].  Moreover,  these  studies  incorporated
only the common risk factors associated with DR into
their  models.  This  study  aimed  to  develop  a  robust
DR  risk  prediction  model  by  integrating  genetic
factors  from  the  DR  pedigree  with  demographic
data.

SH3GLB2 rs146694895  and FANCC rs201407189
were  identified  as  significant  contributors  to  the
model  efficiency.  These  two  genes  were  first
reported  to  be  associated  with  DR.  Both SH3GLB2

 

Table 2. Multiple association analysis of genetic variants with diabetic retinopathy (DR) risk:
functional prediction scores and odds ratios

Gene Position in CDS SNP Allele Frequency SIFTa PolyPhen2b Adjusted ORc (95% CI) P-value

TRIM7 863 rs116911833 C/T 0.031 0.01 0.111 1.46x106 (0, Inf) 0.18

LRBA 1997 — T/C — 0.05 0.989 3.34 (0.54, 20.82) 0.18

PRMT10 1643 — T/C — 0.01 0.999 1.21x106 (0, Inf) 0.28

FANCC 973 rs201407189 G/A 0.01 0.35 0.956 0.78 (0.24, 2.57) 0.69

C9orf152 451 rs117858678 C/T 0.021 0.07 0.087 1.64 (0.66, 4.05) 0.29

CLDN25 379 rs201922794 A/T 0.01 0.4 0.297 1.11 (0.22, 5.64) 0.90

SH3GLB2 769 rs146694895 G/A 0.015 0.16 0.687 3.96 (1.02, 15.37) 0.03

　　Note. CDS,  coding  DNA  sequence;  SNP,  single  nucleotide  polymorphism. aSIFT:  prediction  of  a  change
being  damaging  (≥ 0.95)  or  tolerated  (<  0.95). bPolyphen2:  prediction  of  a  change  being  damaging  (>  0.85),
possibly damaging (0.85–0.15) or benign (< 0.15). cOdds ratios from logistic regression models adjusted for age,
fasting plasma glucose (FPG), glycated. hemoglobin (HbA1c), urinary microalbumin (UMALB), monthly income,
oral glucose tolerance test (OGTT), therapeutic approaches, and insulin usage.
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and FANCC are expressed in the retina[21,22]. Previous
studies have shown that SH3GLB2 and SH3GLB1 play
crucial  roles  in  mitochondrial  autophagy[21].
Disruption  of  these  genes  can  lead  to  weaker
degradation  of  damaged  mitochondrial
membranes[23].  In  diabetes,  problems  with
mitochondria  can  lead  to  the  overproduction  of
harmful  substances  such  as  superoxide,  which  can
trigger  unhealthy  cellular  reactions,  contributing  to
oxidative  stress,  a  known  factor  in  DR
development[24].  Furthermore, SH3GLB1 has  been

implicated  in  lipid  metabolism  in  the  adipose  tissue
and  insulin  resistance[25].  Because SH3GLB2 can
interact  with SH3GLB1 and  share  significant
sequences  and  similar  structures,  they  may  have  a
similar  function.  However,  direct  evidence  linking
SH3GLB2 with DR is lacking.

Mutations  in FANCA and FANCC have  been
identified in more than 70% of patients with Fanconi
anemia patients worldwide[26]. Approximately half of
patients  with  Fanconi  anemia  present  with
abnormalities  in  glucose  metabolism[22],  and FANCC

 

Table 3. Demographic features of all the DM patients, including training and validation cohorts

Parameters
DWR DR

P- Valuea

n = 198 n = 222

Age (year) 68.21 ± 7.17 65.66 ± 7.90 < 0.001b

Biological sex, n (%)

Male 83 (41.90) 94 (42.30) 0.65c

FPG (mmol/L) 7.99 ± 2.30 9.17 ± 3.36 < 0.001b

HbA1c (%) 6.70 ± 1.37 7.80 ± 1.71 < 0.001b

UMALB (mmol/L) 3.50 (1.77, 9.05) 7.34 (3.0, 26.20) < 0.001d

Monthly income, n (%) 0.03

No income 4 (2.02) 3 (1.35)

Basic living allowance 2 (1.01) 3 (1.35)

< 2,000 CY 48 (24.24) 73 (32.88)

2,000–3,000 CY 81 (40.91) 104 (46.85)

3,000–4,000 CY 40 (20.20) 24 (10.81)

> 4,000 CY 23 (11.62) 15 (6.760)

Insulin usage, n (%) 55 (27.80) 150 (67.60) < 0.001

Therapeutic approaches, n (%) < 0.001

Dietary control 131 (66.20) 83 (37.40)

Exercise 12 (6.10) 52 (23.40)

Pharmacotherapy 55 (27.80) 87 (39.20)

OGTT test conducted, n (%) 122 (61.61) 105 (47.30) 0.004

High school or higher, n (%) 126 (63.60) 114 (51.40) 0.01

rs146694895 0.02

GA 3 (1.52) 15 (6.76)

GG 195 (98.48) 207 (93.24)

rs201407189 0.82

AG 8 (4.04) 7 (3.15)

GG 190 (95.96) 215 (96.85)

　　Note. DWR, diabetic-without retinopathy; DR, diabetic retinopathy; FPG, fasting plasma glucose, HbA1c,
glycosylated  hemoglobin;  UMALB,  urine  microalbumin;  CY,  Chinese  Yuan. aFisher’s  exact  test. bT-test. cChi-
square test. dKruskal-Wallis rank-sum test.
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knockout  mice  display  a  higher  propensity  towards
developing  diabetes  mellitus[27].  Both  patients  with
Fanconi  anemia  and  knockout  mouse  models  show
increased levels of reactive oxygen species[28,29]. This
surge  contributed  to  oxidative  stress  and  triggered
endothelial cell death. Endothelial dysfunction or cell
death  can  cause  vascular  barrier  disruption,
vasoconstriction,  diastolic  dysfunction,  vascular
smooth  muscle  cell  proliferation,  migration,

inflammatory  responses,  and  thrombosis.  Each
outcome is closely associated with DR[30].

In  this  study,  the  LASSO shrinkage  and selection
operator  regression  algorithm  was  used  for  feature
selection. It has been proven to automatically select
significant  features  that  are  relevant  to  the  target
variable,  while  setting  the  coefficients  of  irrelevant
or  redundant  features  to  zero[31].  Oh  et  al.[7]

embarked  on  a  pioneering  exploration  of  the
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Figure 3. The lambda figures (coefficients and MSE) of Lasso features selection procedures.
 

Table 4. Comparative performance of various algorithms in machine learning model

Algorithms Accuracy Sensitivity Specificity AUC Kappa value

Random forest 73.0% 80.3% 65.0% 72.7% 45.6%

Logistic Regression 77.8% 81.8% 73.3% 77.6% 55.3%

K-nearest neighbor 65.1% 66.7% 63.3% 65.0% 30.0%

Linear discriminant analysis 77.8% 81.8% 73.3% 77.6% 55.3%

Multinomial Naive Bayes 57.9% 24.2% 95.0% 59.6% 18.6%

Decision Tree 52.4% 56.1% 48.3% 52.2% 0.04%

AdaBoost 66.7% 69.7% 63.3% 66.5% 33.1%

Multi-layer perceptron 75.4% 81.8% 68.3% 75.1% 50.4%

XGBoost 57.9% 59.1% 56.7% 57.9% 15.7%

SVM 80.2% 83.3% 76.7% 80.0% 60.1%

　　Note. SVM, Support vector machine; AUC, area under the receiver operating characteristic curve.
 

Table 5. Performance metrics of the support vector machine model with or without
SH3GLB2 and FANCC variables

Features Accuracy Sensitivity Specificity AUC Kappa value

Without SH3GLB2 79.4% 80.3% 78.3% 79.3% 58.6%

Without FANCC 79.4% 83.3% 75.0% 79.2% 58.5%

Without SH3GLB2 and FANCC 77.8% 80.3% 75.0% 77.7% 55.4%

With SH3GLB2 and FANCC 80.2% 83.3% 76.7% 80.0% 60.1%

　　Note. AUC, area under the receiver operating characteristic curve.
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potential of machine learning in the development of
a  risk  prediction  model  for  DR.  This  study
demonstrated  that  the  LASSO  algorithm
outperformed  conventional  indicators,  delivering
superior  AUC  values  and  accuracy  rates.  Using  a
similar  sample  size,  our  study  achieved  an
improvement  (5%)  in  accuracy.  This  may  be
attributed  to  the  incorporation  of  both  genetic
factors and different ML algorithms.

Compared  with  prior  studies,  our  research
employed  nine  machine  learning  algorithms,
facilitating  flexibility  in  exploring  diverse
perspectives  and  techniques  in  model  construction.
Commonly used machine learning algorithms include
the  k-nearest  neighbor,  support  vector  machine,

decision  tree,  random  forest,  linear  discriminate
analysis,  AdaBoost,  XGBoost,  and  CATBoost[32].  Our
study  adopted  all  these  algorithms  and  found  that
the  SVM  demonstrated  the  highest  effectiveness,
with superior AUC and accuracy scores. Hemoglobin
A1c,  duration  of  diabetes,  cholesterol,  and  blood
pressure  only  accounted  for  10%–11% of  the  DR
risk[33,34].  Li  et al.[8] conducted an exhaustive analysis
of the electronic medical records of a large cohort of
32,452 T2DM inpatients. Logistic regression, random
forest,  SVM,  and  XGBoost  were  adopted.  The
XGBoost  algorithm  exhibits  the  highest  AUC  for  the
validation  set.  This  model  relied  on  hospital  data,
which  may  introduce  bias  and  limit  its
generalizability.
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We  also  found  that  insulin  usage,  HbA1c,
UMALB, age,  FPG, OGTT, sex,  therapeutic approach,
monthly  income,  and  educational  level  also
influenced  DR  conditions.  Previous  studies  have
demonstrated  that  HbA1c,  duration  of  diabetes,
cholesterol,  and  blood  pressure  account  for  10% to
11% of DR risk[33,34].  The heritability of DR attributed
solely to common genetic variants is estimated to be
7%,  based  on  studies  involving  distantly  related
individuals[10].  According  to  previous  studies,  the
contribution of demographic data to DR risk is higher
than that of heritability, which is consistent with our
findings.  We  noticed  that  the  contribution  of  SNP
factors  was  less  than  that  reported  previously.  The
reason  for  this  might  be  that  DR  is  a  multifactorial
disease  influenced  by  many  genes,  but  we  only
included  two  SNP  sites.  Therefore,  additional  DR-
associated  genes  should  be  included  in  prediction
models.

The  present  study  has  some  limitations.  First,
although our study marks an important step forward
in the field, we acknowledge that the limited sample
size  used  for  model  construction  poses  constraints
on  the  overall  accuracy  of  the  model.  Second,
although we found that  genetic  factors  identified in
the  DR  pedigree  played  a  crucial  role  in  the

performance  of  the  ML  model,  the  collection  of
adequate  pedigree  can  pose  a  challenge  due  to  the
relatively  advanced  age  at  the  onset  of  T2DM.
Furthermore, although whole exome sequencing is a
powerful  tool,  it  is  not  as  comprehensive  as  whole-
genome  sequencing  for  detecting  a  wide  range  of
intronic  sites  in  genes.  This  could  potentially
overlook  some  factors  influencing  gene  function.
Additionally,  the  absence  of  pathway  validation  for
the  relevant  SNP  sites  constrains  our  capacity  to
substantiate  the  impact  of  these  SNP  sites  on  DR.
Finally,  the  restricted  sample  size  for  model
construction limits the model accuracy.

In  conclusion,  this  study  represents  a  crucial
advancement in DR risk prediction modeling through
the  integration  of  multiple  machine  learning
algorithms  and  comprehensive  evaluation  metrics.
SNPs  of SH3GLB2 and FANCC screened from the DR
pedigree  were  instrumental  in  enhancing  the
performance  of  the  DR  prediction  model,  thus
proving  the  effectiveness  and  accuracy  of  this
screening  method.  Our  study  is  the  first  to
determine  the  importance  of  genetic  factors  in  the
DR  risk  prediction  model.  Further  enrollment  of
other  DR-associated  genetic  sites  in  the  prediction
model is required.
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